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Third-harmonic generation in liquids
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Third-order nonlinear susceptibilities of several organic solvents are measured by third-harmonic
generation at two laser wavelengths: 1.064 and 1.907 pm. The method used allows a determination
of the modulus and phase by interference with the harmonic field generated in the liquid-cell win-
dows. Air contribution to the resulting harmonic intensities is studied in detail. An experimental
correction for this effect is proposed and verified for some solvents. Results are discussed within the
bond-additivity model.

I. INTRODUCTION

The exact knowledge of the hyperpolarizabilities of or-
ganic molecules is important from two points of view:
practical (applications in optical devices) and fundamental
(testing molecular calculations, bond additivity, nonlinear
spectroscopy, interaction with other molecules, etc.). One
of the simplest possible methods for its determination is
the measure of the harmonic light generated in solution.

The nonlinear susceptibility of liquids has been studied
in the past mainly by the static electric-field-induced
second-harmonic generation (EFISHG). ' This tech-
nique gives directly the total average cubic hyperpolariza-
bility y (:—yx&~x in the laboratory coordinate frame if the
applied field direction is collinear with the incident-light
polarization vector), which is composed from the follow-
ing terms: '

y =y'+y'+y
where y' is the purely electronic contribution, y' is the vi-
brational nonlinearity, and y the dipolar contribution
(vanishing for centrosymmetric molecules),

913
=5kT '

where p is the dipolar electric moment and P the average
second-order susceptibility of molecule.

In the molecular coordinate frame (with the dipole mo-
ment p parallel to the molecular x axis)

P=P~+P.yy +13

y'"= 5(yxxxx+y—yyyy+yxm+2yxxyy+ Yxxzz+ yyyzz) . (4)

The separation of the corresponding contributions to y
[Eq. (I)] in the EFISHG technique is not evident. Gen-
erally y is estimated from the temperature dependence of
y (y' and y' are assumed to be temperature independent).
However, this assumption fails near the electronic or vib-
ronic transitions and/or the two-photon or multiphoton
resonances.

The second possibility for separation of the different

terms in Eq. (1) is given by the time scale in the response
times: y' having a response time on the order of 10 ' s,
whereas y' and y are about 2 and 4 orders of magnitude
larger, respectively. However, this separation needs the
use of a laser with variable pulse length and is difficult in
realization and interpretation.

A direct separation of the dipolar term may be obtained
by the third-harmonic generation (THG) technique.
In this technique, because of the random orientation of
the dipolar moments, y" vanishes. The separation of the
electronic and vibrational contributions is also difficult:
however, in most cases the first one is dominant, especial-
ly near electronic transitions. Other problems arising in
this technique are environmental effects, as discussed by
Meredith et al. ' ' In fact the laser beam generates the
third-harmonic light in surrounding air, which interferes
with the harmonic light produced in the measured sample,
modifying resulting intensities. This effect, if not elim-
inated or not taken into account, can lead to large errors
in the determination of nonlinear susceptibility.

The present paper deals with THG measurements in
liquids by the Maker-fringes technique. This technique
allows determination of not only the molecular cubic hy-
perpolarizability but also its phase. Moreover, the mea-
surements can be done on solutions absorbing at the har-
monic frequency (by diminution of the cell thickness). In
Sec. II we recall some fundamental equations describing
optical wave generation and propagation in isotropic non-
linear media. Section III describes the experimental ar-
rangement and a detailed study of the influence of sur-
rounding sample air on measured intensities for several
focal lengths and at two different wavelengths: 1.064 and
1.907 pm. In this section we also give an experimental
correction for this effect. In Sec. IV we present some re-
sults for several organic solvents at these two wavelengths
and we discuss them in Sec. V within the bond-additivity
model.

II. THEORY

Optical wave propagation in isotropic nonlinear media
has been described by 81oembergen and Pershan' and ap-
plied for the analysis of Maker fringes from second-
harmonic generation by Jerphagnon and Kurtz' (see also
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where Xz
' is the third-order nonlinear susceptibility of

medium 2

Xz Ny——zL +3„,(3) 3

with N the number of molecules in the unit volume and
L„,L3„ the local field factor at fundamental and harmon-
ic frequencies, respectively,

2
n~ 3~+2~ c0,3' (9)

FIG. 1. Harmonic wave propagation in a nonlinear medium
immersed between two linear media. Arrows denote wave vec-
tors. The electric fields (only harmonic fields are denoted) as
well as the rotation axis are perpendicular to the figure plane.

