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The conditional probability that a particle at site m at time 0 will be at site n at time t is studied
numerically and analytically on the Sierpinski gasket. The Laplace transform of G„(t), G„(s), is

1/d 1/d
found to behave on average as exp( —

~

n —m
~

s ) for large
~

n —m
~

s . Fluctuations about
this average behavior are found to be mild when the distance between sites m and n is taken to be
the "lacunar" distance. Analytic arguments for the asymptotic behavior of G „(s), based on the
scaling of coupling constants under renormalization, are made. G„(t) is found to have the asymp-

1/d
totic behavior exp[ —(

~

n —m
~

It ")"),v=d (d —1) ' in agreement with a result of Fisher [J.
Chem. Phys. 44, 616 (1966)]. The relationship of this form of G„(t) to that proposed by Banavar
and Willemsen is clarified.

I. INTRODUCTION

dp —2+ w =5,
where d =2+5.

(3) Equations (1) and (2) lead to the Einstein relation6

6=dF —d —t,

(2)

(3)

or D(L)=n(L)o(L), since w=r. Here D(L), n(L), and
cr(L) are the diffusion constant, density, and conductivity,
respectively.

(4) The spectral dimension is equal to —, on a Cayley
tree and on structures of the type described by Rammal
and Toulouse. ' lt is near —, on percolation clusters near
threshold. The literature that addresses the Alexander-
Orbach conjecture (i.e., d, = —,) is substantial and of in-

There is currently considerable interest in studies of the
geometry of fractally structured media and of the
kinematics of particle motion in these media. Mandelbrot
describes the geometry of fractals in his elegant book, The
Fractal Geometry of Nature. ' Particle motion on a fractal,
as simple as that of a random walker, requires clarifica-
tion of the basic concepts employed in a kinematic
description. ' The geometry of a fractal is characterized
by the "fractal (Hausdorff) dimension, " dF. Particle
kinematics, for a random walker, is characterized by the
"dimension of the walk, " d~. The "spectral dimension, "
d„defined in terms of the co~0 density of states involves
both geometry and kinematics. A great deal is known
about the average properties of geometry and kinematics
in the form of scaling relations that involve dF, d„, d„
and others. ' '

(1) If the resistance scales with length as R (L)
—L ' and if the conductivity scales with length as
o(L)-L ', then in. d dimensions

d —2+r =t .
2/d

(2) For particle motion with (x ) =(Wt) " (W is the
coupling constant in the diffusion equation), if the cou-

pling constant scales with length as W(L) L", th-en

terest to physics and sociology.
The purpose of this paper is to describe a study of

G„(t), the conditional probability, the probability that a
particle at site m at time 0 will be at site n at time t, for a
random walker on a fractal. This conditional probability
contains some of the average information that is in the
scaling relations; e.g.,

~x ~= f dx
~

x —x'~ G(x, t
~

x', 0) ~ (Wt) . (4)

It contains, in addition, features that are a consequence of
details of the geometry of the medium through which the
particle is propagating. For example, a fractally struc-
tured medium is not translationally invariant. As a conse-
quence we do not trivially expect G(x, t

~

x', 0) to be a
function only of

~

x—x' ~. The dilitation invariance of a
fractal means that if there are gaps on scale l of size o.l,
then on scale L there are gaps of size aL. We might ex-
pect this feature of a structure to make itself known in
G(x, t

~

x', 0), since a particle traversing distance l must
skirt a gap of size al, etc.

