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Analysis of nonlinear mass and energy diffusion
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A study of nonlinear plasma mass and energy diffusion reveals that the diffusion coefficients
uniquely determine one of two diffusion patterns. After a short initial transient time, either an or-
ganized universal pattern, described by a time-space separable solution, is formed or transport is in-

hibited, allowing only a partial organization of diffusion into a universal pattern. Consequently, in

the second case, unlike the first, the asymptotic shape of the solution will depend to some extent on
its initial state.

Before a complete analysis can be made of the radial
transport of mass and energy in the presence of magnetic
fields, the nonlinear diffusion of mass and energy across
magnetic fields must be well understood. ' In pursuit of
this goal, this paper is concerned with a mathematical
analysis of a simple model of slow diffusive self-
relaxation of a magnetically confined plasma.

As prototype equations of heat and mass diffusion we
consider

pt =
t.Di(p T)px L D i =dorp

P~t =lPD2(P T)T ) D2 do2P (2)

where the subscripts denote partial differentiation,
a, P, doi, and do2 are constants and x H [—1,1]. We
prescribe initial data for density p(x, O) and temperature
T(x,O) together with homogeneous convective boundary
conditions

p +A&p=O T~+h2T=O at x =+ I (3)

These convective boundary conditions are physically more
relevant and mathematically more tractable than Dirichlet
boundary conditions (h = oo ).

Despite the simple functional dependence of the dif-
fusion coefficients, these equations are fair approxima-
tions to many of the current magnetically confined plas-
mas models. For example, in a fully collisional plasma
the diffusion across magnetic field lines scales as
D-pT 'i and as D=X/p-T i

q in the tokamak pla-
teau regime. Here q(x) is a safety factor that depends on
the specifics of the model problem. We note that adding
a spatially dependent function, such as q(x), does not ob-
struct the space-time separability properties of the equa-
tion. A similar factor (1+q ) modifies the classical dif-
fusion coefficient to account for the Pfirsh-Schluter ef-
fect. Our model only contains the simplified density and
temperature equations; other effects, such as the poloidal
magnetic field or the current, which enter the diffusion
coefficients in the complete model, can be approximated
by introducing a spatially varying adjustment function,
such as q(x). Other diffusion coefficients of interest are
the Bohm coefficient K =pD —p T, the Alcator- 2

(tokamak) diffusion coefficient D-p ', and the Ohkawa
anomalous diffusion coefficient D —T'i p

The mathematical analysis of even these simple mass-
energy nonlinear diffusion prototype problems at first ap-
pears highly complex. Fortunately, if not surprisingly,
the solution manifold of Eqs. (1) and (2) over a bounded
domain with convective boundary conditions (3) is simple
and can be easily classified. The solution evolves very
quickly toward a universal diffusion mode which is al-
most independent of initial data. This highly organized
diffusion pattern is mathematically represented by a
time-space separable solution. (Similar separable solutions
are known before to play a key role in the evolution of the
solution to a single nonlinear diffusion equation. '

)

The analysis of these separable solutions is the central
theme of this paper. While such solutions are special
cases because they must satisfy special initial data, they
attract all initial data and hence play the key role in the
description of the general diffusion problem. While
rigorously we can prove this proposition only for a sub-
class of the. considered problem, extensive numerical ex-
perimentation has been used to give strong credence to
them being global attractors.

Inserting the separable forms

p(x, t) =y](t)N(x), T(x, t) =$2(t)l/I(x),

into Eqs. (1) and (2) leads to the following conditions:

(4)

~i+' ~i
(bl ~101 (b2 & ~1)O (5a)

~, O2+&
(b2 ~201 (b2 ~2) O (5b)

dX dX
(6a)

(6b)

and the spatial part of Eq. (3).
The relevant cases of the first integrals of motion for

Eqs. (5) are the following:
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Case 1. a~&aq, P&&P2

p) —p2 p a~ —a)'+ (t'i' '=Co .
p2 —pi a2 —ai

Case 2. a=at ——az, P=Pt P2——

4i=(4z/To) '

(7a)

(7b)

—&/'a, —1/P2
41 (so+~lalk) 02 (ro+~2p2r)

where go and ro are new constants of integration and

dr =dg/P2' dr/P——~'

(9a)

(9b)

defines g and r, the stretched time coordinates. Of course
only two of the go and ro are independent, since they are
related by Eq. (7a).