Pz(8) (where 8 is the incidence angle) is the envelope
function arising from the transmission factors between all
interfaces and from the boundary conditions between con-
secutive media (details in Appendix A), P is an overall
phase factor, and Pz(l), Pz"( l) are phase-mismatch factors
in medium 2

3k l cose, s =co
Pz(i)= '

k3~l cos82", s =3',

Ez"(r, t ) =E&~(r)exp[ i(3cot——k3„.r) ]
+Ez"„(r)exp[—i(3cot+k3~ r)]

+Ezb(r)exp[ —i(3cot —3k„r)]+c.c. ,

where the bound wave

4 PNL
Ezt, (r) =

Ae, '

(S)

with P2 the nonlinear polarization created in medium 2
and 4e=ez(co) —ez(3') the dispersion of dielectric con-
stant.

From the boundary conditions for the electric field at
the 1-2 and 2-3 interfaces (neglecting reflected waves from
interfaces different from that under consideration, see Ap-
pendix A), one obtains for harmonic field

y(3)(Em)3
Ez"(I,t) = Pz(8)e'~R(8)e

Ae

Kurtz' ). This formalism has been developed for plane
waves. The case of focused laser beams will be discussed
below.

Following Bloembergen and Pershan' the harmonic
electric field created in a nonlinear medium 2 (see Fig. 1)
is a sum of bound (b) and two free (t, r) waves (propaga-
ting in opposite directions)

where l is the thickness of medium 2, 8z and 8z" are the
propagation angles in medium 2 for fundamental and har-
monic waves, respectively, and R (8) is the multiple-
reflection correction factor (see Appendix B). We note
here that the dielectric constants e(co) and e(3') as well as
wave vectors k„, k3„, phase p, Pz(8), R(8), and propaga-
tion angles 8z,8z" may be complex (in an absorbing medi-
um; see Appendix C).

The resulting harmonic field is equal to the sum of con-
tributions from consecutive nonlinear media (S or 3 in our
case, depending whether or not we consider harmonic
light from air)

E (r, t) = g E~ "(ri,t)T~,
J

where TJ are the corresponding whole transmission fac-
tors and the resulting harmonic light intensity

2I „ce(3')
J

leads to complex interference patterns (cf. Sec. IV).
For the simplest case of a liquid cell with walls of the

same thickness and assuming that the transmission fac-
tors for the wall-liquid, liquid-wall interfaces are equal to
1, one obtains a very simple formula for the third-
harmonic intensity [see Fig. 2(a)]

256m- T I.4 g(3)
sin2 2

2C' ~01.+~4'G+ cos sin
Aeo

~4G
Q)

(12)

b,P = (e„' cos8"—e3„cos8 ")l .
6m

(13)

where subscripts L and G refer to the solvent (solution)
and the silica, respectively, and hfdf, ,b PG are phase
rnismatches in the liquid and glass, respectively,

In the above, l is the wall (liquid-cell) thickness and 8
and 8 are the propagation angles for fundamental and
harmonic waves, respectively, T is an overall transmission
factor and I„is the fundamental beam intensity.

Formula (12) was derived first by Levine and Bethea'
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cases when the refractive indices of the liquid and glass
are the same or very close at both the fundamental and
harmonic frequencies as well as when the input and out-
put windows have the same thickness. In a general case
the use of this equation can lead to large errors. We quote
Eq. (12) because it shows a possibility of a precise deter-
mination of the amplitude and phase of one of the non-
linear susceptibilities (XL

' or XG') if the second one
(XG

' or XL, ') as well as b et. and heG are known.

A. Focused laser beams

The above formalism derived for plane waves can also
be applied to focused laser beams (in fact a focused laser
beam can be considered as a superposition of plane
waves). For a thin nonlinear medium, compared to the
focal length (we used liquid cells with a thickness of
2—2.5 mm and a focal length of 500 mm), one can assume
that the electric field is constant inside the medium and
this formalism apphes directly. This is no longer true if
one considers harmonic light created in surrounding air
where the amplitude of electric field changes from one
point to another and correspondingly, so does the created
harmonic field.

The harmonic light generation for a focused laser beam
has been considered by Kleinman et al. ' and applied for
THG in gases by Ward and New (see also Boyd and
Kleinman '). Following these authors for a fundamental
Gaussian beam propagating in the z direction

FIG. 2. Vibronic diagram without (a) and with (b) air contri-
bution. Subscripts I., 6, and 3 refer to the harmonic fields
created in liquid, glass, and air, respectively.

E„(r,t) = exp[i (k~z IgIt)]-
1+1'

( 2+@2)
Xexp

Wo(1+iv )

where 2 Wo is the beam waist (see Fig. 3) and

(14)

'I

for the second-harmonic generation (SHG) in an electrod-
ed cell. However, in their result [Eq. (6)] d should be read
as d/b. e, which can be important in the case of abnormal-
ly dispersed liquids (or solids) and for calibration.

