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Inelastic neutron scattering experiments have been performed on liquid neon at a temperature of
35 K and pressures of 8 and 14 MPa. The spectra were corrected for all known experimental ef-
fects. Normalized results for the coherent dynamic structure factor S(k,co) were obtained for wave
numbers k between 3 and 22 nm ', all below the position of the first peak, at ko ——23.5 nm ', in the
static structure factor S(k). The S(k), calculated by numerical integration of S(k,co), is compared
with neutron diffraction data and with S(k) of argon at corresponding thermodynamic conditions.
Quantum corrections to the second frequency moment of S (k, c0) are examined, and a qnasiclassical
approximation of S(k, co) is discussed. When comparing S(k, co) of neon and argon it appears that,
except for some sma11 deviations, the principle of corresponding states is valid. The experimental
data can well be described by means of one (extended) heat mode and two (extended) sound modes.
The sound modes are clearly manifest as shoulders in S(k, cu) which shift, for increasing k, to larger
co and disappear gradually as k approaches ko. The obtained sound dispersion curve, including a
sound propagation gap near ko, is consistent with theoretical predictions and with recent results
from neutron scattering experiments on argon and from computer simulations. An interpretation in

terms of k-dependent transport coefficients is discussed.

I. INTRODUCTION

Inelastic neutron scattering (INS) is a powerful tech-
nique to study density fluctuations in liquids on an atomic
scale. The dynamic structure factor S(k,co), which is
directly connected to the neutron scattering cross section,
reflects density fluctuations with wavelength A, =2'/k
and frequency co. Recently, S(k,co) data with high sta-
tistical accuracy have been obtained for liquid Ar at 120
K and various pressures between 2 and 85 MPa from neu-
tron scattering at the reactors of the Interuniversitair
Reactor Instituut (IRI) in Delft' and of the Institut Laue-
Langevin in Grenoble. Most of these experiments
covered the wave-number range 4(k &40 nm ', repre-
senting fluctuations with wavelengths O.Str&A, &4.5o., o
being the diameter of the atoms. Although the obtained
S(k,co) is a seemingly featureless function of co in this k
range, it was found that it can well be described in terms
of three extended hydrodynamic modes

+' 1 AI(k)S(k, co)=S(k)Re
, tt ico+zj(k)

where Ao(k) and zo(k) are real, A+&(k) and z+&(k) are ei-
ther real or complex conjugate pairs, and S(k) is the stat-
ic structure factor. For small k Eq. (1) goes over continu-
ously into the Landau-Placzek triplet of one Rayleigh
(heat, j=0) and two Brillouin (sound, j=+1) lines. For
argon S(k,co) is dominated by the extended heat mode
which is always centered around co=0, while the shape is
co-determined by two heavily damped extended sound
modes. The sound modes are centered around co&0, ex-
cept for k values near the main peak in S(k), where for
most conditions a gap in the sound dispersion curve

occurs. The width of the dispersion gap decreases with
increasing pressure and the gap has vanished at 85 MPa.
These observations were confirmed by results from com-
puter molecular dynamics (CMD) simulations of systems
with Lennard-Jones (LJ) and purely repulsive interparticle
potentials.

The possibility to describe S(k,co) in terms of three ex-
tended hydrodynamic modes has been predicted using a
generalized Enskog kinetic theory for hard-sphere fluids.
The main features of S(k, to) calculated from this theory,
i.e., the k dependence of its width and the existence of a
sound propagation gap, agree with those found in the ex-
periments.

In this paper we report INS results for neon at two den-
sities at 35 K, which are thermodynamic conditions corre-
sponding with those of the argon measurements men-
tioned. The measurements were restricted to k values
smaller than the position of the main peak of S(k). The
motivation for this experiment was threefold.

(i) For studying S(k,co) in fluids at small k, neon is
more suitable than argon because of the lower adiabatic
sound velocity c, in neon at corresponding thermodynam-
ic conditions. This was already recognized by Be11 et al.
who performed INS measurements on neon at T =55 K
and a density n =22.4 nm, and at T =70 K., n =10.1

and 14.3 nm in the range 0.6(k &1.5 nm ', where
they showed the hydrodynamic description to be valid.
They observed deviations from this description at
T=26.5 K, n =35.8 nm in the range 2.7 ~ k
(15 nm-'.

For neon at 35 K c, is about 550 ms ' (compared to
750 ms ' for argon at 120 K) and the kinematic region
covered by 5-meV neutrons, having a velocity of 1000
ms ', will therefore amply include the hydrodynamic
dispersion curve co, =Imz+

&

——c,k. Moreover, at the same
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S(k, co) =exp — + S(k,co),Pfico fi k P (3)

which is correct to order fi and is symmetric in m. Using
the neon data, quantum effects in S(k,co) and the validity
of the approximation in Eq. (3) can be investigated.

In Sec. II the experiment and the data reduction are
described. In Sec. III a comparison is made between neon
and argon and quantum contributions to S(k,cu) are dis-
cussed. Next, the results are interpreted in terms of col-
lective modes and in terms of generalized hydrodynamics.
Section IV contains some concluding remarks.

k

2-

-IO

PIC». 1. Kinematic region of TOF spectrometers with the
lowest scattering angle indicated: ———,y=11.8 (Ref. 1);
———., y=9. 1 (Ref. 2);,y=9.9 (present experiment).
Dispersion curve co =c, k* is indicated by dotted line with
c, =c,w/0=4. 5.

absolute value of k the physically more-significant re-
duced quantity k *=k cr is smaller for neon than for ar-
gon. These features are clarified in Fig. 1. Here the
small-k parts of the kinematic regions of the experiments
on argon of Refs. 1 and 2 are compared with that of the
present experiment. Wave number k and frequency co

were made dimensionless by the LJ parameters o. and c,

and the particle mass M given in Table I.
(ii) The corresponding state principle (CSP) of thermo-

dynamic and transport properties of inert gases has been
the subject of many investigations. Using neutron scatter-
ing data the CSP can be studied at a microscopic scale.
By comparing S(k) of argon from Refs. 1 and 2 with
S(k) of neon from neutron diffraction (ND) data' devia-
tions of up to 20% are found around k'=2. Inelastic
neutron scattering data on both argon and neon provide
the opportunity to confirm these deviations in S(k) and
to investigate CSP concerning the dynamic properties.

(iii) Because of the lower temperature and the smaller
mass, quantum effects in neon will be more important
than in the case of argon. S(k,co) in Eq. (1) is derived
from theory for a classical system and is symmetric in co

whereas S(k,co) measured by INS will obey the detailed-
balance condition

S(k,co) =e~~S(k, —co),

where irico is the energy transferred from the neutron to
the sample, p =(k~ T )

' For the in. terpretation of the ar-
gon results in terms of Eq. (1) we have used the quasiclas-
sical approximation"

TABLE I. Parameters for argon and neon. LJ parameters o
and c, are from Ref. 9. kz is Boltzmann's constant.