Unless either P~ or a2 vanishes, ~ may be found only
after the integration of Eq. (9a) and Eq. (7a). Though the
resulting Euler-type integrals can be solved only implicit-
ly, P~ and P2 can be evaluated asymptotically to determine
the large time behavior. The results of this analysis are
summarized in Fig. 1.

We can find important features of the solution's tem-
poral part directly from the first integrals of motion. In
the (x,y ) =(P& —P2, a& —a2) plane, the two possible
b, =a&x —Pry =0 lines separate regimes of fast and slow
diffusion. The behavior of the temporal part of the solu-

y, (t) ~ o
& =aI —a2

(I)2(t) w 0

D1(D2) 0(1) II

(t)~(t) ~ const & 0

(t)2(t) a 0

o&o (D1/D2) 4 0

III IV

0&(t) ~ o

Q2 (t ) '+ coxls t & 0

C0 & 0, (9/D )40

X=P1. -P2
C0 & 0 =& Qi(t) 4 0, Qg(t) -+ const & 0

C0 = 0 =& Qg(t) 4 0, Qg(t) 4 0

C0 & 0 =& Q~(t) ~ const & 0, $2(t) 4 0

FIG. l. Solution states in the (X,F)=(p~ —p2, a~ —a2) plan~.
In the first and the third quadrant, the integration constant Co
must have a definite sign, but its value is irrelevant for solutions
in the second quadrant, and crucial in the fourth quadrant.
Everywhere, but on the 6:—a2pI —a~p2 ——0 line, the decay is ei-
ther slow or fast.

where Co and To are constants.
Even though case 2 is mathematically speaking degen-

erate, it is of considerable practical interest in many appli-
cations where D&/Dz is assumed to be constant (such as
for the diffusion of a fully collisional plasma across a
magnetic field). Integration of Eq. (Sa) yields

p((t) =[Tp~(to+Or)] ', A=A)a+A~p

where to is a constant. According to whether 0 is posi-
tive, zero, or negative, we refer to the solution P& as de-
caying slowly (algebraic decay), exponentially, or fast (P&
vanishes in a finite time).

The time dependences of the solutions in case 1 are
given implicitly as

tion dramatically changes in each of the four quadrants.
In general, only in the second quadrant do both P&(t) and
$2(t) decay to zero, elsewhere one of the P's converges to a
positive constant. The decay to zero is algebraic as
described by Eq. (8), everywhere but on the b, =0 lines
where it is exponential.

For large t, the asymptotic form of P;(t) in the second
quadrant is given by

P, (r)=(ro+A, ;co;r) ', i=1,2
where

(10a)

co~ ——(p2 —p&)/b„co2 ——(a~ —a2)/&; b, =a2p~ ——a~p2.

(lob)

The m~ and ~2 which give the rate of the temporal de-
cay are defined a priovi, and are independent of the sym-
metry in which our problem is considered. This is an
essential feature of the nonlinear diffusion which has no
counterpart in the linear theory.

The rate of the temporal decay is intimately related to
the role played by the separation constants A,

&
and kz. To

clarify this point consider first the case when Eq. (1) is a
linear system whose solution decays as exp( —A,;t), where
A,

&
and A,z play the role of eigenvalues in Eqs. (6). In a

nonlinear diffusive system the A,; are nonessential con-
stants in Eqs. (6) whose values depend on the normaliza-
tion of g and N. Indeed, suppose that g(0)=A and
N(0) =8 with P and N being the solutions with A, , and A2

being their "eigenvalues. " For any Po, No&0, we then
find that g =gyb and N =NoN are also solutions with

a. P.
A, ;~A,;No'go', i =1,2. Alternatively, let b, =aqp~ —a~pq,
then the choice

T=e 'g(x), p=e ' 'N(x), (12)

where t is an eigenvalue that must be determined from the
global-existence conditions of the separable solution. (A
similar situation arises in the problem of imploding shock
waves, where the I, is determined uniquely by requiring
the existence of the self-similar solution in the large. ")