Our study of G„~(t) involves both numerical results
from calculations on a Sierpinski gasket and analytic re-
sults that are in part based on these. It is organized as
follows. In Sec. II we review the length-scale-
renormalization (LSR) procedure for solving the diffusion
equation. We describe application of this procedure to the
question, "if at time zero, . . .?," whose answer is the con-
ditional probability we seek. A one-dimensional example
is. described to call attention to behavior we want to
understand before tackling the less familiar case of a
Sierpinski gasket. Calculations of G„~(t) for a Sierpinski
gasket are described in detail. In Sec. III we summarize
our numerical findings and discuss the analytic behavior
of G„~(t). Attention is given to constructing a scaling
form for 6, to the effect of lacunarity, to the conse-
quences of the Chapman-Kolmogorov equation, etc. We
make comparison with the results of Fisher' and the re-
cent work of Banavar and Willemsen" and attempt to
understand the relationship of our results to theirs.

Before we go on there is an important point that we
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wish to emphasize early and to which we will in various
ways call attention. %'e ask about x at time t. %'e have
in mind a fixed time scale. In using the LSR procedure
we examine the system on different length scales at fixed
time scale. Time scale and length scale are related on
average by the kinematics, e.g., x =Dt. There are very
important properties of the physics and of the numerical
and analytic procedures that depend upon the relationship
between time scale and length scale. For example, exam-
ining equations on a length scale large compared to that
on average associated with the time scale can have com-
putational advantage. Comparison of expectations, calcu-
lation, etc. , will make sense only if the time-scale and
length-scale regimes coincide, etc.

II. APPLICATIONS OF THE LSR PROCEDURE
TO G„(t).

The length-scale-renormalization procedure, LSR pro-
cedure, has been described in detail in studies of disor-
dered one-dimensional random walks, ' of the uniform
Sierpinski gaskets, and of the Vicsek fractals. See also
Ref. 13. Here we describe application of the procedure to
solution of the diffusion equation on a Sierpinski gasket.
In going over what is partially old ground we call particu-
lar attention to those features of the procedure that will
help us understand the calculation of G„(t).

Consider a random walker on a Sierpinski gasket. The
conditional probability, G„(t),obeys the equation

G„(t)= —V„G„(t)+g W„„+sG„+, (t), (5)

where the sites 5 are near-neighbor sites of site n (Fig. 1),
8'„~=8' „ is the rate at which a particle at site I goes
to site n, and V„= gs W„+s „. The Laplace-transformed
set of equations,

sG„~(s)=Z„—V„G„(s)+g 8'„„+sG„+s (s),
5

(6)

Z„~ =5„~, is solved using the LSR procedure as illus-
trated in Fig. 1(b). The sites 1,2,3 and A,B,C are the
internal and external sites, respectively, of the plaquette a.
The equations of motion for Cx; and Ci„vectors that
denote the set of internal and external G „'s are

(sI+T).Ci;=Z;+C Cr, ,

(sI+V, ) G, =Z, +C G;, (7b)

where the coupling between the internal sites and the
external sites is given by the matrix C; T and V, are ma-
trices involving Vr V2 V3, 8'&2 &23. 8'3& and Vg, Vjy, Vc
(see Table I) and Z„~ =5„. A plaquette index on all
quantities in Eqs. (7) has been suppressed as has the carat
denoting the Laplace transform. Equation (7a) is solved
for Cx; and substituted into Eq. (7b) with the result that
the sites A, B,C become sites of a new plaquette o." with
sites 1',2', 3', A', B',C' that are coupled to one another by
equations of the same form as Eq. (6) with renormalized
coupling constants and with a renormalized value of the
amplitudes, Z. For the new coupling constants for pla-
quette a' we have (schematically)

V'=V —C D C

C'=C .D C,
where V, C are appropriate to plaquette o., D
=(sI+T;). The specific form of Eqs. (8) and (9) for a
uniform gasket, in which all of the 8' „have the same
value, is given in Ref. 6. For the renormalized value of Z
we have (schematically)

Z'=Z +C ~.D.Z.