M (10 kg)
o (nm)
c/kg (K}
&=~(m/~)'" (ps)

59.73
0.336

123.2
1.991

33.52
0.279

36.2
2.285

II. EXPERIMENT AND DATA REDUCTION

A. Measurements

Time-of-flight (TOF) spectra were obtained with the ro-
tating crystal spectrometer RKS 1 at the 2-MW reactor of
the IRI in Delft. The incoming neutron wavelength was
0.408 nm (corresponding to an energy of 4.92 meV). He
detectors of 2.5 cm diameter, placed at 1.20 m from the
sample, were combined to 15 detector groups. Relevant
data are given in Table II. In each group spectra were
recorded in 256 time channels 8 ps wide. The TOF sys-
tem was triggered twice per revolution of the Pb mono-
chromator crystal defining the period of one duty cycle to
be 2209 ps.

We performed five different measurements, of about
200 h each, as indicated in Table III. The vanadium spec-
tra were used for normalization and for determination of
the TOP resolution.

The purity of the neon sample was 99.995%. The
coherent and incoherent bound-atom cross sections and
the absorption cross section for 4.92-meV neutrons are
cr, =2.598(13) b, cr;=0.008(18) b, and cr, =0.088(9) b,
respectively. ' The neon container consisted of three
high-strength aluminum (Al 7075) tubes, with their center
lines 17 mm apart, with 14 mm inner diameter and 1 mm
wall thickness, placed in an aluminum frame covered with
cadmium (a similar container is described in Ref. 13).
The height of the tubes irradiated by the incident neutrons
was 53.5 mm. The tubes were placed with their axes per-
pendicular to the scattering plane; the normal to the plane
through the tubes made an angle of +45 with the in-
cident beam. In order to reduce the multiple scattering in
the neon sample and the total scattering from the con-
tainer (which is mainly double Bragg scattering), 0.5-
mm-thiclc boron nitride (BN) disks were inserted in the
tubes separated by means of 9.5-mm-high thin-walled
aluminum cylinders.

From computer simulations of the experiment with
Copley's Monte Carlo program MSCAT (Ref. 14) it ap-
peared that the multiple scattering in neon reduces by a
factor of 2 when inserting the BN disks. From the fact
that the scattering intensity from the empty neon con-
tainer equals that from the empty, thinner-walled, vanadi-
um container (see below) we concluded that the BN disks
cause a reduction by a factor of 4 in multiple Bragg
scattering. The container, surrounded by two radiation
shields (one at 35 K and one at liquid-Nz temperature)
was placed in a He flow cryostat. The temperature was
measured by a Ge resistor located inside the frame of the
container. The absolute accuracy of this thermometer in
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TABLE II. Experimental parameters.

Detector
group

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

No. of
detectors

2
2
3
2
2
2
2
2
2
2
1

1

1

1

I

Detector
length
(cm)

20
20
20
20
30
30
30
30
30
30
30
30
30
30
30

Scattering
angle
(deg)

9.9
13.8
20.7
27.2
35.2
43.2
51.1
59.1
66.4
75.6
81.9
84.2
89.8
91.0
92.2

Angular
resolution'

(deg)

4.8
4.2
3.9
2.'7
3.2
3.0
2.9
2.8
2.8
2.8
2.2
2. 1

2.0
2.0
2.0

TOF
resolution

(~s)

66
68
69
70
73
77
82
85
89
97

100
100
105
105
106

'FWHM, calculated from dimensions of sample and detectors.
FWHM, determined from elastic part of the vanadium spectrum. TOF from sample to detector for

4.08-A neutrons was 1236 ps.

the range of interest was 0.01 K. The accuracy of the
pressure transducer used was 0.05 MPa. The thermo-
dynamic conditions of the experiment are given in Table
III.

The vanadium sample consisted of shavings with
lengths of several mm. The geometry of its container was
identical to that of the neon container. However, the wall
thickness was 0.25 mm and no BN was used. The vanadi-
um filling fraction was 23.4%.

B. Corrections

The experimental data were corrected for constant
background, container scattering, multiple scattering,
duty-cycle overlap, detector efficiency, TOF resolution
and self-shielding, and were normalized absolutely and
converted to S(k,co) on a rectangular (k, co) grid. ' We
used the same reduction scheme as was used for the argon
measurement in Ref. 2 employing the routines described
in Ref. 17. In the following we will discuss a number of
correction steps which are of special importance for the
present experiment.

The ratio of the intensities scattered by the empty con-

tainer and by the container filled with neon (vanadium)
ranged from 0.9 (0.4) at the smallest to 0.1 (0.2) at the
largest scattering angle (see Fig. 2). This implies that the
results at the smaller scattering angles will be very sensi-
tive to the correction for container scattering. In this
correction f times the (empty) container spectrum was
subtracted from the sample spectrum, f representing the
time-channel- and angle-dependent attenuation of the con-
tainer scattering by the sample. Following the method of
Copley et al. ' f was calculated for neutrons scattered
once in the container. For neon (vanadium) it varied from
0.947 to 0.967 (0.819 to 0.835). Since the coherent cross
section of the used aluminum was a factor of 35 larger
than the incoherent cross section' and since the first
Bragg peak occurs at a scattering angle of 120', the con-
tainer scattering was mainly double Bragg scattering.
This can also be seen in Fig. 2 from the rapid decrease in
container scattering with increasing scattering angle, and
from the structure due to scattering from container and
shields. Thus f will not represent the correct attenuation.
From simulations with MscAT the attenuation of the con-
tainer scattering by 'the sample appeared to be equal to f
within the statistical uncertainty of 0.02. So, for the

Measurement

TABLE III. Experimental conditions.

Trans. ' Scatt. '
no.

1 Neon
2 Neon
3 Ne container
4 Vanadium
5 V container

35.08(1)
35.08(1)
35.08

300
300

(MPa)

8.01(5)
14.03(5)

(nm 3)

33.36(5)'
34.62(5)'
56.4
16.5
56.4

0.867
0.862
0.936
0.711
0.986

0.071
0.076

0.092

'Total transmission {calculated).
"Fraction scattered by the sample.
'From Ref. 15, n at the critical and triple points are 14.41 and 37.21 nm ', respectively.
Effective density.
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FIG. 2. Raw experimental TOF spectra at four representa-
tive scattering angles: error bars, Ne, 35 K, 8 MPa; solid line,
empty container; the arrow indicates the position co =0.

we took into account the effect that, seen from the detec-
tor, a fraction of the neon sample was screened by the
disks. This fraction was 0.034 and 0.047 for the detectors
of 20 and 30 cm length, respectively. The "structure fac-
tor" of vanadium, including single and multiple elastic
scattering, the Debije-Wailer factor, and self-shielding,
was determined by means of a simulation with MscAT and
decreased monotonically from 0.77 for the smallest to
0.74 for the largest scattering angles. The experimental
vanadium spectra were corrected for inelastic scattering as
described in Ref. 2.