A physically interesting case arises when D~ /Dz is con-
stant and a&0, p+0 [case 2, Eq. (7b)]. Again (A, ~/A~)

fo ——A, 2'/k )', No ——A, )'/A, 2', (11)

normalizes both A, ~ and A,q to one, with f(0)=A+o and
N(0) =BNo

Thus the A, 's may be reshuffled from the spatial into the
temporary part of the solution and are related to the am-
plitude of the diffusion mode [e.g. , see Eqs. (10)]. Need-
less to say that this differs fundamentally from the linear
case.

An exception occurs when 6 vanishes. The linear case
is a trivial example. In the nonlinear case, where
a&/a2 ——p~/pz&0 (or ac), only one A, can be eliminated
from Eqs. (6); the other A, remains as an essential parame-
ter. In this case, the solutions to Eqs. (1) and (2) are in-
variant with respect to the group of shifts; T~AT,
p~A '/p ', and t~t+to If A=e.xp( Ato), 'this —in-,
variance enables the construction of the invariant repre-
sentation



PHILIP ROSENAU AND JAMES M. HYMAN

plays the role of an eigenvalue with the exponential case
being a transit solution between fast and slowly diffusing
regimes. Here, both the mass and energy decay algebrai-
cally at a rate A,;IQ, i =1,2 [see (7b) and (8)] that must be
found by solving Eqs. (6a) and (6b). The following homo-
logous property:

A.zd p( QIA, )dcz ——K,
where for given convective coefficients h

&
and hz, X is a

constant means that A, ~IAz has to be only measured for
one pair of do~ and doz and then it may be calculated for
any other do& and doz. Particularly, if aP&0 (say, the
fully collisional case wherein a ~

——a2 ——1 and
P& ——Pz ————,'), by changing the ratio of do&/doz we may
transit from fast into a slow diffusion (or vice versa).

Having delineated the temporal part of the solution, we
still need to interpret the fact that in a diffusive process
for a and P not belonging to the second quadrant, one of
the solutions (i.e., either P& or Pz) does not decay to zero.
The time evolution of a particular example is shown in
Fig. 2. This behavior is very different from what is ex-
pected from a single diffusion equation.

To understand the principle mechanism involved in this
somewhat unexpected process, consider the case where P~
is zero causing Eqs. (1) and (2) to decouple and allowing
them to be solved separately. The separable solution of
Eq. (1) is a global attractor; ' it represents a universal
mode of diffusion with the temporal behavior

P~(t ) = (to+ I ~a~r ) to =const (14)

and Pz(t) is given by Eq. (7a). If a, is positive, the solu-
tion asymptotically converges to the separable form. In
numerical tests, the general solution becomes indistin-
guishable from the separable one after a relatively short
time. For a single equation to is important only in the
case of fast diffusion because to!(&~

~
a~

~
) defines the fi-

nite extinction time of the process.
Although Pz(t) is known from Eq. (7a), addressing the

solution of Eq. (2) directly is instructive. Using the
asymptotic form of p known from Eq. (1) we can treat
Eq. (2) as a separate equation in T with a variable dif-
fusion coefficient. The solution of this equation rapidly
converges to a separable form asymptotically. With this
expectation, we substitute p=g&(t)N(x) and obtain

N(x )P) 'T, =N(x) T,=(N ' T 'T„)„,
where

(15)

~= I P)'(g)dq . (16)

0)

OP
Ch.

E
OJ

0
0

When 0 &Ã & ao, Eq. (15) is a standard diffusion equation
similar to Eq. (1) with P&

——0, but is measured in r units.
If P~ ——0 and a~ & az, then v.~ Oo as t~ ac. For large-v

time, the temperature converges to the separable solution
T =Pz(r)f(x ), for whatever initial condition. Here,

Pz(&) =P~(~(t) )= (ro+ L+zr)
with ~o again an unknown function of the initial condi-
tions.

