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We present the first nonequilibrium molecular-dynamics simulations of viscoelasticity in two-
dimensional fluids. The shear viscosity is found to depend logarithmically upon the frequency; how-
ever, the divergence at low frequencies is shielded by a “turnover regime” where the shear viscosity
becomes independent of frequency. The stress-stress autocorrelation function is shown to have a
¢t ~! long-time tail, and the coefficient matches the coefficient of the logarithmic frequency depen-
dence of the shear viscosity. The Goddard-Miller relation between the frequency and strain-rate
dependence of the shear viscosity is shown to be incorrect. Superharmonic excitations are observed

in both the shear stress and the pressure.

I. INTRODUCTION

Since the discovery of the “long-time tail” phenomena,
hydrodynamics in two-dimensional systems has been a
subject of considerable interest. The Green-Kubo rela-
tions predict that linear Navier-Stokes transport coeffi-
cients are given by infinite integrals of equilibrium time
correlation functions.! These relations are generally
thought to be exact. In two dimensions Alder and Wain-
wright? discovered that the Green-Kubo integrands for
Navier-Stokes transport coefficients decay as ¢ ! at long
times. Subsequently a wealth of theoretical evidence® has
appeared which is in substantial agreement with
computer-simulation calculations of Alder and Wain-
wright. The combination of theory and simulation sup-
porting the divergence of the Green-Kubo formulas in
two dimensions questions the validity of the Green-Kubo
formulas. We have argued previously* that the derivation
of Green-Kubo formulas for transport coefficients neces-
sarily assumes the finiteness of the resulting expressions.

We have recently reported the results of computer
simulations of the shear viscosity in two dimensions.* In
contrast to earlier calculations, our recent results were ob-
tained from nonequilibrium molecular-dynamics (NEMD)
simulations of shear flow. These results are therefore in-
dependent of the validity, or otherwise, of the Green-
Kubo formulas. In NEMD transport coefficients are cal-
culated directly from their defining constitutive relations.
These calculations suggest that planar Couette flow itself
is unstable at small strain rates in two dimensions. The
Green-Kubo relations which pertain to planar Couette
flow might therefore be irrelevant in two dimensions. The
NEMD calculation of the zero-frequency strain-rate-
dependent shear viscosity shows that at small strain rates,
the effective viscosity is finite and independent of strain
rate (Newtonian). This contradicts the theoretical predic-
tion of a logarithmic divergence.

A summary of the theoretical predictions for the
behavior of the shear viscosity in two, three, and four di-
mensions are given below.
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The long-time behavior of the stress-stress autocorrelation
function (P, (¢)P,,) has been observed in two dimen-
sions? and three dimensions.’ In both cases these Green-
Kubo calculations were consistent with the mode-coupling
functional forms given above. However, in both cases the
observed amplitudes were orders of magnitude larger than
theoretical predictions. ’

Nonequilibrium molecular dynamics has been used to
study shear thinning 1(y) in two, three, and four dimen-
sions,*~8 and viscoelasticity 7j(w) in three dimensions.®’
An inverse Fourier-Laplace transform of 7j(w) yields the
time dependence of the memory function 7(z). If the
Green-Kubo relations are correct this memory function is
the equilibrium stress-stress autocorrelation function. In
three dimensions agreement between the memory function
and the autocorrelation function are excellent.” In this
paper we perform a similar cross-check for two dimen-
sional fluids.

The Goddard-Miller rheological equation of state
predicts that 7j(w)=7(y=w). In two dimensions the
coefficient of the logarithmic dependence on strain rate
should be the same as that for the logarithmic dependence
on frequency.

9,10

' IL. MODEL AND ALGORITHM

The model system considered was the soft-disk- fluid
whose pair potential is

12
b(r)=€ 2, . (1)
r

The state point studied was close to the freezing density,
p*=po?=0.8(+)!/2%. As the soft-disk equation of state is
a function of one variable X=p*(T*)~!/® we chose
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T*=kT /e=1. This state point has been studied previ-
ously and the shear viscosity versus strain rate behavior,
for reduced rates of unit or less, is known, as is its number
dependence. Here we use a system of 896 soft disks with

the potential cutoff at 1.5 o. This allows the use of an ef--

ficient cell code algorithm.!!