TABLE I. The coupling in Eq. (6) determines the matrices in
Eqs. (7); the 8"s are defined in Fig. 10 of the Appendix.

s+ Vl 8'l2 8')3
D '=sI+T= 8'2~ s+ V2 8 23

8'3) 8 32 s+ V3

C' 3I B'

FIG. 1. The geometry of renormalization. (a) The near-
neighbor sites of site n are denoted as sites n +5 and are sites
A, 2, 3, and C. (b) The renormalization procedure removes the
internal sites from each plaquette, the circled sites, 1,2,3 on the
left, and describes the system in terms of internal and external
sites of a new plaquette; 1',2', 3' and A', B',C' on the right. The
notation for plaquettes is described in the Appendix. To carry
through the renormalization one must keep track of site and
bond information for each plaquette.

~lC
C= 8'2g 8'2g 0

0 S'3~ 8 3C

Vg 0 0
V= 0 Vg 0

0 0 Vc
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amplitude at site 0 will not evolve further upon continued
renormalization. In this latter case we may solve Eq. (7b)
in the form

Go„(s)=Goo(s)ZO„(s),

where G«(s)=(s+ V' ') '. Thus to study G„(s) we
need only examine the behavior of Z„~(s) as the LSR
procedure for solving Eq. (6) gives the solution in the
product form of Eq. (11).

There is a further advantage conferred by the LSR pro-
cedure. When the coupling constants have saturated, D
approaches a constant and the further evolution of Z to
sites not yet reached, given by Eq. (10) with Z, =O, de-
pends only upon C. However, C evolves as in Eq. (9) and
when the coupling constants have saturated this equation
has an analytic solution. Thus we are able to derive an
analytic expression for the asymptotic behavior of Z„
and G„(s). We do this below.

Before proceeding we restate some of the background
that pertains to the discussion above in a language that
may help clarify what has been said. In Fig. 3 we show

the 1 tp-arameter space for discussion of kinematics; the
coordinates are distance l and time (actually s = t '). The

1/d
solid curve is at (l )/a =-(W/s) . Region I in Fig. 3
is the region of space readily accessible to a particle on a
particular time scale; region II in the figure is the region
of space not easily reached by a particle on a particular
time scale. The coupling constants that arise in the dis-
cussion of the LSR procedure describe various features of
particle motion as the motion is viewed on different
length scales at fixed time scale i.e., as one moves along
the dotted line in the figure. For example, the coupling
constant C, Eqs. (8), (9), and (10), describes the rate at
which particles come from a "neighboring" site onto a site
to which one is paying attention. Upon renormalization
the neighboring sites become more distant, C~O, and the
coupling constant V approaches a constant.

Equation (7b) becomes easy to solve, etc. ' Similarly,
the amplitudes are communicated intact among sites in
region I; they are communicated by C that is approaching
zero in region II. Problems are often easily soluble in re-
gion II and a solution there may provide all that is neces-

s=t

1.0—

Al & fTl
C

1.0
E/a

1/dFIG. 3. The distance-time parameter space. The distance-time relation (l/a) =(Wt) divides the I-t space into regions I and
II. Points in region I are readily reached on time scale t (t =s ); points in region II are not readily reached on this time scale. The
average behavior of a particle is explored in region I; the asymptotic behavior of a particle is explored in region II. At fixed time scale
there is a crossover in length scale that corresponds to a change in the behavior of the coupling constants as renormalization proceeds

m 1/d
at m, such that b '=I/a=(R'/s)
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sary to understand the behavior in region I. After all, to
simply learn the location of the transition from region I to
region II is to learn a great deal; i.e.,

(l )/a =(Wt), lim G«(t),

Finally, a piece of notation: after m steps of renormaliza-
tion we look at the system on length scale b . The cross-

1/d
over value of I is denoted by m, where ls

m I/d=b 's ~=1; I, depends upon "time", s ', see Fig. 3.
I.et us now turn to description of the results of numeri-

cal solution to Eqs. (8), (9), and (10). We look briefly at a
one di.mensional chain, 2, and in more detail at a
Sierpinski gasket, 8. For both the one-dimensional chain
and the Sierpinski gasket (a) we review the results of solu-
tion to Eqs. (8) and (9), and (b) we describe the results of
solution to Eq. (10).