In order to correct the neon TOF spectra for multiple
scattering and duty-cycle overlap, the experiment was
simulated by MSCAT. The correction was performed itera-
tively (cf. Ref. 2). For the first iteration step we used as
an input kernel the (scaled) experimental S(k,co) of argon
at the corresponding thermodynamic state for
k ~47 nm ', and the large-k Gram-Charlier expansion'
for k ~47 nm . In the simulation, intensities originat-
ing from the following types of scattering could be dis-
tinguished: single scattering in the sample (denoted by s),
multiple scattering in the sample only (ss) and in both the
sample and container, the last collision before detection
being in the sample (cs) or in the container (sc). Because
of the poor statistical accuracy of the sc intensity the as-
sumption cs=sc was made and 2cs (rather than cs+sc)
was used in the correction.

To show the relative importance of the different contri-
butions to the total intensity, the integrated simulated in-
tensities of s, ss, 2cs, and duty-cycle overlap ov (Ref. 2)
(mainly determined by neutrons scattered once by the
sample) are given in Fig. 3 for measurement 1 as a func-
tion of scattering angle. The effect of the BN disks was
simulated by taking the total height of the container tubes
to be the distance between two disks. In this way the con-
tribution of neutrons scattered first in one tube and then
at the same "floor" in the neighboring tube is taken into
account, whereas the contribution of the neutrons scat-
tered a second time one floor higher or lower are not. The
former contribution was estimated to be 10% of the total

correction we used f (rather than f) and incorporated the
uncertainty 0.02 in the calculation of the standard devia-
tions of S (k, co). Using f instead of f renders an
enhancement of the peak height in the corrected spectra
of a factor of 1.7, 1.3, and 1.2 for the three smallest
scattering angles, respectively.

It should be noted that the attenuation of the scattering
by the aluminum radiation shields and windows of the
cryostat is unlikely to be equal to f . Although the con-
tribution of this scattering to the total background scatter-
ing was small, the fact that we did not use the correct (un-
known) attenuation might have led to some systematic er-
ror in the corrected spectra at the smaller scattering an-
gles.

In the expression for the absolute normalization the ra-
tio Vv/VN, enters, ' where Vv ( VN, ) is the volume of the
vanadium (neon) illuminated by the incident beam and
seen by the detector. Besides the trivial effect of the
smaller neon volume due to the thickness of the BN disks,

30

20

OJ
E

0.5— —to

60 80 IOO

{deg)

FICs. 3. Integrated intensity from simulation by means of
MscAT of Ne, 35 K, 8 MPa as a function of scattering angle. 0,
s (right scale); O, ss; E, 2cs; ~, ov {left scale).



A. A. van %'ELL AND L. A. de GRAAF 32

multiple scattering by comparing the results from two
MSCAT runs, one simulating one container tube and one
simulating three tubes. The latter contribution was es-
timated to be 3%%uo of the total multiple scattering intensity
(by comparing the solid angle from a section of one tube
to the section of a neighboring tube at the same floor with
the effective solid angle to a section one floor up or down,
taking into account the screening of the BN disks), and
was neglected in the correction.

We subtracted the incoherent scattering from the nor-
malized spectra. The intensity was calculated with
cr; =0.008 b and the shape was taken equal to the elastic
part of the vanadium spectra. For small k, which was the
only region where this small correction was significant-
the magnitude of the correction in the peak of the spectra
was here of the order of the estimated standard
deviation —the FWHM of S;„,(k, co) is approximately
2Dk . The self-diffusion coefficient D for conditions 1

and 2 is 2.5)&10 and 2. 1X10 m s ', respectively,
resulting in a spectral width smaller than the experimental
TOF resolution at scattering angles smaller than 60'.

C. Quality checks

Two relationships are used to check the quality of the
fully corrected S(k,co) data and the reliability of the es-
timated standard deviation. The first one is the detailed
balance condition which implies that S(k, co) is symmetric
in co. For

~

co
~

&5 ps ' both energy-loss and energy-gain
data are available as shown in Fig. 4 for measurement 1.
The consistency of these data is quantified by the quahty

factor Q(co). ' ' If the energy-gain and energy-loss re-
sults were normally distributed around S(k,co) (which is
determined by the weighted mean of the energy-loss and
energy-gain data, ' given by the solid line in Fig. 4) then
Q (co) would follow a X distribution with one degree of
freedom with expectation value 1. Q(co) is an indication
of the ratio of systematic error (as a result of, e.g., imper-
fections in the data-reduction procedure) divided by the
estimated standard deviation. In Figs. 5(a) and 5(b) Q(co)
is given for both measurements. For

~

co
~

&4 ps ' a con-
siderable discrepancy is present (see also Fig. 4). This
may be caused by an erroneous correction for background
scattering.

The second relationship is the first frequency moment
of S(k,co) which is exactly known,

AkcoS (k, co )dco =coII ——
00 2M

The ratio of the experimental and exact (co ), (co ) /co+, js
show»n FIgs 5(c) and 5(d). At small k values only a rel-
atively smaH ~ range is experimentaHy accessible due to
the limited kinematic region covered by the experiment
(see Fig. 1). For co values larger than this limit coL (k) the
structured gas model of Skold ' was used for the deter-
mination of ( co ) . ' For k & 12 nm '

col (k) was taken to
be 15 ps '. At this frequency the estimated standard de-
viation of S(k,co) was of the order of 100%. The contri-
bution to (co) of this model is indicated in Figs. 5(c) and
5(d). For k ) 10 nm ' (co) and co& are in good agree-
ment. For k & 10 nm ' the contribution of the large-
frequency extrapolation is considerable and consequently
the calculated (co) is less reliable.

—0.052-

— O.OI6-

0.2— — OO l 6-

O. l
'- —0.008—

0] 0'

0.08-

—0.004-

20

k(nm )

I

lo
I

PO

k(nm )

FIG. 4. S(k,cg) of Ne, 35 K, 8 MPa as a function of k: 0, neutron energy-gain data; , energy-loss data;
values for obtaining S(k, co) at equidistant k values.

, interpolated



32 DENSITY FLUCTUATIONS IN LIQUID NEON STUDIED BY. . . 2401

I I

(a)
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R
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(b) 1.0 —----------

R
0.5—
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X
X x4~
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(d)
I

20

cu (ps ) k (nm ')

Fl+. 5. (a) and (b) Quality factor Q {co) for measurements 1 and 2, respectively. Upper 95% liinit and the mean of the g~ distribu-
tion with one degree of freedom are indicated by dashed lines. (c) and (d) Ratio of the experimental and exact first frequency moment
for measurements 1 and 2, respectively. Crosses indicate the contribution of the large-frequency extrapolation (see text).