The correct algorithm for simulating planar Couette
flow arbitrarily far from equilibrium is known as the sllod
algorithm.!?> The results reported here use a combination
of runs obtained using both the sllod algorithm and the
dolls-tensor method.!> Comparison of results derived us-
ing the two algorithms shows that the only statistically
significant errors in the dolls-tensor calculations occur in
the superharmonic excitations of the pressure tensor (see
Sec. III). This is an interesting observation since at zero
frequency it is only the normal stress differences which
are incorrect with the dolls-tensor algorithm. For the
dolls-tensor algorithm we have
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where m, is a unit vector in the A direction. The only

change in isothermal sllod dynamics is to replace Eq. (3)
by

4)

pi=F,—n,y(t)p,; —ap; . (5)

In both of these methods the momenta are interpreted
as peculiar momenta and hence the temperature is defined
to be

2NKT 1 ) ‘
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The isothermal constraint ensures that this temperature is
kept constant, without explicit reference to its value. The
necessary occasional velocity scaling which compensates
for numerical drift ensures that the sum of the squares of
the deviations from the linear profile are consistent with
the temperature. This means that the deviation from
linearity in the velocity profile at any instant in time is
only due to thermal velocity. This stabilizes the linear
velocity profile.

There are some extra boundary conditions associated
with Eq. (2). When a particle’s x coordinate moves out-
side the simulation cube its image appears according to
the usually shearing boundary conditions. However, for
both dolls-tensor and sllod dynamics it is necessary to re-
calculate x; using Eq. (2), and with the Gear predictor-
corrector algorithm all higher derivatives must also be re-
calculated.

For a system driven by a time-dependent force of fre-
quency o it is reasonable to assume that the response, as
measured by Py, (2), is periodic with period T =27/w.
Therefore P,,(¢) can be expanded in a Fourier series:

Py(0="ao+ 3 [a,costnon+bysin(non], (1)

n=1
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where
T
a,,=—2f fo dt P,y (t)cos(nwt) , (8)
2 T .
b= [, dt Py (t)sin(nat) . 9

Linear-response theory for an arbitrary phase variable
B in a system undergoing shear gives

t
B()= [ dsX(t—s)y(s), (10)
where the susceptibility X is
X(8)=—PB(B(t)P,,(0)) . (11)

Clearly the right-hand side of Eq. (10) is a convolution, so
in the frequency domain

B(w)=X(0)7(») (12)

and a system driven at a frequency w will respond at that
frequency only. In practice however, the nonlinear
response of the system can be expected to contain contri-
butions from higher harmonics of the driving frequency.
When P, is chosen to be the response function, the real
part of the complex susceptibility X (w) is the frequency-
dependent shear  viscosity. The nonequilibrium
molecular-dynamics method then consists of driving the
system at a fixed frequency w, and monitoring the
response of P,, at the same frequency. The frequency-
dependent shear viscosity is calculated from Eq. (12).

In an isothermal nonequilibrium molecular-dynamics
simulation there is a second route to the frequency-
dependent shear viscosity. We consider the energy dissi-

pation in the system H o Where

1 2
—— ‘1P . 13
o= §,p, + (13)
From either the dolls-tensor equations of motion or in-
verse dynamics it is straightforward to show that

Ho(t)= —P,,(t)Vy(1) —2NkTalt) . (14)

If the system is in a steady state then the dissipation over
a period of the driving frequency is zero [or equivalently
H(t) has period 27 /w] so

Re[7(w)]=4pkT{a) /y* . (15)

This is the second independent route to the viscosity.