A. One dimension

l. Iteration ofEqs. (8) and (9)

Iteration of Eqs. (8) and (9) leads to the evolution of the
coupling constants that have been described in detail. '

The essential feature of this evolution is that on a suitable
length scale (at fixed time scale) C~O and V saturates;
i.e., one enters region II in Fig. 3. In region II Eq. (6) can
be solved for G„„(s), G«(s) cc s '/; G„„(t) and
(x )/a ~ Wt follow. Solutions to Eqs. (8) and (9) locate
the boundary between region I and region II and yield in-
formation in various forms that are equivalent to the loca-
tion of this boundary, i.e., G«(s), G«(t), (x )/a ~ Wt.

2. Iteration of Eq (IO).
In Fig. 4 we show Zo„(s) as a function of s, from nu-

merical solution to Eq. (10), in the form 1nZo„(s) vs

0.1

0.01

0.001

1.0
gus

5.0

FIG. 4. Z as a function of distance and time for one dimension. The behavior of Z as a function of l and s is shown by plotting
1nZ' vs i/V s; see Eq. (12).
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I lp„ I
v s. Here

I
lp„

I

is the distance from site n to the
origin. From the behavior seen in the figure we may con-
clude that Zp„(s) behaves as

I lp.
I

Zp„(s ) =exp

1/2

(12)

Cp„-vs exp (13)

This result, in agreement with the analytic solution to Eq.
(5) for a one-dimensional chain, serves in this case to con-
firm the numerical procedure and to stimulate an inquiry
into the source of the behavior in Eq. (12). The horizontal
axis in Fig. 4 involves 0 (

I
lp„

I

Vs (10, i.e., points from
both region I and region II of the l rpara-meter space (re-
call region I and region II are separated from one another
at

I

l
I
Vs -=1). In Fig. 5 we show the coupling constant

C as a function of s, from numerical solution to Eqs. (8)
and (9), in the form In(C/vs ) vs

I
lp„

I

Vs. From the
behavior seen in the figure we may conclude that

Ilp. I s

evolution of the amplitudes to greater and greater dis-
tances (region II) is given by Eq. (10) with D=(s+ V) ' a
constant, Z, =0, i.e., by the evolution of C. Thus from
the behavior of C in Fig. 5 we understand the behavior of
Z in Fig. 4. How does the behavior of C in region II
come about? An analytic answer to this question is pro-
vided by Eq. (9). In region II V and D have reached con-
stant value, V' '=—Vs, D=V' ' ', Eq. (9) has the form

C(m+1) (C(mj)2
y(oo )

(14)

with C' ' we denote the value of C after m iterations of
Eqs. (8) and (9). Seeking a solution to Eq. (14) in the form
C' '=Vs exp( ab V—s ) leads to b=2. The form of C
in Eq. (13) and of Z in Eq. (12) follow upon writing

lp„
I

=ab
We may summarize the results for the solution to Eqs.

(8), (9), and (10) in terms of statements about the scaling
of the coupling constants. For fixed s and m, (s) such

m (s) 1/d
that b ' s ~=1;

for
I
lp„

I

Vs in region II. [The evolution of C in region I
is well known and different from that in Eq. (13).] The

y™+ I) $ —~y(m)

~(m +1) g
—w~(m) (15)

1.0

0.1—

0.01—

10

10 '
0 10

FIG. 5. Behavior of the coupling constants. The behavior of the coupling constants, C, as a function of distance, I, and time scale

is shown by plotting ln(Z/V s ) vs lV s. Here I is the distance between the sites coupled by C after renormalization. See the discus-

sion below Eq. (12) that relates the behavior of Z to the behavior of C.
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m)m V™=V' s
(m ) 1/d

(m) (ill ) Ptl —m
(16)

(m ) (m ) —m 1/d' = V ' -=b '=s . These scaling relations are
written in a form more general then the one-dimensional
problem that gave rise to them.