Equation (12) is oversimplified because it completely
neglects reflection losses between consecutive nonlinear
media (cf. discussion in Ref. 14). It holds only for the

0,5
C3
C)

=- 0
2 ITIIll

= 10mm

X=1.907pm

I

wo

0.5—
c'

/
/

/
/

/
/

/
/

/
I

/
I

/
/

I
I

/
I

I
I I l

1 2
FOCAL LENGTH {m)

0.5
/

/
/

/
I

I
/

/
I
I

/
/
I
I

2
FOCAL LENGTH {Ill)

FIG. 3. Liquid-cell arrangement in focused laser beam.

FICJ. 4. Calculated modulus C and phase g of air contribu-
tion at two wavelengths and for different values of u (cf. Fig. 3).
Circles and rectangles show measured values of C for a silica
plate and liquid cell, respectively.
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The harmonic field is given by

4nPg "I(u ).
E3„(r)=

r —3(x +y )
exp(ik3„z )exp

Wo(1+i r)

3~ Q

I(u) = b,n f dz'
z

——Ce'~
(1+i~')

(17)

(cf. Ward and New and Meredith' ) and b,n is the
dispersion in air,

(z' z)b, n and w'=—2z'/Wok~ .
C

The calculated harmonic contributions for different fo-
cal lengths and at two wavelengths are shown in Fig. 4. It
is seen that the contribution of air increases with increas-
ing focal length, as expected. This contribution is real at
the focus and complex for other points, with an increasing
imaginary part going away from the focus.

For an infinite medium I( ao ) =0 (see Ward and
New ). This is no longer true when a rotated sample is
placed at focus: this introduces a phase mismatch be-
tween air contributions before and after the sample, de-
pending on the rotation angle.

III. EXPERIMENTAL

A schematic representation of the experimental ar-
rangement is shown in Fig. 5. The light source is a 10-
pps (pulse per second) Q-switched Nd:YAG laser (where
YAG denotes yttrium aluminum garnet) made by Quantel
(model YG 481) with pulse duration of about 13 ns and
maximum available average energy per pulse of about 850

(16)

where the function I(u) is a sum of all contributions from
the points between the source (lens) and the point u

FIG. 6. Third-harmonic intensity variation at 1.064 pm from
a silica plate as a function of air pressure.

mJ. A special arrangement (crossed polarizers) enables a
continuous variation of the output energy from zero to its
maximum value. The sample is rotated and/or translated
by stepping motors controlled by a microcomputer Corn-
modore CBM 8032. The eventual variation of fundamen-
tal laser power is measured by a rapid Si photodiode and
the harmonic light intensity, filtered by a filter assembly,
by a photomultiplier tube (PMT): both signals are in-
tegrated by boxcar integrators with a very short opening
gate time (5 ns for the PMT). The precision in rotation is
0.01' and in translation is 1 pm. The measured harmonic
light intensities are stored on floppy disks. The incident
light was linearly polarized assuring that the measured
quantity was Xxx)xx. For the study of the influence of air
on the third-harmonic signal a vacuum cell was used with
fused silica windows. The vacuum-cell length was adjust-
able from 12 to 42 cm in order to allow measurements for
different focal lengths and to avoid window effects. The
sample was placed in the center of the vacuum cell.

The THG measurements have been performed at funda-
mental wavelengths of 1.064 and 1.907 pm, the last ob-
tained by a Raman shift in hydrogen under high pressure
(56 bars).

The liquid cells used here were standard commercial
cells produced by Hellma and made from Suprasil. The
wall thickness was about 1250 pm, whereas the optical
pathlength iriside the cell was about 1000 pm. The cells
were rotated along a vertical axis, parallel to the incident-
beam polarization. The sample was carefully oriented in
order to align the rotation axis with the laser beam (both
being mutually perpendicular). A bad sample orientation
is seen in the lack of left- and right-hand symmetry of
Maker fringes. A least-squares program permitted a pre-
cise determination of the position of the normal to the cell
face from the position of interference minima and/or
maxima. In addition to the monitoring of fundamental
laser power every measurement was calibrated separately
by THG on a silica plate or on benzene. All measure-
ments were performed in an air-conditioned room.
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I'"~
~

E+C(X"'/&e)~(T3 e

—T e ' )E„
I

(18)

where E is the resulting harmonic field created in the cell
windows and in the liquid [Eq. (10)], C is the air-
contribution parameter, and P is its phase [see Eq. (17)].
For a practical convenience we have introduced a new pa-
rameter C'=C(X' '/b, e)~/(X' '/b, e)G where G and
refer to silica and air, respectively. T3 and T are
transmission factors through the ce11 at 3' and co and
Oq, 9q are the phases of the reference free harmonic wave
at the ce11 input and output. In order to determine C' we
proceed as follows. First we measure in vacuum the Mak-
er fringes for a silica plate of known thickness. By a
least-squares fit of the calculated intensities to the ob-
served ones we determine the refractive-index dispersion
of silica and a scale factor S given by

y(3)
S=A f(it3 )I„, (19)

keg

where f(A,3„) is the PMT efficiency at the harmonic fre-
quency and 3 is a factor depending on experimental
geometry, filters, and the PMT window transmission