III. RESULTS

Nonequilibrium molecular-dynamics simulations were
performed at two values of the strain rate (y=0.1 and
1.0) for a range of values of the frequency. In Figs. 1(a)
and 2(a) we see that the real part of the susceptibility X(w)
is linear in the logarithm of the frequency. At higher fre-
quencies it decays rapidly to zero, while at low frequen-
cies there is a “turnover” region in which 7j(w) is essen-
tially independent of frequency. This behavior at low fre-
quency is consistent with the turnover regime of 7(y) at
low strain rates.* Evidently %(y,w) is independent of both
v and © when frequency and strain rate are “small.” Also
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FIG. 1. Real (a) and imaginary (b) parts of the shear viscosity
at the driving frequency w, and a strain rate of y=0.1[—a, /v,
see Eq. (7)]. Points are the NEMD results while the line is from
the Fourier-Laplace transform of the equilibrium stress-stress
autocorrelation function.
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FIG. 2. Real (a) and imaginary (b) parts of the shear viscosity
at the driving frequency o, and a strain rate of y =1 by NEMD.
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shown in Figs. 1(a) and 1(b) are the real and imaginary
parts of the Fourier-Laplace transform of the equilibrium
stress-stress autocorrelation function. As this represents
the limit as y—O0 of 7(y,w), we see that there is no
change in the real or imaginary part of the susceptibility
between ¥ =0 and 0.1. In fact the only change we observe
in going from y =0.1 to 1.0 is that the low-frequency lim-
it or “turnover value” falls. It is not possible to conclude
much about the existence of the turnover region from the
numerical Fourier-Laplace transform of the stress-stress
autocorrelation function. The Green-Kubo calculations
are simply too difficult to derive spectral data at the turn-
over frequency. The numerical transform has been plot-
ted only for the range of values of frequency for which
the data are reliable. Wainwright, Alder, and Gass? have
shown, however, for the much simpler hard-disk system,
that the Laplace transform of the stress autocorrelation
function is logarithmic to frequencies which extend into
the turnover regime shown in Fig. 1. There is no Green-
Kubo simulation data suggesting the existence of the turn-
over regime. Its existence in the results of NEMD simu-
lations suggests that the Green-Kubo formulas are invalid
in this regime. For frequencies above the turnover fre-
quency the agreement between Green-Kubo and NEMD is
excellent.

The imaginary part of the Fourier-Laplace transform
shown in Fig. 1(b) is also in excellent agreement with the
NEMD results. The only change in going from y=0.1 to
1.0 is that the maximum of this function shifts to higher
frequency.

The Green-Kubo expression for
dependent shear viscosity is

the frequency-

7 4 b —iw
@)=25 [, dt{Py (0P (0))ee " (16)

This expression relates the spectrum of fluctuations in an
equilibrium simulation to 7(w); however, the stress-stress
autocorrelation function is believed to have a power-law
decay at long time (¢ ~%/? where d is the dimensionality of
the system). In two dimensions this decay implies that if

Py (0P (0)) ~ At ™! as t—oo a7

then ,
Mow)~—Anew as o—0, (18)

where the coefficients 4 in Egs. (17) and (18) are the
same.

The Goddard-Miller rheological equation of state’
predicts that in both two and three dimensions the coeffi-
cient of the leading functional dependence on strain rate
should be the same as the coefficient of the leading func-
tional dependence on frequency. That is,

n(y)~—Alny asy—O0. (19)

It has already been shown that this is not obeyed in three
dimensions,”’ and here we show that it also fails in two
dimensions. :
In Fig. 3 we show the equilibrium stress-stress auto-
correlation function plotted against 1/¢. Clearly it is
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FIG. 3. Equilibrium stress-stress autocorrelation function
plotted against the inverse time. Linear region near the origin is
the ¢~! long-time tail.

linear in 1/1¢ for reduced times longer than #=0.125. The
coefficient is estimated to be 1.24+0.06. Formally we
know that this long-time behavior implies that the fre-
quency dependence of 7j(w) at ¥ =0 is logarithmic. How-
ever, it is reasonable to expect that at nonzero strain rates
the logarithmic behavior will remain. This is indeed the
case with the coefficient of —Inew being 1.23+0.10 at
y=0.1, and 1.22+0.10 at y=1.0. Clearly the logarith-
mic behavior at fixed nonzero strain rates is completely
consistent with the 1/t long-time correlation function;
however, we note that —Inew is not the limiting low-
frequency behavior and the logarithmic divergence is
shielded by a turnover regime as in the zero-frequency
low-strain-rate regime.

