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Computer simulation of close random packing of equal spheres
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We have developed an algorithm which generates a random close packing of equal spheres from a
random distribution of points. Each point is the center of an inner and an-outer sphere. The inner
diameter defines the true density and the outer a nominal density. The algorithm eliminates over-

laps among outer spheres while slowly shrinking the outer diameter. The two diameters approach
each other, and the eventual coincidence of true and nominal densities terminates the procedure.
The spheres in the packing, which is inherently homogeneous and isotropic, are close together but
not touching. Thus, near neighbors are defined as those within a specified distance, 5, of touching.
When the outer diameter is contracted relatively quickly, the number of near neighbors depends
strongly on 6. As the contraction rate approaches zero, this dependence decreases sharply. We
speculate that the limiting value is exactly 6 for all 5(10 . Packing fractions between 0.642 and
0.649, which are easily achieved by this method, are higher than any experimental or previously
simulated values, but are consistent with Berryman's extrapolation [Phys. Rev. A 27, 1053 {1983)]
from the radial distribution function for hard spheres. The algorithm can also be used for packing
hyperspheres in higher dimensions.

I. INTRODUCTION

The packing fraction q for experimental packings of
equal spheres varies with the method of packing. ' The
maximum for truly random experimental packings ap-
pears to be 0.6366. ' Recently, we obtained this value for
a simulated packing which was homogeneous and isotro-
pic. The precise agreement of these values suggested that

- ri=2/m=0. 6366. . . might be the true fraction. ' On the
other hand, Berryman noted that experimentally obtain-
able values need not be maximal and cited evidence that
g=0.64+0.02. He suggested 0.642(q (0.645 as the
best estimate. Some excess space in our simulated pack-
ing also suggested that a denser packing might be possi-
ble, but very long simulation times indicated that much
greater efficiency would be required.

both spheres an equal distance along the line joining their
centers until these centers are separated by one outer di-
ameter. This may introduce new overlaps and change or
eliminate others. (A linked-list structure simplifies the
bookkeeping. ) For intersecting outer spheres, center-to-
center distances (called "rods") are calculated, but no rod
is placed in the queue if the overlap to which it corre-
sponds would be changed by the elimination of a greater
overlap. Subject to this restriction, rods are queued in or-
der of increasing length up to a maximum value of 1.3,
corresponding to q=0.666. In each step, rods are added
to or deleted from the queue according to the criteria
described above. A simple example is shown in Fig. 1.

The packing process is a deterministic transition from
an approximately Poisson distribution of points to a dense
packing of hard spheres. The method appears crude in

II. A NEW ALGORITHM FOR CLOSE
RANDOM PACKING

One thousand points are generated randomly in a
12& 12& 12 cube with periodic boundaries. Each point is
the center of an inner and an outer sphere. The inner di-
ameter is set, after each iteration, to the minimum center-
to-center distance between any two spheres and defines a
true density which is very low initially. The outer diame-
ter is set initially to the arbitrary value 2.4(3/4n. )'~

'which yields a nominal value of g=1. The algorithm el-
iminates overlaps while slowly reducing the outer diame-
ter. Thus, the two diameters approach each other and the
eventual coincidence of true and nominal densities ter-
minates the procedure.

In each step, the worst overlap is eliminated by moving

(a) (b)

FIG. 1. Stages in the elimination of overlaps in a four-disk
system. (a) The worst overlap corresponds to the shortest rod
AB. Rod AC is not in the queue because the worst overlap in-
volving A is with B and the worst involving C is with D. (b)
The worst overlap is now between C and D. Rods AC and BD
are not in the queue because the worst overlap involving C is
with D and vice versa. (c} With the elimination of the overlap
between C and D, rods AC and BD are placed in the queue.
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X"+"=X")—(-,' yk yM,

where

g(i) d (i) yd (0) (2)

that each step removes the worst overlap without regard
for the consequences. The reality is more subtle. Large
shifts in position are needed to fill big holes. The true
density fluctuates up and down as the inner radius
changes, but there is a subsequence Ig; I, which is mono-
tonically increasing, and a corresponding sequence l t; I,
where t; is the minimum value of t for which g(t)=g;.
Thus, the true diameter of spheres measured from
"snapshots, " at to & t] « - . - t„, shows a steady increase
with time. Since any configuration in a snapshot is an al-
lowable configuration for a hard-sphere gas, it is impossi-
ble, in the absence of a reference length, to tell whether
the spheres are increasing in size or simply being pushed
closer together. Nevertheless, the relaxation method used
here should be much more efficient than the compression
of a hard-sphere gas. Overlaps are removed directly by
spreading spheres apart and indirectly by shrinking the
outer radius. Although the latter process is indispensable,
it has the undesirable effect of producing gaps between
near neighbors. Thus, the rate of contraction is slowed as
the nominal and real densities approach each other.