If P~ ——0 and az~ a&, however, the integral in Eq. (16)
converges, and

r=~D[1—(1+A, )a (I!to) ' '], (18a)

1 —a2/a&
+D tO ![~l(+z +1)] (18b)

Thus, r~1D as t~ oo. If ~ is bounded, the time needed
to attain the separable solution is not available, and
Pz(t~ao) converges to a positive constant. Thus, while
p(X, t~ ao ) deCayS tO ZerO, T(X, t = ac ) =T(X,rD ) iS a
positive nonzero steady state.

Stated differently in such a case the solution in princi-
ple will remember its initial conditions. If also P~ ——Pz ——0
this follows at once by writing

T(x, t)= g ajexp[ 5Jr(t)]P~(x) . —
j=1

Here 5J and QJ are the jth eigenvalue and eigenfunction,
respectively. Using Eqs. (18), we can see from

T(x, t = oo ) = T(x, 'TD ) = g a exp( 5r )1t . —
j=l

FICx. 2. For these initial data and these parameters in the
1 3third quadrant, a, = —Y, az= 1, P& =0, Pz =I, do& = 1, do& 5, ——

h~ ——hz ——10, the decay and diffusion of heat [panel (a)] is inhi-
bited by the rapid decay of density [panel (b)].
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that none of the harmonics initially present vanish at
t —+ oo. For the nonlinear case we show this property by
taking g(x), the spatial counterpart of (15) as the initial
condition and perturbing it. The perturbed solution of
Eq. (15) is

T(x, t) =P(t)f(x)[1+u(x, t)] .

It is easily seen that if u =w(t) V(x), when g is the first
eigenfunction of V. Again w(oo)=w(rD) &0 and u can-
not return to PzP.

Thus in the third quadrant, Pz&P&, a2&a&, the dif-
fusion of heat is always inhibited by the density —see Fig.
2 for a numerical example. In the fourth quadrant
(P»P2, a& &a2), depending on the initial data and the
values of a; and P;, either temperature or density will in-
hibit the diffusion of the other. Numerical experiments
have shown the density decays faster usually and inhibits
the diffusion of heat, as in the third quadrant. If at is
negative, the process always terminates on the fast scale.
If a~ is positive, the process is fast if the temperature van
ishes (the plasma becomes cold within a finite time), but it
is siow if the density decays to zero

When P&&0, the asymptotic analysis of the temporal
part is more tedious but confirms the above conclusions.
However for Pt&0 we were unable to demonstrate analyt-
ically the attractive nature of the separable solution. It is
at this point that an extensive numerical experimentation
was used covering all of the four quadrants of the (x,y)
plane to ensure the attractive nature of the separable solu-
tion. This leads us to believe that the lack of rigorous
mathematical proof is a technical rather than a funda-
mental obstacle. Moreover, if ra & ae, unlike the semi-
coupled case, either both T and p come close to their ideal

counterparts g and N or neither comes close, as r—+rd.
In practice, however, for the many cases considered nu-
merically, T and p approach their attractor very quickly,
long before the process "runs out of time. " That is, by
the time the diffusion coefficient becomes suppressed, the
process is extremely close to its universal mode.

The effect of an inhibited diffusion is expected to play a
far more important role in the presence of sources and
sinks. Particularly with respect to a stable plasma heating
if thermal stability is to be observed, appropriate particle
injection must take place to avoid the suppression of
thermal conductivity by diffusing particles. With a
suppressed thermal conductivity, the process cannot be
thermally stable.

In summary, we have unfolded the structure of a sys-
tem of prototype equations of heat and mass diffusion.
The space-time separable solution was shown to play a
key role in a later time description of the diffusion. We
have shown the existence of two conceptually different
diffusion processes. When a~ &o.2, P2)P&, both of the
diffusion coefficients D~ and D2 are on an equal footing
resulting in an ultimate decay of both plasma mass and
energy. For other a and P one of the diffusion coeffi-
cients becomes suppressed to the extent that either the dif-
fusion of heat or mass is blocked. This phenomenon is
expected to have an important effect on the evolution of a
heated and radiating plasma.
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