III. RESULTS AND DISCUSSION

A. Static structure factor

to this part ) or differences in the three-particle interac-
tions. When the latter interactions are approximated by
the triple-dipole dispersion term, introduced by Axilrod
and Teller, its strength is given by v. For neon and ar-

S(k) and S(k) were obtained by numerical integration
of S(k,co) and S(k,co), respectively. The contribution of
the large-frequency extrapolation (see discussion on (co)
in Sec. II) was smaller than 10% for k &5 nm ', and
smaller than 1% for k) 7 nm '. In Fig. 6 these S(k)'s
are plotted together with results from ND of liquid neon'
and from INS of liquid argon. The reduced temperature
of both liquids is 0.97 and the reduced densities n ' =nor
of neon at 8 and 14 MPa and of argon at 11.5 and 27
MPa are 0.725, 0.752, 0.702, and 0.740, respectively. In
Ref. 10 the tabulated ND data had been corrected for a
relative incoherent scattering contribution of 0.02. The
best value known at present' is 0.003(7). In order to ob-
tain results that can be compared with the present INS
data we corrected the tabulated values of Ref. 10 by

S(k)= [S„q(k)+0.017j .
1

1.017

S(k)

0.20—

a
I

O. I 0—

s(k)

0.20—

(a)

(b)

0

—2.0

The neon results of INS and ND agree reasonably well.
The correspondence between Ar and Ne is quite good, ex-
cept for wave numbers in the region around k" =2 where
S(k) of argon is systematically larger. It is unlikely that
these differences can be explained on the basis of the
quantum nature of neon since when comparing S(k) and
S(k) the latter has a tendency to be smaller in this region.
It should be noted here, however, that in S(k) only quan-
tum effects of order fi are exactly corrected for (see also
Sec. III 8) and in principle it is possible that the observed
differences are caused by effects of order A' or higher.
Other causes for this deviation from CSP might be a dif-
ferent shape of the pair interaction potential (in particular
of its attractive part, since the small-k region is sensitive

O. I 0— — I.O

l

4 0

FIG. 6. Static structure factor as a function of k*=ko of (a)
Ar, 120 K, 11.5 MPa and Ne, 35 K, 8 MPa, (b) Ar, 120 K,

27 MPa and Ne, 35 K, 14 MPa. , S(k): neon, ND, Ref.
10. 0, S(k) and , S(k): neon, INS, present experiment.
S(k) and L, S(k): argon, INS, Ref. 2. k =0 values are calcu-
lated from the compressibility.
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gon ~=1.23~10 arid 5.32X10 Knm, resulting in
the dimensionless values v*=0.033 and 0.079, respective-
ly. Thus these interactions in argon are about 2.5 times
stronger than in neon.

(co ) = 1+ k + [0 (0)—Q (k)]+O(A )
PM 4M 12

where

and

Ll r0 (k)= fd rg(r)cos(kz)
M dz2

k 3k
(co ) = +0 (0)—0 (k) +O(A ) .

B. The second frequency moment and quantum effects

The nth frequency moment of S(k,co) is defined by

(co ) = f co S(k,co)dco

and its quasiclassical approximation by

(co ) = f co S(k,co)dco .

For a monatomic, mono-isotopic system with pairwise ad-
ditive interaction potential u (r), (co") for n =2 and 4 is
given by

order R —of two terms [Eq. (4)]. One term is proportion-
al to k and can be calculated exactly, the second depends
on g(r) and u (r).

In the quasiclassical approximation (co ), the term
-k cancels and the second term is reduced by a factor of
2 and also changes sign. Note that in the approximation
S(k,co) [Eq. (3)] quantum effects of order A' are still
present.

We calculated 0 (k) for a LJ system with n*=0.702
and T*=0.974 according to the mean spherical approxi-
mation (MSA), which is consistent with 0 (k) obtained
from neutron scattering results of argon and from the
second time derivative of the longitudinal current correla-
tion function obtained in a CMD simulation for a LJ sys-
tem. Results for (co ) and (co ) from these calculations
and from the experiments are shown in Fig. 7 for both ar-
gon and neon. Within the relatively large uncertainties
the experimental data are in agreement with the calcula-
tion.

In general, quantum corrections are expected to be
negligible if two conditions are satisfied. (i) The length
scale, relevant to the observed quantity, is large compared
with the thermal de Broglie wavelength
=A(2rrP/M)'~ or equivalently k &&kz 2'/k, T.——(ii) The
relevant time scale is large compared with fig, or
co « co& ——(RP) '. If the de Boer parameter A*
=2Mcr '(ME )

' ~ (which is proportional to k T
=A, To ' at T*=k&T/E= 1) is used as a measure of the
quantum nature of a I.J system then

S(k,co) =exp
—Ak

sech( ,' 13fico)S,„(k,co)—.
8M

If the sample consists of more than one isotope Eqs. (4)
and (5) should be modified according to Fredrikze. In
the present case these corrections are negligibly small.
Making use of the detailed-balance condition [Eq. (2)] the
symmetric part of S(k,co) is defined by

S,„(k,co) = —,[S(k,co)+.S(k, —co)]= —,( I+e P )S(k,co).

The quasiclassical approximation S(k,co) [Eq. (3)] is relat-
ed to S,„(k,co) by

r

A
CU

3
V

I.IO

l.05—

I.OO

Argon

II
~ ~ —-II-~—————

Series expansion in A yields an expression for the quasi-
classical second frequency moment (co ) in terms of the
real frequency moments:

k2 . 2 2

(co ) = f co 1+6 — +O(fi ) S,y dco

fi k 2 M= (co') + (co') — (co') +O(&') . (7)
8M

I.O

0.8—

Neon

pp0 pp
A

~gQ & a l~~gpa ai ~~-
p

~ II '~
Il

Inserting the expressions for (co ) and (co ) [Eq's. (4) and
(5)] yields

k fi
(co ) = 1 — [0 (0)—0 (k)] +O(A'4) .

PM 24 (8)

The deviation of the second frequency moment (co )
from the classical one, (co ),~=k (PM) ', consists —to

0 6 8
k

FICx. 7. Second frequency moment of S(k, co) divided by its
classical value (a} o, (co )P.Mk and ~, (co )PMk: Ar,
120 K, 11.5 MPa, Ref. 2. (b) O, (co2)PMk ' and ~,
(co )PMk, for Ne, 35 K, 8 MPa; 4, (co )PMk and L,
(co2)PMk 2, for Ne, 35 K, 14 MPa. ———,calculated
(co )PMk [Eq. (4)];, k contribution to (co2)PMk

——,calculated (co )PMk [Eq. (8)].
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32
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0.580
0.235

11
27

and

k'=k cr=(2»T) (A') '(T*)'
e

co» co»r——2»r(A——*) 'T*

apply. The values of these quantities for the present ther-
modynamic conditions are listed in Table IV. In the k
range studied here condition (i) is satisfied for both argon
and neon. However, even at these relative small k values
the quantum corrections to (co ) appear to be consider-
able (up to 20%) for neon. This is a consequence of the
fact that condition (ii) is not satisfied, since the frequen-
cies relevant to (co ) are of the order of co~ where
co S(k,co) has its maximum (Sec. III C). For instance, co~
at k*=4 is found to be equal to 15, which is of the same
order of magnitude as co» for neon.

If Eq. (4) is reduced by means of the parameters o, E,

and M it is readily shown that, at fixed T*, the correc-
tions of order A' are proportional to (A'), implying that
the quantum corrections to (co ) and (co ) of neon are a,

, factor of 9 larger than those of argon (see Table IV and
Fig. 7).

TABLE IV. Quantum parameters. A, r, co», and k»* are cal-

culated for argon and neon at 120.0 and 35.08 K, respectively.