The fit is sensitive up to 10 on dispersion variation
and allows an exact determination of the interference
minima and maxima positions. However, the precision in
dispersion determination is limited by that in the thick-
ness measurements (in our case —10 ). After we intro-
duce air, without changing the silica plate position, and
again by a least-squares fit we determine the value of C'
(the value of P has been found to be close to zero). In Fig.
8 we have plotted, as an example, the scale factor as a
function of air contribution parameter C' at 1.064 pm
and for a focal length of 500 mm. It is seen that the
knowledge of this scale factor allows a precise determina-
tion of C' (C'=0.235+0.005 in this case). In fact there
exist two solutions for C' (C'&0.44 and C'&0.44) but
there is no ambiguity in the choice of a good value for C'
(the envelope of measured intensity as a function of in-

cidence angle falls rapidly in the case of C' & 0.44 and in-

creases for C'&0.44, cf. Fig. 7). The fit of interference
spectra is quite satisfactory at 1.064 pm [Fig. 7(a)] and
worse at 1.907 p, m [Fig. 7(c)]. This is due to the experi-
mental difficulty and size of correction. At 1.907 pm the
measured signal-to-noise ratio is bad (the silica plate sig-
nal is about 30 times weaker than that of benzene).
use of a Raman cell magnifies the laser-intensity Auctua-
tions. The formalism does not take into account the long-
itudinal mode distribution and fluctuations, the finite-
beam-size effects and the influence of surface roughness

109
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on harmonic intensity (averaging is better for larger in-
cidence angle because of larger illumination surface). The
correction itself is large (the air contribution is signifi-
cantly larger than the signal itself). We show Fig. 7(c) in
order to illustrate the envelope dependence of measured
intensity as a function of incidence angle for a large air
contribution. This has no impact on our data analysis.
At 1.907 pm we used benzene as standard: this one was
calibrated with silica in vacuum.

The measurements have been performed at different fo-
cal lengths and the results for C' are presented in Fig. 4
while some characteristic fringe patterns, in air and in
vacuum, are shown in Figs. 9 and 10. As expected (see
Fig. 4) the values of C' are negligible at focal lengths
smaller than 15 cm at 1.064 pm and smaller than 10 cm
at 1.907 pm.

Taking for air and silica the following values,

INCIDENCE ANGLE (deg)

FIG. 10. Calculated and measured third harmonic intensities
for CHC13 as a function of incidence angle at 1.907 p,m in vacu-
um (a) and in air (b).

(bn )z ——1.085X 10, (hn)G ——2.65 X 10, (X' ')G ——3. 11X 10 ' esu (A, = 1.064 pm)

(bn)~=3X10, (bn)G ——1.745X10, (X' ')G=2. 79X10 ' esu (A, =1.907 pm),

it would be possible, in principle, from the definition of
C' to deduce the cubic susceptibility of air. We find

(X~~»)g =7.0X 10 esu (A, = 1.064 pm),
(X~~~~~)~ =1.8X10 ' esu (A, =1.907 pm) .

These numbers are larger than those reported in literature:
(X»»)~ =1.6X10 ' esu (Ref. 24) and 4.7X10 ' esu
(Ref. 20). Owing to several approximations we used in the
interpretation of experimental data (Gaussian beam, single
mode laser), the determination of C' does not permit a
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precise measurement of X' ', but is just a way to take into
account experimentally the air contribution. Nevertheless
this shows how the calibration of harmonic intensities
with respect to a single plate or cell windows in air can
lead to large errors.