B. Sierpinski gasket

1. Iteration ofEqs. (8) and (9)

Iteration of Eqs. (8) and (9) for the Sierpinski gasket
leads to evolution of the coupling 'constants that has been
described in detail. ' The remarks'in subsection A 1 ap-
ply equally to the results found in Ref. 6. In addition, for
the Sierpinski gaskets, examination of the behavior of the
scaling of the coupling constants leads to the scaling rela-
tion, Eq. (2) and the Einstein relation, Eq. (3).

2. Iteration ofEq. (10)

l'~'= (x„—xp(, (17)

where x„ locates site n and xo locates site 0. It is the dis-
tance 1' ', which might be termed the "lacunar distance, "
calculated as follows. Consider two sites n and m on pla-

In Fig. 6 we show Zp„(s) as a function of s, from nu-
merical solution to Eq. (10), in the form lnZp„(s) vs

1/d
~

lp„'~s for several values of s. We note immediately
in contrast to Fig. 4, which shows Zo„as a function of s
for one dimension, that while the average features of Zp~

1/d
appear to be captured reliably by exp( —

~

l
~

s ), Fig. 6
shows evidence for, fluctuations about this average
behavior. The evidence in Fig. 6 is even more surprising
than at first sight because the distance lp„' used in plot-
ting points on the horizontal axis is not Euclidean dis-
tance

1.0

10

0

~ 0
I

~Q

~ 0

~ 0

~
ging

~ 0

10
~0

~ $

~0

10
0

5

~(T) 1)dw

10

FIG. 6. Z as a function of distance and time for a Sierpinski gasket. The behavior of Z as a function of l and s is shown by plot-
1

ting lnZ vs ls; see Eq. (19). The distance l used in this plot is the lacunar distance defined in Eq. (18) and illustrated in Fig. 7.
1

The fluctuations in Z„(s) that occur at a given value of ls are due in part to pairs of points at the same relative distance (thus
the same value of l) that reside in different environments on the gasket.
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quettes a and P, respectively. Take these plaquettes to
have coordinates X~,Xq, . . . , X7 and Y&, Yq, . . . , Y7.
The coordinates X~, . . . have values 1, 2, and 3 for a
Sierpinski gasket. A general coordinate is denoted by XI
or YI. If a coordinate X~ of site n differs from coordinate
Y~ of site m, then there is a "lake" of size 2 between site
n and site m. For l' ' we take

(18)

where A~ is one if XI is different from Y~ and zero other-
wise. This definition is illustrated in Fig. 7. In Fig. 8 we

'1/d 1/d
show ( —lnZO„)/(ls ) vs ls for l the Euclidean dis-
tance from Eq. (17) (lower curve) and the lacunar distance
from Eq. (18) (upper curve). From Fig. 8 we see that, for

I /d
ls » I, Zp„ fluctuates less when l is the lacunar dis-

1/d
tance whereas, for ls =1,Zp„ fluctuates less when l is
the Euclidean distance.

Let us first deal with the average properties of Zp„.
From Fig. 6 we see that on average Zo„(s) is given by

(19)

where a—=2. 15 from Fig. 6 (and Fig. 8). This result is un-
derstood by an argument similar to that above for Eq. (12)
in terms of the behavior of C. We find, from a numerical
study of Eqs. (8) and (9) beyond the point at which the re-
cursion relations saturate, that Cp„behaves as

1/d
exp( —

~
lo„~ s ) in analogy to Eq. (13) and that the ar-

gument for this behavior based on Eq. (14) is confirmed.
We do not show these numerical results. [The scaling
behavior of the coupling constants given by Eqs. (15) and
(16), confirmed in these studies, gives rise to a correct
description of the average behavior of Z„(s), G„~(s).]