Previously we have studied the viscosity as a function
of strain rate* and an analysis of that data gives

n(y)~—0.55Iny . (20)

The coefficient in the strain rate domain is less than
half the value of the coefficient in the frequency domain.
This is the converse of the three-dimensional result.’

In the zero-frequency shear viscosity NEMD simula-
tions the strain rate couples, not only to quantities with
the same tensorial character, but to other properties, for
example the pressure (shear dilatancy). (At fixed strain
rates the frequency also couples to the pressure.) The
shear dilatancy Ap is defined to be the difference between
the pressure at fixed strain rate and frequency, and its
equilibrium value {(p );. At a frequency o we can expand
the pressure as a Fourier series, so that Ap'is given by

X 0
Aﬁ(y,w):xlim % fo dt | +ao+ > [a,cos(nwt)

n=1

+b,sin(hwt)]

—{(po- : @21

The limit @ —0, however, does not commute with the lim-
it X— o0 as

lim lim Ap(y,0;X)=5{ao)—{(p)o

@—>0X— o0

and
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o0
lim lim Ap(y,w;X)=5(ay) + > (ap)—<plo-
X— w0 0—0 n=1

To resolve this difficulty we consider the implication of
these limits upon the equations of motion, Egs. (2)—(5).
Taking the limit X— « first implies that the time aver-
age of the driving force yocos(wt) is zero and in a sense
the equations of motion are “on average” Newtonian.
However, if the limit @—0 is taken first at fixed finite X,
then the equations of motion reduce to the frequency-
independent equations everywhere in the time interval O to
X. In order to ensure consistency as w—0, we take

ARy, =1(ag)+ S (an)—(p)o (22)

n=1

as the definition of the shear dilatancy at all frequencies.
In Fig. 4 we plot the shear dilatancy as a function of fre-
quency at a shear rate of 1.0. The point on the y axis is
the zero-frequency result at the same strain rate. The
shear dilatancy appears to rise to a weak maximum at a
frequency equal to the strain rate. This may be the result
of the so-called “double resonance” effect.

Linear-response theory, as discussed earlier, predicts
that a system driven at a frequency w will respond at that
frequency only. Interestingly, we find in this work that at
a shear rate of 1.0 the shear stress responds strongly at a
frequency of 3w and the pressure at a frequency of 2w.
Indeed it appears that properties which are even in the
sign of the strain rate (for example, the pressure) respond
at even multiples of the driving frequency, while proper-
ties which are odd in the sign of the strain rate respond at
odd multiples of the driving frequency. Although previ-
ous attempts have been made, this is the first time these
superharmonic stress excitations have been observed in
computer simulations. In Fig. 5 we show the real and
imaginary parts of the shear stress at 3w, that is, @; and
b3 in the Fourier expansion of P,,(¢). Both show
behavior which is similar to that of the response at o, ex-
cept that both have a negative region. The response at 2w
is essentially zero as |a,| <0.0136 and |b,]| <0.018
which is statistically indistinguishable from zero.

In Fig. 6 we present the response of the second harmon-
ic of the pressure at a shear rate of 1.0. Once again the
frequency dependence is very similar to the frequency
dependence of P,,(t) at w; with a turnover regime fol-
lowed by a logarithmic decay in the real part, and a max-
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FIG. 4. Shear dilatancy at a strain rate of ¥y =1 as a function
of frequency using Eq. (2) by NEMD.
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FIG. 5. Real (a) and imaginary (b) parts of the third harmon-
ic of the shear stress at a strain rate of y =1 by NEMD.

imum at about w=4 in the imaginary part. The response
at @ is again indistinguishable from zero with
|a;| <0.010 and |b;| <0.015. It is interesting to note
that the superharmonic responses do not appear to vanish
as the frequency tends to zero. )

Superharmonic response is a strictly nonlinear effect
and hence is strongly related to the strain rate. At the
lower strain rate of 0.1 similar response is present, howev-
er, the signal to noise ratio is much smaller. sllod dynam-
ics gives values of the imaginary part of the shear stress at
3w (that is, b;) which are larger than those obtained using
the dolls-tensor method. For example, at o=1.57 and
1.05, dolls tensor gives b3 to be ~0.11 whereas sllod
dynamics gives b; to be ~0.13. For all the other su-
perharmonics the two methods agree to within statistical
uncertainty.