B. Nonlinear susceptibility
of organic solvents

In the most general case of measurements in air there
are five nonlinear regions (this number reduces to three in
the case of measurements in vacuum) and the number of
free parameters is equal to ll (refractive indices of silica
and of solvent at fundamental and harmonic frequencies,
C' and P for air, g' ' and its phase for liquid, thickness of
silica walls, and thickness of liquid). In reality the num-
ber of free parameters may be limited to three: dispersion,
the nonlinear susceptibility of the liquid, and its phase.
The other ones can be determined and/or measured in-
dependently. In practice we have proceeded as follows:
first we have measured harmonic intensities generated in
an empty liquid cell, measuring thickness of walls and of
the compartment for liquid. As for silica plate the mea-
surements have been done in air and in vacuum and the
observed intensities fitted using Eq. (18) as described be-
fore with all parameters for liquid cell and for air kept
constant. All studied solvents are transparent at 1.064
pm and at 'harmonic frequencies, but some of them absorb
slightly at 1.907 pm. In Table I we give the imaginary
parts of refractive indices a for studied solvents mea-
sured from transmission in a 1-cm-thick liquid cell.
These are very small (~„-10 or less) and as discussed
in Appendix C, the harmonic light generation in this case
can be considered, as in a nonabsorbing medium, . to have
complex transmission factors and factors arising from
boundary conditions, as well as e complex and phase
mismatches P, Pz (Pz" if absorption at harmonic frequen-
cy) [see Eqs. (7), (11), (18), and (AS)—(A8)]. This is
achieved by replacing refractive indices in corresponding
formulas by the complex ones. The absorption (at funda-
mental and/or harmonic frequency) introduces an addi-
tional phase shift, which may be confused with the phase
of X' ' if not taken into account correctly. This additional
phase shift is negligible in our case (see Appendix C) and
was neglected in data analysis. Thus in the fitting pro-
cedure we have varied only the modulus of nonlinear sus-
ceptibility, its phase as we11 as dispersion, neglecting the
phase arising from absorption at fundamental frequency
(see Appendix C). The absorption at fundamental fre-
quency was taken into account by introducing the com-
plex refractive index with ~ values given in Table I.

First, we have observed that the air contribution param-
eter C' for liquid cell and for silica plate, within experi-
mental accuracy, were close to one another at a given
wavelength and focal length. For three solvents benzene,
chloroform, and dimethylformamide (DMF) we have
done THG measurements in vacuum and in air, verifying
that the value of parameter C' determined for an empty
cell holds also well for filled ce11. The calculated values
for these three solvents in vacuum and in air at both
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TABLE II. Cubic nonlinearities (in silica hyperpolarizability units) measured in air and in vacuum
for three solvents. The air-contribution coefficient C' is equal to 0.225 and 0.66 at 1.064 and 1.907 pm,
respectively, and the focal length is 500 mm. The estimated error in the P ratios is +5%.

Solvent

A,„=1.064 pm
(&) (3) (3) (3)

+sol~+Si02 +sol~~si02

in vacuum in air

X„=1.907 pm
(3) (3) (3) (3)

+sol~+Si02 &soV'&Sio2

in vacuum in air

Benzene
Chloroform
Dimethylformamide

3.83
2.20
1.79

3.85
2.26
1.85

3.81
2.05
1.91

3.86
2.10
1.81

wavelengths are given in Table II.
At 1.064 pm (C'& 0.44) the interference patterns in air

and in vacuum are similar (see Fig. 9) whereas at 1.907
pm (C'&0.44) they are quite different (see Fig. 10). This
is due to the fact that in the last case the air contribution
is more important than that of silica and the difference
between them adds to the harmonic field created in sol-
vent.

The liquid cell was cleaned in situ and measurements
repeated for other solvents in air. Very good reproducibil-
ity of interference patterns was conserved during the mea-
surements. The results of least-squares fit for all studied
solvents, together with available literature data at 1.064
and 1.907 pm are given in Tables III and I, respectively.
Generally a good agreement is seen with the results of
Meredith et aI. ' ' at 1.907 pm. At 1.064 pm there are
no THG measurements for these solvents. The results
given in Table III were obtained by electric-field-induced
second-harmonic generation. Except benzene, which is a
nonpolar solvent, all y are higher than ours. This prob-
ably is due to the difficulty in the separation of dipolar
parts in y [see Eqs. (1) and (2)]. The values of Xxxxx [and
subsequently the values of yzzzz obtained through Eq.
(8)] were calculated using for silica XXXXX ——2.79X 10
esu as determined by Meredith et al. ' at 1.907 pm (the
same value was reported by Levenson from the three-
wave-mixing experiment). There is no corresponding
value at 1.064 pm. From the Miller's rule X' '-(X'")

and from refractive index dispersion one obtains at
1.064 pm gz~&x ——3.11X10 ' esu which we used to cali-
brate the nonlinear susceptibilities at this wavelength.
Anyway the values for X' ' and y given in Tables I and III
can be easily recalibrated to those of silica or of one of the
studied solvents with better-known values.

We have found, within experimental accuracy, zeroth
phases for the nonlinear susceptibilities of studied liquids
at both wavelengths.

Other elements of cubic tensor for these solvents can be
obtained from the symmetry conditions (see Buckingham
and Orr 6)

y;;kk ———,
'

yxxzx, i,k all permutation of X, Y,Z

Fllll PWCXX &

In Fig. 11 we compare the ratios of liquid nonlinear
susceptibilities to those of fused silica corrected and un-
corrected for air contribution for several organic solvents
measured at 1.064 pm. It is seen that the uncorrected
values are larger than the corrected ones in agreement
with our preceding discussion on influence of air, and all
points lie on the same line. A least-squares fit gives the
following relation between corrected and uncorrected
values

The intercept 0.183 is close to the correction for air
(0.225) (it should be air contribution factor, C, if one
neglects all transmission factors).