It is clear from Fig. 6 that the average behavior of Zp„
given by Eq. (19) with l' ' or l' ' is modified by a factor,

Z(x, x', s ) =F(x,x')z(
~

x—x'
i
s ),1/d

(20)

F which depends on x and x', Fig. 8. The source of this
factor is the detailed structure of the fractal. The envi-

(1311311)—(1312212)= (0, 0, 0, 1, 1, 0, 1)~13

k k k

13113

kk Jk 131

12

FICJ. 7. Lacunar distance. The lacunar distance defined in Eq. (18) is illustrated. This distance is very nearly the distance along
the shortest path from 1 to 3 shown as a solid black line.
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~I ~ !!0 '~~~ ~ + ~ +eg
~ I

~g Qg III% o~= ~ ~ ~ ~

~ ~
~ 0

~ y ~

~y
0 g yO ~

~ y
~ ~ ~

0
0

g
1/dw

10

FIG. 8. Behavior of F„(s). The function I„(s)that describes fluctuations in the behavior of Z„(s) about the average behavior,
1

given by Eq. (19), is plotted as a function of ls for the lacunar (upper curve) and Euclidean (lower curve) definitions of distance.

ronment through which a particle propagates in going dis-
tance Ix —x'I is a function of x and x'. On the other
hand, it is not a strong function of x and x' for certainly
the fluctuations around the average behavior are relatively

1/d
mild. This is particularly true for ls &&1 if I is the lu-
cunar distance. Or from the evidence in Fig. 8 for

1/cE 1/Ej
Is ")3. Distance I such that Is "&)3are in region II
(Fig. 3) and are distances that a particle cannot easily
reach on time scale s '. To reach these distances a parti-
cle must use the most direct path. The length of this path
is essentially the lacunar distance defined in Eq. (18). For

1/d
Is = 1 the Euclidean distance is superior to the lacunar
distance as we would expect.

III. DISCUSSION

and site m and

z(x)=exp( —ax) . (23)

(a) The constant a and F„~(s) are functions of the
choice of the measure of

I
1 „ I

.
(b) The fluctuations about the average behavior in z(x)

are relatively mild.
(c) The result in Eqs. (21)—(23) can be understood in

terms of the scaling properties of the coupling constants,
Eqs. (15) and (16), implied by the recursion relations, Eqs.
(8)—(10).

(d) Further details of the content of Eqs. (21)—(23) are
reported in Sec. II.

For the remainder of this discussion we set E„(s) = 1.0
and take G(x, x',s) to be approximated by a function of
r=x —x' in the form

Let us begin discussion of the results reported above by
summarizing them. For the Sierpinski gasket we find the

1/d
off-diagonal conditional probability for Is ) 1 to be of
the form

G(r, s ) =G(O, s )exp —a
a

where

(24)

G„(s)=G„„(s)Z„(s)

with

(21)

G(O, s) = 1 W
S

k

and k = 1 —Gy /0~

Z.~(s) =+am(s)z( I I.m I
s (22)

where
I I„ I

is a measure of the distance between site n

We cannot construct an- exact inverse Laplace transform
of Eq. (24). However, from the pieces
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and

I. exp —a
a

L 'G(Os)~ 1

(Wt) ' (25) satisfy the Chapman-Kolmogorov equation (CK), i.e.,

f dyp(y)G(x —y;r)G(y —x';t —r) =G(x—x', t) . (30)

Banavar and Willemsen" have used this equation to test
the validity of the proposed form

/rf 1—+exp —n 1/4
( Wt)

V

(26) GBw(r;t ) = exp
(Wt) F

(31)

G(r;t)=A 1
exp —P

(Wt) ' (Wt)

' V

(27)

We fix the constant A using

drpr G r;t =1
cdwith p(r) =

~

r
~

. That is from the requirement

f d
~

r
~ ~

r
~

G(r t)=A f du u exp( —Pu')=1.
We use Eq. (28) to calculate (

~

r
~

);

(28)