An iteration consists of spreading two spheres apart,
checking the queue for rods and, if overlaps remain,
reducing the outer radius slightly according to the equa-
tion
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FIG. 2. Variation of nominal and true densities with number
of iterations. The upper curve ( ———) shows the decrease in
nominal density from its initial value of 1.0 to its final value of
0.64878. The lower curve ( ) shows the increase in true
density. The two values coincide after 13 687449 iterations.

E(X)= 167.543'+ 12 QQQ, (5)

with R =99.9996%. Since the iteration time is approxi-

and

j= I —log)o~n" ] . (3)

Here M is the number of spheres (1QQQ in this work), d is
the nominal diameter, b,q is the difference between the
nominal and actual packing fractions, and [ ] is the
greatest integer function. The parameter k, which is in-
dependent of the size and number of spheres, character-
izes the initial rate of contraction of the ensemble.

Figure 2 shows how the true and nominal densities
change with the number of iterations X. The final part of
the upper curve reflects the slower decrease in the outer
diameter in the final stages of packing. The lower curve
is concave downwards for 5000&% & 30000, but this
period of slow growth may be misleading. It appears that
keeping the nominal density large helps to spread out the
centers and sets the stage for the subsequent period of ra-
pid growth.

Figure 3 indicates that there is an almost exact relation-
ship between the number of iterations % to produce an
overlap-free packing and the time constant ~, which is the
reciprocal of k. A linear regression of log)~ versus
log&ov yields

E(X)=176.lr
(R =99.999%) which suggests that the relationship is
actually linear. Indeed, regression of X versus ~ yields

mately constant, the computing time t to generate and
analyze a random packing is also roughly linear. Regres-
sion of t versus ~ yields

E(r) =Q.9Q82r+ 534.6

(R =99.99%) where t is the CPU (central processing
unit) time (in seconds) on a Digital. Equipment Corpora-
tion VAX11/78Q computer.
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FKs. 3. Variation of number of iterations N with time con-
stant r. Though X is a random variable (which depends on the
initial random configuration), its dependence on ~ is almost ex-
actly linear.
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TABLE I. Dependence of distribution of number of near neighbors on designated maximum spacing between neighbors

(g =0.645 68).

Maximum spacing
—log)06 0

Number of spheres with designated number of near neighbors'
2 3 4 5 6 7 8 9 10 11

5
17

'38

82
212
689
959
992

2
7

13
42

179
236

30
6

4
9

17
61

203
65
10
2

2
16
38

135
209

8
0
0

53
125
208
252
130

2
1

0

138
239
279
239

57
0
0
0

252
274
233
135

9
0
0
0

276
199
128
42

1

0
0
0

206
95
38
10
0
0
0
0

55
19

8
2
0
0
0
0

6
0
0
0
0
0
0
0

1

0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

'Near neighbors are defined as those within 5 of touching. Note that the unit length is absolute while the sphere radius r varies with
g. Here r=0.6434.

III. RESULTS

The algorithm generates a packing in which only two
spheres are actually in contact, but many spheres are near-
ly touching. Table I shows the distribution of near neigh-
bors for a packing with g =0.6457. When near neighbors

are defined as those within 10 of touching, most
spheres have none and no sphere has more than four. The
distribution of neighbors is quite different when the toler-
ance 5 is 10 . Though there are still some spheres with
few neighbors, the mode is five. For larger tolerances, the
distributions are similar, with a gradual shift of the peak
and a marked decline in the number with few neighbors.
For a fixed tolerance, the distribution of neighbors shows
a similar shift with increasing rl. Table II illustrates this
for 5=10

The similarity of these distributions facilitates the use
of their means in representing the effect of tolerance and
contraction rate on the distribution of near neighbors.
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FIG. 4. Dependence of average number of near neighbors on
touching tolerance 5 and time constant ~. Neighbors within 5 of
touching are considered to be near. The curves correspond to
different values of 800; ——3200; ———12 800;—-—102400; —- —327 680.