Ar

5 (k)= [f;—S(k,co; )]
N —p, 0

(13)

with N the number of discrete data points S(k, co;) at a
particular k value, cr; the estimated standard deviation,
and f; the value at co; of the fitted model. As a conse-
quence of the correction procedure the experimental data
are correlated, ' and (N —p)5 (k) will not follow a X dis-
tribution. Since these correlations will in general be posi-
tive, values of 5(k) smaller than 1 are very well possible.

Both models TP1 and TP2 gave excellent fits with
5(k) & 1 for all k values. In Fig. 8 the results of measure-

In the hydrodynamic limit (k~0) the infinite sum of
Eq. (10) reduces to a sum of three Lorentzians [Eq. (1)],
representing one heat mode (j =0) and two sound modes
(j=+1). If we define the quantities R„'(k) for this trun-
cated sum analogous to Eq. (11), then in this limit
R„'(k)=R„(k) for n =0, 1, and 2, and the third and
higher sum rules are violated, i.e., R„'(k)&R„(k) for n ) 3
(see Appendix).

In order to interpret our experimental data in terms of
extended heat and sound modes, as discussed in the Intro-
duction, the three-pole (TP) approximation Eq. (1) was fit-
ted to the S(k,co) data by means of a weighted least-
squares method. Two cases are distinguished: model
TP1, imposing the restrictions R„'(k)=R„(k) for n =0
and n = 1; and model TP2 with the restrictions
R„'(k)=R„(k) for n =0, 1, and 2. Model TP2 has four
free parameters, viz. , S(k), z &(k), zo(k), and z+&(k),
and in model TP1 coo(k) may be considered as an addi-
tional free parameter. For each k we determined the
mean-square deviation

C. Dynamic structure factor, short-wavelength heat
and sound modes

According to kinetic theory for a classical system
S(k,co) can be decomposed into an infinite sum of
"Lorentzians"

S(k,co) =—ReF(k, z =ico),1
(9)

AJ(k)
F(k,z) =S(k)

z+zJ k
(10)

Ro(k) =1, R i(k) =0,

where F(k,z) is the Laplace transform of the intermediate

scattering function F(k, t). The parameters AJ and zJ are
either real or appear as conjugate pairs and obey sum rules

following from the short-time behavior of F(k, t):

A~(k)[zj(k)]"=R„(k),
J = —oo

with
0
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FIG. 8. Fully corrected S(k, co) of measurement 2—Ne, 35
K, 14 MPa—(error bars) and model TP2 (solid line). Sound fre-
quencies co, (k) =Imz+ &(k) are indicated by the triangles.
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FIG. 9. Decomposition of S(k, co) of measurement 2 into its eigenmodes. Solid line, best fit (same as Fig. 8); dashed line, (extend-
ed) heat mode; dotted lines, left and right (extended) sound modes; triangle, sound frequency cu, (k). N.B. Intensity of the second
(central) sound mode at k =22 nm ' is negligible.

ment 2 and the best fit of model TP2 are displayed. Ex-
cept for some values of k around k =20 nm (where zj

—1

and AJ are real) z+i(k) and A+i(k) appear as conjugate
pairs yielding the Rayleigh-Brillouin triplet

S(k co) Ao zo A, z + (co+co )tang
S(k) m. co2+zo m (co+co, )2+z2

z, —(co —co, )tan(p

(co —. co, ) +z,

(14)

with heat damping zp sound damping z, =Rez+I, sound
frequency co, =Imz+ „A,=ReA+ ~, and tang

(ImA+i )/A, .
In Fig. 9 the decomposition of S(k,co) into the heat and

sound modes is indicated for some representative k
values. It appears that —in the k range studied —the
behavior of three eigenmodes can very well describe the
dramatic change in shape of S(k,co) as a function of k
(see Fig. 8). There is no distinct maximum in S(k,co) at
co&0 (as is the case in the hydrodynamic limit) but a
shoulder is visible at the smaller k values. For increasing
k this shoulder becomes less pronounced, shifts to larger
co, and disappears gradually as k approaches 22 nm
This change in shape can be understood as a manifesta-
tion of the short-wavelength sound modes.

In order to test CSP for the dynamic behavior of neon
and argon we proceed as follows. First we compare the
bare experimental results and some derived quantities and
then the interpretation in terms of the eigenmodes is dis-

0.20

I(

0.20—

O. I 0

O. IO

k = l. 4I

I.6I

O. IO

0.05—

IO 20

FIG. 10. Reduced dynamic structure factor
S*(k,co)=S(k,co)[S(k)r] ', for five representative k* values.
Error bars, neon measurement 1 (T*=0.969, n =0.725}; solid
line, argon measurement b of Ref. 2 (T*=0.974, n* =0.702).

cussed. In Fig. 10 S(k,co)[S(k)r] ' is shown for argon
and neon. The argon data are represented by a continuous
line and the estimated uncertainties are approximately a
factor of 2 smaller than the corresponding neon values
(see Ref. 2). Note that at small values of k' the experi-
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FIG. 11. Reduced full width at half maximum of S{k,m) (FWHM =FWHM~) as a function of k*=ko.. (a) circles, neon mea-

surement 1 (T*=0.969, n *=0.725); dots, argon measurement b of Ref. 2 (T*=0.974, n *=0.702). {b) circles, neon measurement 2
{T*=0.969, n*=0.752), dots, argon measurement c of Ref. 2 ( T*=0.974, n*=0.740). Reduced peak position of the longitudinal

current correlation function CI(k, co), co =~ ~, as a function of k: (c) key as in (a); (d) key as in (b); crosses, redetermined values of
argon (see text). Dashed and dash-dotted lines represent the hydrodynamic limits for neon and argon, respectively.

mentally accessible co' range is larger in the case of neon
(see also Fig. 1). In Figs. 11(a) and 11(b) the full width at
half maximum (FWHM) of S(k,co) is given. For k" & 1.5
the FWHM of neon is too large compared to both the hy-
drodynamic value 2ak (Table V) and the corresponding
argon results. Probably this is caused by incorrect sub-

traction of the background scattering at the smaller
scattering angles resulting in a too low intensity around
co=0 (see k*= 1.4 in Fig. 10). For 2 & k' & 6 the
FWHM's of argon and neon agree very well.

In Figs. 11(c) and 11(d) the peak position co of the
longitudinal current correlation function Ct(k, ro)

TABLE V. Thermodynamic and transport properties (from Ref. 15).

Measurement

Spec. heat const. pressure
Spec. heat const. volume

Structure factor at k =0'
Adiabatic sound velocities"
Shear viscosity
Thermal conductivity
Thermal diffusivity'
Sound damping factor
Longitudinal viscosity

c, (10-"JK-')
c (10 J K ')
f =cp/cq
S(0)
c, (ms-')
g (10 ' kgm 's ')
X (10-' rem-'K-')
a (10 m s ')
I (10 m s ')

4 (10 m s ')

6.5{2)
2.9(2)
2.23(8)
0.115

530
8.4(3)
1.09(3)
5.0(2)

12
18

6.2(2)
3.1(2)
1.98(6)
0.089

570
9.3(3)
1.19(3)
5.6(2)

12
19

'S(0)=kg T(Bn /Bp )T.
"c,'=q[PMS(O)]-'.
'a =A, (nc~)
dFrom argon data (Ref. 27), sca1ed to neon; I =

2 [@+(y—l)a]. Dimensioniess values are defined by

c*=(M/c. )'~ c g*=o.(Mc) '~ g A, *=k '(M/c)'~ A, a*=o. '(M/c)'~ a I =o. '(M/c, )'~ I .
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=co S(k,co)/k is shown. Since some doubt exists about
the co results for k* &4 of argon at 27 MPa (Ref. 2) we
redetermined these by interpolating the co data at 2, 11.5,
and 40 MPa. These new values are indicated by crosses in
Fig. 11(d). Again the overall agreement between neon and
argon is good. However, the neon values in the neighbor-
hood of the maximum of co (k) are systematically some-
what smaller.