(
~

r
~

&= f drp(r)
~

r G(r;t) cc (Wt) (29)

and find the distance-time relationship that we want. Fi-
nally we note that Eq. (27) for G(r;t) agrees with the re-
sult found by Fisher' in discussion of a somewhat related
problem. (See also Angels d'Auriac et al. '" and
Cloiseaux. '

)

While Eq. (27) for G(r;t) is in agreement with the re-
2/d

suit of Fisher and yields (
~

r
~

) ~ (Wt), it does not

where v=d~(d~ —1) ' [Eq. (26) can be found from look-
ing at the stationary point of the argument in the formal
definition of the inverse transform or by going from the
right-hand side to the left-hand side] we infer (P is a con-
stant of order 1)

and find quite good results. As above we fix A in Eq. (31)
using

f drp(r)G(r;t)=A f duu exp( —u ")=1
2/d

and find (
~

r
~

) =—(Wt) . Just what one would like,
The relationship of Eq. (27) to Eq. (31) is understood

with reference to Fig. 3. Equation (24) and Eq. (27) which
are based on it are valid in region II of l-t space. The CK
equation, involving [G(r;t)], is sensitive to the behavior
of

~

r
~

and t in region I of l tspace. Fo-r example the in-
tegral [Eq. (30) at r=tl2]

f drp(r)[G(r;t/2)] cc f d
~

r
~ ~

r
~

V

Xexp —2
t

gets maximum contribution from

(32)

=0.5,
t

in region I of l tspace. -In Fig. 9 we show the region of
I-t space probed in normalization of G(r;t), in application
of the CK equation (r= t l2) and in calculation of
(

~

r
~

). Equations (27) and (31) describe the conditional
probability in essentially disjoint regions of I-t space.
With Eqs. (27) and (31) we have a reasonable description
of the leading behavior of G(r;t ) in all of space. We have

I ~ ~ I

0.5

I

1.0
g

1/dw

FIG. 9. Location of calculations in l tspace. Calculations of the no-rm, Eq. (28), (
~

r
~

), Eq. (29) and the CK equation, Eq. (30),
probe the description of particle motion in different regions of I-t space. This is illustrated here for the function G(r;t) from Eq.
(27), closed symbols, and for the function G(r;t ) from Eq. (31), open symbols.
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FIG. 10. Plaquette location. Plaquettes are denoted by components 1,2,3 that denote the unit vector involved, i.e., e&, e2, ez. Sites
associated with a plaquette are 123 (internal sites) and ABC (external sites).

no satisfactory understanding of the fluctuations about
this average behavior.

Dote added in proof. Since this paper was submitted for
publication, a paper by O'Shaughnessy and Procaccia on
the same subject has been published in Phys. Rev. Lett.
54, 455 (1985).
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APPENDIX

Notation for finding sites on the gasket. The gasket has
sites as in the example in Fig. 10 located with a vector no-
tation that uses the unit vectors

eg=

The plaquette found at the tip end of the vector
x&2t ——4e&+2e2+e& is denoted 121. The sites reached
from each plaquette are 1, 2, and 3 for the interior sites
and 3, 8, and C for the exterior sites as shown in the fig-
ure. The 2187 plaquettes used in the numerical work,
2187=3, are denoted by 7-component vectors, e.g.,
X= 1233131X7 = 1 X6 =2 X5 =3 . . . X& = 1 or'

X=2 e +2 e2+2 eg+2 ep+2 e +2 ep+2 e~

After one renormalization a 6-component vector suffices
to locate the 3 =729 remaining plaquettes; these vectors
are denoted

X "=4123313=2 e)+2 e2+2 eg+2 eg+2 e)+2' eg .

and

e) ——(0, 1),
—&3e2= 2' 2

The plaquette 1233131 evolves upon renormalization,
4123313,4412331,4441233, . . . . %"ith this notation it is
straightforward to assign nine different bonds to each pla-
quette and to keep track of the set of bonds that describe
the system after each renormalization, etc.
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