V. DISCUSSION

C3
UJ

2
CL
CY
C)

C)

C)

7C

I I I

1 2 3

()( fX . ) UNCORRECTED

FIG. 11. J,',~/gs;o corrected vs uncorrected for air contribu-' 2

tion ratio. Solid line shows a least-squares fit as described in
text.

A. Bond hyperpolarizabilities

From Eq. (4) it follows that the average molecular
third-order susceptibility is a scalar quantity. Thus the
data from Tables I and III should allow a determination
of bond hyperpolarizabilities within the bond additivity
model. The simplest cases are those of HzO and of CC14
which yield the values of O-H and C-Cl hyperpolarizabili-
ties with a good precision. For the 0—H bond we obtain
1'oH=(0.42+0.02)X10 esu at 1.064 pm (because of
absorption of water at 1.907 pm similar determination
was not possible). For determination of hyperpolarizabili-
ty of C—Cl and C—H bonds we have used a series of three
solvents: CC14, CHC13, and CH2Clq and the values for
C—Cl and C—H bonds were obtained by a least-squares
method. The results of such fits are given in Table IV for
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both wavelengths and compared with those obtained by
Meredith et al. ' Our data confirm the negative value of
C-H hyperpolarizability observed by Meredith et al. ' at
1.907 pm. The corresponding value at 1,064 pm is small
and positive. This variation of yc H can be understood
by the influence of a large C-H stretching vibration at
about 3.3 pm. Contrariwise, for C—Cl bond, -which is a
saturated bond, we observe the same values of y at both
wavelengths. Other bond cubic susceptibilities given in
Table IV at 1.064 pm are obtained by using the values of
yc H and yo H determined as described above. The un-
certainty in these values are much larger because they ac-
cumulate all uncertainties of preceding determinations. A
least-squares fit for all studied solvents gives unreasonable
results. This is probably not only due to the experimental
inaccuracy, but also to the validity of the additivity model
and universality of the local field correction [Eq. (9)] cal-
culated for a spherical molecule. For example using the
values for yc H and yc c from Table IV one obtains too
a low value of y for larger and flat molecules like hexane
and cyclohexane.

TABLE IV. Average bond hyperpolarizabilities calculated
within bond-additivity model as described in text.

Bond A, =1.064 pm
y(10 esu)

A, =1.907 pm

C—Cl
C—H
0—H
C—C
C=C
C—0
C=O

0.90+0.04'
0.05+0.04'
0.42+0.02'
0.32+0.42
1.03k 1.52
0.24+0.19
0.82+ 1.10

0.83+0.04'
—0.10+0.04'

0.7725
—0.0275"

0.5531b
0.6211b
0.61b
030
099

'Least-squares fit values for three solvents: CC14, CHC13,
CH2C12.
Reference 13.

'Calculated from cubic susceptibility of water.

B. Dispersion of cubic hyperpolarizabilities

The precision in the third-order nonlinear susceptibility
values, given in Tables I and III at 1.907 and 1.064 pm,
respectively, does not allow a strict determination of their
dispersion. It allows, however, to observe some tendencies
and regularities for particular solvents. As we mentioned
before, the constancy in CC14 hyperpolarizability and its
systematic decrease at 1.907 pm with increasing number,
of C—H bonds for other solvents from the same family
(CHC13, CH2C12) can be well understood by frequency
behavior of yc ci and yc H. For other solvents like ben-
zene, DMF, and acteone we observe nearly the same
dispersion in J' ' between 1.907 and 1.064 pm as that of
fused silica. The solvents with the largest absorption at
1.907 pm also have a larger g' ' value at this wavelength.
This may be due to a significant Raman contribution. In
any case this increase in the X' ' value cannot be due to a
local heating caused by light absorption. The refractive
index variation dn/dT is negative for studied solvents
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and according to Miller's rule a local temperature increase
will result in a decrease of X' '.

VI. CONCLUSION

(free wave reflected at 2-3 interface),

—i3cu[t —N&~ (z —l)/c]
E3,e

(free wave transmitted to 3),
—i3co(t —N z/c)

(Ald)

The advantages of the THCx technique for molecular
hyperpolarizability determinations have been largely dis-
cussed by Meredith et al. ' ' The technique, used by
these authors, is well adapted for the determination of
nonlinear susceptibilities of a pure, nonabsorbing liquid
because it employs thick liquid cells. In our case, as we
intend further to study absorbing liquids, we developed a
method which can be used for very thin cells. The mea-
surements are weakly sensitive to the surface flatness, the
laser beam being focused on a small area which varies
slowly with incident angle. The commercial liquid cells
used by us have a sufficient quality in order to satisfy the
requirement of surface flatness.

By fitting the resulting harmonic light intensities gen-
erated in the liquid and glass one can determine not only
the absolute value of nonlinear susceptibility but also its
phase, and simultaneously the dispersion of refractive in-
dex.