FIG. 5. Dependence of average number of near neighbors on
contraction rate k. Neighbors within 5 of' touching are con-

sidered to be near. The symbols (and the curves fitted to them

by eye) correspond to different values of 5: 0 10
~ 10-4; 10-', ———+——-10-'.

The leftmost points correspond to k =3.05 & 10 . The extrapo-

lation to k =0 is speculative.
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TABLE II. Dependence of distribution of number of near neighbors on rate of contraction.

Time
constant

Number of spheres with designated number of near neighbors'
3 4 5 6 7 8 9 10 12

800
1600
3200
6400

12 800
25 600
51 200

102 400
327 680

206
105
84
45
35
38
20
27
19

238
132
69
39
15
13
12
3
1

241
154
111
52
24
17
12
5
3

178
235
186
101
89
38
33
20

9

101
218
227
250
224
208
170
160
125

28
110
203
268
288
279
280
269
268

6
42
90

177
218
233
240
274
281

3
27
51
84

128
175
171
207

0
1

16
19
38
54
62
76

0
0
1

1

4
8
4
7

10

0
0

0

0
0
2
0

0
0
0
0
0
0
0
0
0

'Near neighbors are those within 10 of touching. Note that this value is absolute while the sphere radius varies from 0.6424, for
~=800, to 0.6444, for v=327680.

Figure 4 shows how the average number of neighbors
varies with 5 and the time constant ~. Note that the gaps
between near neighbors can be reduced by increasing ~.
Figure 5 indicates that the number of neighbors which are
very close rises sharply as k —+0. The data suggest that
the limit might be exactly six touching neighbors (con-
sistent with the value for random sequential packing' '"),
but the small values of k required to confirm or refute
this conjecture require a great deal of computing time on
a much faster system. (Note that k = 10 would require

0.650

E(g)=0.648 70—6.908k+ 1967k (7)

The maximum expected value occurs at k =0.
The distribution of points about the regression line, the

nature of the distribution of near neighbors (including the
complete absence of any spheres with 12 neighbors) and
the usual shape of the radial distribution functions (not
shown' ) indicate that the packing is truly random. It is
inherently homogeneous and isotropic. '

10.5 CPU days on the VAX11/780 computer. )

Finally, Fig. 6 shows that we can routinely produce
random packings for which g~0.645. These data are
represented reasonably well (R =89.3%) by

, 0.649 IV. DISCUSSION
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The packing fraction g is a random variable which is
determined solely by the random-number triples (inter-
preted as points in IR ) and the value of k. Variations in
g arise from differences in the spacings between spheres
and from holes in the packing. A comparison of Table I
with Table II of our earlier paper shows that more
spheres were very close together (5( 10 ) in the previous
packing even though g was considerably less. However,
the new algorithm produces a packing in which more
spheres are fairly close together. It seems likely that the
current packing has fewer and/or smaller holes. The
essential feature appears to be a long period of vigorous
movement. Provided that this occurs, the process is
robust: generating all centers in a small corner (1X1X 1)
of the cube gave results (open circles in Fig. 6) similar to
those where the centers were distributed throughout the
entire cube. The regression equation based on all points,
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E(g)=0.648 87—7.416k+2199k

yields values which differ little' from those of Eq. (7).
Equations (6) and (7) yield

E(g)=0.648 70—6.274/(r —534.6)

(8)

(9)
FIG. 6. Variation of solids fraction q with contraction rate,

k. The curve, depicting Eq. (7), is the best-fit parabola for the
solid circles (normal simulations). The open circles represent
tests in which all initial points were generated in a small corner
of the cube.

for small k, indicating a very slight gain in E(g) for enor-
mous cost. Thus, the optimum strategy for achieving
some very high values of q is to do many runs at feasible
values of k. This takes advantage of the variability of g
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about the regression line (sz ——7. 383&&10 ). However,
optimization at this stage would be premature because the
effect of the variation of nominal density with time (in-
cluding the initial value) should be studied further.

In principle, our program can pack spheres in R ",
n=2, 3, . . . . Small-scale runs have been successful in P
(though the final packing may not be random) and R
Results in R will be published elsewhere; studies in
higher dimensions will be completed as suitable comput-
ing facilities become available.
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