In Fig. 12 three parameters obtained from fits of the
three-pole model [Eq. (1)] to the data are shown as a func-
tion of k. The error bars connect the values obtained us-
ing models TP1 and TP2. The hydrodynamic limits
zo ——ak, z, =I k, and co, =c,k (Table V for neon and
Ref. 2 for argon) are indicated. At k values around
k*=6 the best fit is accomplished with three (different)
real poles (i.e., co, =0). In these cases the strength of one
of the overdamped sound modes, say 2+i, of neon is too
weak to be detected and only the decay constant of the
other sound mode, z &, is displayed.

The neon and argon results have the same features. (i)
zo is about one-half the FWHM. The width of S(k,co) is
mainly determined by the heat mode. (ii) A sound propa-
gation gap, indicating overdamped sound modes, is
present near the main peak in S(k). (iii) Except in the re-

gion in and around the gap co, and cu behave very simi-
larly. This is in agreement with the observation" that
Ci(k, co) is largely determined by the sound modes. (iv) co,
exhibits anomalous dispersion (i.e., with decreasing k co,
approaches its hydrodynamic limit from above) which has
been shown to be consistent with the mode-coupling
heory

The quantitative agreement of zo, z„and co, between
argon and neon is found to be satisfactory, except for co,
in the range 3&k &5. In this region the co, values of
neon are smaller than those of argon, which is consistent
with the co~ results (Fig. 11). It is not clear whether the
differences in co, and co~ between neon and argon may be
considered significant. Also, the question of what may be
the origin of these differences is still open.

D. Generalized hydrodynamics description

The fact that S(k,co) can well be described by a three-
pole approximation, as was shown in Sec. IIIC, implies
that S(k,co) may be considered a solution of the linearized
hydrodynamic equations containing k-dependent thermo-
dynamic and transport coefficients. The interpretation of
S(k,co) in terms of generalized hydrodynamics has been

(a) (b)
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FIG. 12. Sound frequency co,*=(Imz+&)~ and decay constants zo ——zo~ and z,*=(Rez+&)~ of the heat and sound modes, respec-
tively, as a function of k*=ko.: (a) key as in Fig. 11(a); (b) key as in Fig. 11(b). In the case of overdamped sound modes (co, =0) only
one decay constant, z &, is shown (triangles).
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applied by Bell et al. and by Lonngi and Garcia-Colin
to results for neon near the triple point from two sets of
INS data. ' In both interpretations a k dependence of
the transport coefficients and subsequently an additional
frequency dependence are introduced.

The solution of the linearized Navier-Stokes equations
for the density-density correlation function in Laplace
space is '

F(k,z)=S(0) z+
2

Ct)()

(y —1)coo
z+zq) +

z+ZT

(15)

F(k,z) =S(k) z+
z+z~(k)+ y k —1

z+zr(k)

(16)

where F=Fino, z =z/coo, etc.
The relations between zq, (k), zz(k), and y(k) in Eq.

(16) and z i(k), zo(k), and z+i(k) in Eq. (1) are given in
Eq. (A14). The hydrodynamic limits of z@ and zz are
y' @c, 'k and y ac, 'k, respectively.

We will consider three models that were used to fit to

with coo ——y 'c, k, S(0)=P '(Bn/Bp)z. , zq, ——Nk, and
zr Drk . ——Of the three thermodynamic quantities y,
S(0), and c„only two are independent due to the relation
S(0)=y(PMc, ) '. The two transport coefficients in this
description are the longitudinal viscosity @=(g+—,g)/
(nM), and Dr ——A, /(nc, )=ya, with a the thermal dif-
fusivity (Table V). Note that Eq. (15) obeys the first three
sum rules, R„'(k)=R„(k), n =0, 1, and 2 (see Appendix).

Mountain derived a generalization of Eq. (15), Eq.
(2.40) in Ref. 31(a), employing the memory-function for-
malism developed by Mori. As a result the transport
coefficients become k- and z-dependent, yielding z@(k,z)
and zr (k,z), which are memory functions associated with
current and heat fluxes, respectively. The term (y —1)too
is then replaced by a complicated function of both static
and dynamic quantities. The static quantities are the gen-
eralizations of c„and (Bp/BT)„, involving static correla-
tions among three and four particles. The dynamic quan-
tities z@z(k,z) and zz.@(k,z) are memory functions which
describe the coupling between the current and heat fluxes.
Furthermore, S(0) is replaced by the static structure fac-
tor S(k).

If we now make the assumption that the memory func-
tions z@, zz, z~, z-, and zz@ decay on a time scale much
shorter than the decay of F(k, t) these may be replaced by
5 functions in time and thus by a constant in Laplace
space. Then we end up with the k-dependent variables
z@(k), zz(k), and y(k) and Mountain's generalization of
Eq. (15) (Ref. 31) will again have three poles and can be
identified with Eq. (1). This special case of Mountains
generalization will be referred to as the "generalized hy-
drodynamics representation" of the three-pole model in
the remainder of this paper. If all frequencies are scaled
with the k-dependent characteristic frequency
coo——[PMS(k)] '~ k, the square root of the normalized
second frequency moment, the generalized hydrodynamics
representation reads

the experimental data. First the models TP1 and TP2, al-
ready discussed in Sec. III C. These have the free parame-
ters S(k), zo(k), and z+i(k) or, alternatively, S(k),
z@(k), zz.(k), and y(k), where in model TP1 coo(k) is an
additional free parameter. In a third model, denoted by
TP3, y(k) is kept fixed and taken equal to its hydro-
dynamic value. Model TP3 was used by Lonngi and
Garcia-Colin (model CH in Ref. 29) and by Bell et al.
(Fig. 8 in Ref. 8). Since the trivial temperature effect
(determined by the thermal velocity of the particles which
is proportional to T'~ ) is eliminated by scaling with coo,
the values from Refs. 8 and 29 may be compared with the
present results. The parameters, determined by weighted
least-squares fitting, are given in Fig. 13(a) in the three-
mode representation and in Fig. 13(b) in the generalized
hydrodynamics representation. The root-mean-square de-
viation of- the fit, 5(k), is defined by Eq. (13). The experi-
ments in Refs. 8 and 29 have been performed at T =26.5
K and n =36.0 nm . The thermodynamic and transport
properties at this condition are y=2. 1, c, =600 ms
Dz ——10.5&&10 m s ', and @=21X10 m s '. In
Ref. 8 the k range covered was 4 & k & 14 nm ' and here
we show results from Ref. 29 for 8 & k & 22 nm