The results presented in Sec. IV show the importance of
environmental effects. The harmonic fields generated in
air before and after the sample lead to a decrease of the
measured intensities. The magnitude of this effect in-
creases with focal length and depends also on the laser
wavelength. The proposed correction aHows us to take it
into account, if for some reason it is impossible to work in
vacuum.

The results for 7' ' at 1.064 and 1.907 pm show that
the bond additivity model gives coherent results for a
series of homologous solvents (CC1&, CHC13, CH2C12).
Problems appear when one wants to extend this model for
a larger number of different molecules.

For the three molecules cited above we observe a slight
decrease of y between 1.064 and 1.907 pm which may be
due to the negative contribution of the C-H stretching vi-
bration in near infrared.

zlr E2t+E2r+E2b ~

N2&ir —=N2 «2t E2r)+N—A2b .1 2 2

For z =l
s$3 ip)

E2t ++2 +E2b E3t
i/3 i/3 2 If/ 3N3 (F2te E2re ) +N~2be N3&3t

P~ =3coN „ljc (m=1, 3) .

(A3)

(A4)

By solving simultaneously these two sets of equations
and using Eq. (6) for the bound wave, one obtains for the
harmonic wave in medium 3

t 3colN 3 /c4' e
E3, ——

t2(C0) —E2(3')

X (3 i I exp[i 3col(N„N3„)Ic ]—1—I

+A2 t exp[i 3col(N~+N2„) lc]—1])2 3 ',
(A5)

(bound wave propagating in 2), with

N„3„=n„3 cos9' 2 (A2)

where ni~ 3~ is the refractive index (in general complex) of
medium j at frequency co (3') and &' 3„propagation an-
gles for bound (harmonic) waves in medium j.

The boundary conditions for the electric and magnetic
fields at the 1-2 (z =0) and 2-3 (z =l) interfaces give the
following sets of linear equations:

For z =0

APPENDIX A: THIRD-HARMONIC GENERATION
IN A NONLINEAR SLAB

For the sake of simplicity we consider first a nonlinear
medium 2 immersed between two linear media 1 and 3
(see Fig. 1) and we limit ourselves to an incident trans-
verse electric wave. There are the following waves propa-
gating in these media to be considered:

where

A3 ——1—

+N„
+N3

A2 ——

1 2N3
1 2N3~+N3

+%3„
3 2N 3~ —N 3~ i 6N2 I /c3co

(A6)

(A7)

(AS)

—i 3'(t+N3~z/c )E1,e

(free wave transmitted from 2 to 1 ),
—i 3'(t —N3~~/c)

E2,e

(free wave propagating in 2),
—i3co(t+N32 z/c)

E2re

(Ala)

(Alc)

The coefficient A2 is small and the second term in Eq.
(A5) can be neglected. In practice, this corresponds to
neglectings in the boundary conditions all reflected waves
from interfaces other than those under consideration.
This condition is fulfilled for thick nonlinear media, as in
our case. Thus Eq. (A5) reduces to Eq. (7) and the resul-
tant harmonic field coming from several nonlinear media
is given by a sum of harmonic fields generated in succes-
sive media [Eq. (10)] multiplied by corresponding
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transmission factors.
The problem can be treated rigorously by solving a sys-

tem of 2(n —1) equations (boundary conditions) on
2(n —1) variables (amplitudes of electric free waves)
where n is the number of nonlinear media.

APPENDIX B: MULTIPLE REFLECTIONS

i(k zcos8' —cot)
cg 2t, 2 i2$1 —r e

re ' i(k„' z cos8'+cot )

co 2t, 2 i2$1 —r e

(B1)

(B2)

where P=(2ml/A)n cos 8', (8' is the propagation angle in-
side the plate). E2, is the amplitude of the incident wave
in the plate, without multiple reflections.

The interaction between E' and E„' gives rise to four
bound waves and eight free waves inside the nonlinear
medium and to eight free waves outside (see Table V).
The phase factor e '& introduces rapid oscillations of the
field amplitude with the angle of incidence, with a period
68 given by

68=A, (n sin 8) ~—/nl sin 8 . (B3)

For a silica plate with 1=1000pm and 8=5' we obtain
at 1.064 pm, 6(9=0.7', and a value 3.5 times smaller for
our liquid cell. It means that on the overall interference
spectra will be superposed (outside normal incidence) a
rapidly oscillating component due to multiple reflections.
Because of the laser-beam divergence. and large PMT win-
dow diameter, the resolution will be not sufficient in order

TABLE V. Bound waves due to multiple reflections in a
plane parallel slab.