IV. CONCLUSIONS

Our NEMD results for 7j(w) seem to be at odds with
earlier calculations via the Green-Kubo formulas.? The
earlier calculations apparently show no evidence for the
turnover observed in the present work. Unfortunately the
limited computational facilities at the Australian National
University do not allow us to perform accurate low-
frequency Green-Kubo calculations to check Wainwright
and Alder’s hard-sphere data. We hope that others may
be stimulated to perform these checks.
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FIG. 6. Real (a) and imaginary (b) parts of the second har-
monic of the pressure at a strain rate of y =1 by NEMD.

Assuming the Wainwright-Alder Green-Kubo data are
accurate and transferable to our soft-disk system, it is pos-
sible that the apparent contradiction with our NEMD
data might be resolved. The Green-Kubo formulas are ei-
ther inaccurate or inapplicable to two-dimensional
Couette flow at sufficiently small strain rates and fre-
quencies. After all, their correctness rests on the existence
of finite transport coefficients which they subsequently
predict to be infinite. The actual low-frequency behavior
observed in NEMD is not logarithmic and it appears that
in two dimensions the shear viscosity becomes indepen-
dent of both the shear rate ¥ and frequency w, for y <0.1
and w < 1, for the state considered here. The Goddard-
Miller prediction that the coefficient of the logarithmic
frequency dependence should be equal to the coefficient of
the logarithmic shear-rate dependence is shown to be
false, as the coefficients differ by more than a factor of 2.

For the first time in a computer simulation we have ob-
served superharmonic excitations in both the shear stress,
at 3w, and the pressure, at 2w. This is clearly a nonlinear
effect as linear-response theory connects the driving force
and the response at the same frequency only. As yet no
theory exists for these superharmonic excitations, but as
this is a purely nonlinear effect, this may be a useful test
of nonlinear theories as it is not necessary to use extreme
values of the driving force to observe it (thus avoiding the
possibility of saturation effects in the response).

1P, Resibois and M. de Leener, Classic Kinetic Theory of Fluids
(Wiley, New York, 1977), p. 363.

2B. J. Alder and T. E. Wainwright, Phys. Rev. A 1, 18 (1970);
Phys. Rev. Lett. 18, 988 (1967); B. J. Alder, D. M. Gass, and
T. E. Wainwright, J. Chem. Phys. 53, 381 (1970); T. E. Wain-
wright, B. J. Alder, and D. M. Gass, Phys. Rev. A 4, 233
(1970). :

3K. Kawasaki and J. D. Gunton, Phys. Rev. A 8, 2048 (1973);
T. Yamada and K. Kawasaki, Prog. Theor. Phys. 53, 111

(1975); M. H. Ernst, B. Cichocki, J. R. Dorfman, J. Sharma,
and H. van Beijeren, J. Stat. Phys. 18, 237 (1978).

4D. J. Evans and G. P. Morriss, Phys. Rev. Lett. 51, 1776
(1983).

SW. Wood and J. Erpenbeck, J. Stat. Phys. 24, 455 (1981).

6D. J. Evans, J. Stat. Phys. 22, 81 (1980).

7D. J. Evans, Phys. Rev. A 22, 290 (1980).

8D. J. Evans, Phys. Lett. 101A, 100 (1984).

9R. Zwanzig, Proc. Natl. Acad. Sci. U.S.A. 78, 3296 (1981).



2430 G. P. MORRISS AND DENIS J. EVANS 32

10R. B. Bird, R. C. Armstrong, and Q. Hassager, Fluid Mechan- 12A. J. C. Ladd, Mol. Phys. 53, 459 (1984); D. J. Evans and G.
ics (Wiley, New York, 1977), Vol. 1. P. Morriss, Phys. Rev. A 30, 1528 (1984).

1D, J. Evans and G. P. Morriss, Comput. Phys. Rep. 1, 297 13W. G. Hoover, D. J. Evans, R. B. Hickman, A. J. C. Ladd, W.
(1984). T. Ashurst, and B. Moran, Phys. Rev. 22, 1690 (1980).