E. Discussion

In this paper two representations of S(k,co) are dis-
cussed. One is the description of the decay of the density
fluctuations in terms of the decay of its eigenmodes.
The second one is the description of S(k,co) in terms of
k- and co-dependent transport coefficients. ' The question
which of the two representations exhibits more "physical
significance" is still a controversial subject (see, e.g., Refs.
33 and 34). Because of the lack of useful criteria we will
not discuss this question but will restrict ourselves to the
investigation of the parameters appearing in both repre-
sentations. In order to have a correct description for all k
and co the infinite series in Eq. (10) as well as both k and
co dependence of the transport coefficients are required.
If, however, the hydrodynamic limit k~0 is considered
three Lorentzians suffice, the parameters of which are
directly connected with the transport coefficients, and, in
the other representation, Eq. (15) holds. As the wave
number of the density fluctuations increases the accuracy
of the hydrodynamic description decreases. This is be-
cause short-range space and time correlations, which are
important in the region probed by neutron scattering, are
not built into the equations of linearized hydrodynamics.
This means that in this k region the three most important
eigenmodes will not follow their hydrodynamic values,
and higher modes will become more important. Alterna-
tively, it results in a k and'co dependence of the transport
coefficients in the second representation. From calcula-
tions for a hard-sphere system, using a revised Enskog
theory, it has been shown that for k values smaller
than the inverse mean free path I ' (for the present con-
ditions 1=0.03 nm), S(k,co) is mainly determined by the
three lowest eigenmodes, and the contribution of the
higher modes only infIuences the high-frequency part of
S(k,co), which exhibits relatively large experimental un-

. certainty. This observation is analogous to the assertion
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FIG. 13. Parameters of the models TP1 (open circles), TP2 (closed circles), and TP3 (closed triangles) from fits to the experimental
S(k,co) data of neon at 35 K and 14 MPa, in the three-mode representation [parameters zo, z„and co, in (a)] and the generalized hy-
drodynamic representation [parameters zq„zr, and y in (b)]. 5(k) is the root-mean-square deviation of the fit and coo the normalized
second frequency moment of the model. Results of model TP3 from neon near the triple point are indicated by Q (Ref. 8) and D
(Ref. 29). Dashed and dash-dotted lines in (b) indicate the hydrodynamic limits in neon at 35 K and 14 MPa, and at 26.5 K and va-
por pressure, respectively.

that the decay as a function of frequency of the general-
ized transport coefficients is much slower than the decay
of S(k,co) and will therefore become manifest at larger
frequencies.

The aim of this study is to investigate whether a good
description of the experimental data can be achieved if
only the first three modes are considered or alternatively
only k dependence of the transport coefficients is taken
into account. In this case the two models can be translat-
ed into each other straightforwardly as shown in the Ap-
pendix. Note that if more modes are considered and the
frequency dependence of the transport coefficients is tak-
en into account this translation is much more cornplicat-
ed.

Both the higher modes and the co dependence of the
transport coefficients are more important with increasing
frequency, so, by neglecting these, we may not expect the
model to obey all the sum rules. In model TPl only the
first sum rule is satisfied, resulting in five free parameters,
whereas in TP2 the first and second sum rules are satis-
fied, as is the case in the hydrodynamic regime, resulting

in four free parameters. From the fits it is apparent that
with only four (k-dependent) parameters the present re-
sults can be described excellently. Introducing one extra
parameter (model TP1) does not improve the fits signifi-
cantly and introduces correlations among the fitting pa-
rameters. We will come back to this below. In model
TP3 the number of free parameters is reduced to three.
This is accomplished by taking, in the generalized hydro-
dynamics representation, y(k) equal to its hydrodynamic
value. Although, as far as we know, no physical justifica-
tion exists for the assumption that the k dependence of
y(k) is weaker than that of, e.g., 4(k) or DT(k), we will
consider this model in order to be able to compare our re-
sults with those i.n Refs. 8 and 29.

The k-dependent transport coefficients DT(k)
=coozzk 2 and @(k)=cooz@k divided by their hydro-
dynamic values, and corresponding with the results shown
in Fig. 13(b), are displayed in Fig. 14. As found be-
fore, ' these quantities decrease with increasing k. The
physical meaning of the k dependences of N and DT as
well as z@, zT, and y is a subject for future study.
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vided by their hydrodynamic values. Key as in Fig. 13.

From-the present results we conclude the following. (i)
Both models TP1 and TP2 give a good description of the
experimental data. This means that if the requirement
that S(k,co) has to obey the sum rules higher than the
second one is abandoned, which is obviously justified by
the uncertainty of the present high-energy data, four pa-
rameters are sufficient for the characterization of S(k,co).
Model TP3 appears to be inadequate for k (15 nm
An example of all three models is given in Fig. 15. (ii)
The lowest k value covered by the experiment is too large
to see the transition to the hydrodynamic region, which is
estimated to extend up to roughly k =2 nm '. However,
if the values obtained at k =5 nm ' are excluded (at the
smaller k values a systematic error might be present in the
experimental results, see Sec. II) the parameters in both
Figs. 13 and 14 can be extrapolated smoothly to their hy-
drodynamic values. (iii) S(k) determined by fits of the
models TP1, TP2, and TP3 is equal to S(k) determined
by numerical integration (Sec. III A), within the estimated
uncertainty. (iv) Since models TP1 and TP2 are equally
acceptable the discrepancy between the values of the pa-
rameters determined by both models will give an indica-
tion of their uncertainty. It appears that, going from TP1
to TP2, the parameters zo, z„and co, only change
10—20%, whereas the parameters z@, zT, and y change
up to a factor of 2. From the fits of model TP1 all pa-
rameters z@, zT, y, and coo appeared to be highly correlat-
ed [positive correlations between the pairs (zT, y) and
(z@,coo), negative correlations between (z@,zz ), (zT, coo),
and (y, coo)]. In the three-mode representation a strong
positive correlation between (coo,z, ) and a strong negative

I

E
0.08

3
0.04

3O

co (ps )

I

IO

correlation between (coo,co, ) were observed. The parame-
ters determined by the three-mode representation of model
TP2 appeared to be only slightly, positively, correlated.
In contrast, the correlations among the parameters in the
generalized hydrodynamics representation of model TP2
were 3—4 times larger [negative correlations for (z@,zT)
and (z@,y) and positive for (zr, y)]. For these reasons we
consider the interpretation of S(k,co), as determined from
neutron scattering data, in terms of its eigenmodes more
suitable than the interpretation in terms of generalized
transport coefficients. (v) If y(k) is kept fixed at its hy-
drodynamic value (model TP3) the parameters zq, and zT
[Fig. 13(b)] or @(k) and DT(k), (Fig. 14) agree reasonably
well with the results from Refs. 8 and 29.