Bound wave

X"'(E~.'E'„)
{~~)

a, P, y=i or r

E~l ~l
l

Relative amplitude of the

bound waves normalized

to E2q [Eqs. (Al)]

{j + r2e 2ilP )3

~ $ + 372e6iP

E~ll~P

E~1~l 1

E~r~rr

re'&

r2 4ig

r 3e 6ig

The above formalism takes account of all reflections of
harmonic waves but neglects those of the fundamental
one. For the sake of simplicity we consider a nonlinear
plate. The case of a liquid cell can be well approximated
by a slab with thickness I equal to the sum of the liquid-
compartment and the window thicknesses. In fact be-
cause of the small difference of refractive index between
fused silica and. most of the organic liquids, reflections on
these interfaces are also small. In our case only reflec-
tions at silica-vacuum and vacuum-silica interfaces
[r =(n —1)/(n + 1) 0.18 at 1.06 pm] are important.

The fundamental field inside a parallel plate with thick-
ness l can be described by two waves, a forward E' and a
backward E' given by

to observe these oscillations, and we will observe an aver-
age modification of the harmonic intensity given by a
correction factor

R(8)=(
~

(1+r e' ~)
~

),„=1+9r +O(r ), (B4)

which is equal to 1.009 outside the normal incidence.
All these considerations show that the multiple reflec-

tions are cumbersome and negligible except at normal in-
cidence. Some anomalies observed in our interference
spectra near normal incidence (see Figs. 7, 9, and 10) may
be due to these effects.

The preceding analysis supposes that the fields E„' and
E„' are coherent. For reasons like surface roughness,
thickness variation, finite beam size, and laser-mode fluc-
tuations this coherence may be lost. This loss of coher-
ence will take place, for instance, when the thickness vari-
ation

0.09 pm at A, =1.064 pm41)1,/8n 0.16 pm at A, =1.907 pm,

whereas the Maker fringes are observed for
t

3.3 pm at A, =1.064 pm
hl &A, /12(ns„n„)—= 9 I tg 1 907

The second-harmonic generation in an absorbing medi-
um was considered by Chemla and Kupecek. A general-
ization to the third-harmonic generation case is straight-
forward.

Consider an absorbing medium with a complex refrac-
tive index

n =nr+ (Cl)

Snell s law, n sinO=const, implies that in an absorbing
medium the propagation angle 8' is also complex

8'=0, +iO; .

Setting
I

n cosO'= n, cosO„+
n, cosO,

(C2)

(C3)

one obtains the following equation in cos 8„:

n„cos 8„(n„—~ —sm 8)cos 8„——~ =0,2 4 2 2 ~ 2 2 2 (C4)

where 8 is the incidence angle (in a transparent medium).
The solutions of Eq. (C4) are always real. In a slightly ab-
sorbing medium (~ && 1) one gets

cos'8„=1— + 1 — +O(~ ) . (C5)

It means that in this limit the refracted wave can be con-

Thus experimentally we are probably closer to the second
case (incoherent reflected beams) than to the first
(coherent reflections). In the second case the multiple
correction will still be much smaller, being proportional to
r (rn =6 or 12).

APPENDIX C: THIRD-HARMONIC GENERATION
IN AN ABSORBING MEDIUM
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sidered as propagating in a transparent medium with an
exponential decrease of amplitude

E"(l)=E"(0)exp( —tr„colic cos8z ), (C9)

and this value has to be used in Eq. (7) at the input of the
next nonlinear medium.

If the refractive index of a medium is complex then all

exp(ikz) =exp(izcon„cos8„/c —z rotc/c cos8„) .

For liquids absorbing at the fundamental and/or at the
harmonic frequency the corresponding mismatch factors
in Eq. (7) will be given by

$2(l) =3col(n~cos8z+itr„/cos8z)/c,

P2"(l) =3col(n3„cos82 +itr3„/cos8z )/c .

At the output of an absorbing medium with thickness l
the amplitude of the fundamental wave will be diminished
by a factor of

reflection and transmission factors at input and output
faces are complex (the Fresnel formulas are valid with
complex refractive index). This will introduce an addi-
tional phase, depending on the value of tc„and tc3„. Simi-
larly, an additional phase will also be introduced by Ae in
Eq. (7) and by the coefficient arising from boundary con-
ditions [Eqs. (A6)—(AS)]. This is of importance if one in-
tends to determine the phase of nonlinear susceptibility
and may modify the value of

~

X' '
~

. It can be computed
exactly introducing in corresponding formulas the com-
plex refractive index.

In our case only some liquids absorb slightly at 1.907
pm (tc —10 ). Thus the approximations described above
are valid. Also in our special case the additional phase in-
troduced by a complex refractive index is negligible. For
example, the additional phase introduced by a reflection
factor will be of the order of tr„/(n —1)=10 rad. The
most significant contribution comes from b,e and for a
most drastic case (n-hexane) is equal to 0.003 rad and is
also 'negligible.
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