IV. CONCLUSIONS

We reported INS experiments on liquid neon at two
densities at 35 K. After very careful corrections for all
known experimental effects the reliability of the resulting
S(k,co) data was examined by means of three independent
consistency checks. The agreement between the corrected
S(k,co) results from energy-gain and energy-loss data is
satisfactory, the first frequency moment of S(k,co) is
equal to its theoretical value within the experimental un-
certainty, and the static structure factor S(k) obtained
from numerical integration of S(k,co) is in agreement
with neutron diffraction results.

The first-order quantum effect in (co ) (of order fi )
can experimentally be observed in neon and is consistent
with theoretical calculations. The magnitude of this ef-
fect is in neon a factor of nearly 10 larger than in argon at
the corresponding thermodynamic state. The quasiclassi-
cal dynamic structure factor S(k,co) of the present experi-
ment has been compared with results of liquid argon at
corresponding states. Except for some small differences
the corresponding-state principle is shown to be valid.
Discrepancies are present at k values around ko.=2 in the
static structure factor S(k), where S(k) of argon is about
20%%uo higher, and around ko =4, where both the peak po-

FIG. 15. Experimental data for the longitudinal current
correlation function C~(k, co)=co S{k,co)/k of neon at 35 K
and 14 MPa at wave number k =9 nm ' (error bars), and the
best fit from the models TP1 (dashed line), TP2 (solid line), and
TP3 (dotted line).
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sition co of the longitudinal current correlation function
Ct(k, co)=to S(k,co)/k and the sound frequency to, are
somewhat smaller in the case of neon. The origin of these
deviations from CPS is unknown at present.

The present experimental data can very well be inter-
preted in terms of one (extended) heat mode and two (ex-
tended) sound inodes. This three-mode description ex-
plains the dramatic change in shape of S(k,co) going from
small k values up to values around ko, the first peak of
S(k). Near ko the sound modes become overdamped, re-
sulting in a gap in the sound dispersion curve. The three
poles z „zo, and z+l of this description can be deter-
mined rather accurately. On the other hand, the @-

dependent transport coefficients as used in Eq. (16), and
associated with these three modes, are hard to determine
unambiguously. It appeared that these coefficients, which
are functions of z l, zo, and z+l [Eq. (A14)], are highly
correlated when determined from S(k,co) by least-squares
fitting. In the past a few authors ' have analyzed INS
results by the generalized hydr'odynamics description, Eq.
(16), where y(k) is kept fixed at its hydrodynamic value.
We showed that this restriction leads to unsatisfactory fits
to the present S(k, to) data for k & 15 nm

De Schepper et al. demonstrated that demanding that
the three-pole model obeys the sum rules up to the fourth
[i.e., R„'(k)=R„(k), n =0„.. . , 4] and, as a consequence,
introduce relations between the eigenvalues z &, zp, and
z+l does not yield a proper description of S(k,co). This
implies that if we want the model S(k,co) to satisfy these
sum rules additional Lorentzians of the sum in Eq. (10)
are necessary or, alternatively, a z dependence of the gen-
eralized transport coefficients in Eq. (16) has to be intro-
duced.

A l(k) Ao(k) A+l(k)
F(k,z) =S(k) +. +z+z l(k) z+zp(k) z+z+l(k)

+1
F(k, t)=S(k) g Ai(k)exp[z~(k) t ],

(A4)

where Ao(k) and zo(k) are real and either A+(k) and
z+ (k) are real or complex conjugate pairs.

Representation (b): continued-fraction representation,

F(k,z) =S (k) z+ A,(k)+
b, l(k)

62(k)
z+n, (k)+ z+Q, k

Representation (c):ratio of polynomials,

z +A(k)z+B(k)
z'+ C(k)z'+D (k)z +E (k)

(A5)

(A6)

and

3 =Q)+02,
B=Q]02+62,
C=Qp+Q)+02,
D =QpQ~+QpQ2+Q]02+5~+52

E=QpQ&A2+ Qpkp+ 026&

(A7)

The three representations are related to one another by
(for the sake of clarity we will not explicitly display the k
dependence)
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B=3 )zpz+ ) +c4pz ~z+ ] +Q+ ~z

C =Z ] +Zp+Z+ i

D =Z izp +Z ]Z+ i +Zpz+ &

E—Z $zpz+ ] e

(A8)

APPENDIX: THE THREE-POLE
APPROXIMATION OF S(k, co)

The. short-time behavior, for t & 0, of F(k, t) is
described by the Taylor-series expansion

The Fourier and Laplace transforms of the intermediate
scattering function F(k, t) are defined by

F(k, t) =S(k)g, R„'(k), (A9)

S(k,co)= f e ' 'F(k, t)dt, (A1) with

and

F(k,z) = J e "F(k,t)dt, —
R'(k) 1'

iso ()t" S (k)
(A2)

and the large-z behavior of F(k,z), provided Rez ~ 0, by
with

S(k, to) =lim —ReF(k, z =ito+e) .1

e&p 7T
(A3)

F(k, )= gR'(k)
Z n=p

(A10)

The three-pole approximation of F(k,z) is represented in
three different ways.

Representation (a): the three-mode representation,

We have chosen R 0 (k) = 1 yielding A l +A 0+A+ l ——1.
The quantities R„'(k), expressed in the parameters appear-
ing in the different representations, read as follows.

Representation (a):
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+1
R„' = g AJzj" .

j=—1

Representation (b):

R ] — Qp

R2 ——Qp —6),
R 3 — Qp +2QQ+ ]+0$+ $

R 4 =Qp —3AQE] —2QQ(&] —&)&]+~]+~]~2

Representation (c):

Ri ——3 —C,
R2 ——8 —(CR ) +D),

(Al 1)

(A12)

vector-dependent Maxwell relaxation time.
Taking in representation (b) S (k) =S(0), Qo ——0,

I
—~p —y 1c,k2, 01—ze —Ck2, Q2 —zT —DTk2, and

b,z
——(y —1)coo results in Eq. (15). From Eq. (A12) it fol-

lows that in the linearized hydrodynamic description
R 3 —COp+k is not equal to the correct sum rule R 3 —0.

The generalized hydrodynamics representation dis-
cussed in Sec. IIID [Eq. (16)] can be identified with the
continued-fraction representation, Eq. (A5), with Q~

——0,
to0 ~l z@ Qlcoo zp +2coo and 7' —1 =b zcoo . If
we define C =Choo, D =Dcoo, E=Ecoo, and
zj ——zjcop

' then the relation between the parameters acting
in the generalized hydrodynamic representation and those
in the three-mode representation is given by

R3 ———(CR2+DRI +E),
R4 = —(CR3+DRz+ER') ) .

(A13)
zT ——E,
y =D E(C —E), —

(A14)

Note that if in representation (b), Eq. (A5), both Qo and
Q~ are taken equal to zero, and if further
R 2 (k) ~] R2(k) = —coo and R 4(k) =~&+~~~z
=R4(k) =coocot all sum rules up to the fourth are satisfied
[Eq. (12)j. In this case the model is identical to the so-
called viscoelastic model where w(k)=Qz '(k) is a wave-

with

C =z i +zp+z+ i,
D —Z Jzp +Z ]Z+ $ +ZQZ+ $

E—Z $ZQZ+ 'I ~
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