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Damping of quantum coherence: The master-equation approach
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We solve the master equation for the coordinate-coordinate damped harmonic oscillator for initial
superpositions of coherent states. In the zero-temperature case the solution remains a simple super-
position of coherent states. While the underdamped oscillator evolves all initial superpositions into
mixtures of coherent states the overdamped oscillator does so selectively. For finite temperatures
coherent states are no longer preserved, and we find a decrease in the variance of the off-diagonal
coordinate-basis density-matrix elements below the coherent-state value. This variance decreases
with increasing bath temperature. In the overdamped case there is negligible associated spreading of
the diagonal coordinate-basis density-matrix elements. Thus the coordinate basis is an example of
Zurek s pointer basis and the coordinate damped oscillator models the coordinate-basis density-
matrix diagonalization which occurs in a coordinate measurement.

I. INTRODUCTION

Recently there has arisen the prospect of experimentally
producing superpositions of quantum states in macroscop-
ic devices. ' Macroscopic systems are inevitably weakly
coupled to many degrees of freedom in their environment
and it has long been recognized that such coupling may
have a dissipative effect on the system. ' The general ob-
jective of the work reported here is to discuss the behavior
of quantum superposition states, i.e., quantum coherences,
in dissipative systems. Measurement devices are of spe-
cial interest in this context since their readouts must not
develop superposition states and they also collapse super-
positions in the systems upon which they perform mea-
surements.

In particular this paper discusses the behavior of a har-
monic oscillator coordinate-coordinate coupled to an envi-
ronment of harmonic oscillators. Such a system has re-
cently been analyzed by Caldeira and Leggett using the
Feynman-Vernon influence functional technique. They
reported rapid decay of superpositions of coherent states
having macroscopically distinct mean coordinates. Cer-
tain exact results obtained without eliminating the envi-
ronmental oscillators have been presented by other au-
thors. '

Our approach is based on the Markovian master equa-
tion for the coordinate-coordinate damped harmonic os-
cillator obtained by Agarwal and others. ' Our results
are in agreement with those obtained using the influence
functional technique in both the high- and low-
ternperature limits. The master-equation approach has
previously been used te study superposition states of the
zero-temperature damped harmonic oscillator in the
high-frequency limit where the rotating-wave approxima-
tion is valid. "' Our work extends those studies to finite
temperatures and to high frequencies, or equivalently, to
large damping.

Section II introduces Agarwal's master equation for the
reduced density operator of the system and obtains an
equivalent equation for the quantum characteristic func-

tion which we are able to solve. Section III analyzes the
instructively simple zero-temperature case. This case is
straightforward because an initial superposition of n
coherent states remains as a superposition of n coherent
states as the system evolves. We find that certain super-
positions of coherent states are rapidly eliminated at a rate
which increases with the separation of the superposed
states. In the underdamped case all superpositions are
eliminated; however, in the overdamped case the behavior
depends on the arguments of the superposed coherent
states. Section IV deals with finite temperatures. Focus-
ing attention on the coordinate basis we find that the
damping tends to diagonalize the density matrix in this
basis, the diagonalization becoming more complete with
increasing bath temperature. The underdamped case is
associated with a spreading of the coordinate-basis
density-matrix elements along the diagonal, which is
essentially absent from the heavily overdamped case. In
the concluding Sec. V we relate our results to the work of
Zurek' concerning the environmentally induced diagonal-
ization of the density matrix in the so-called pointer basis.
We show that in the heavily overdamped case our system
models the state reduction associated with a measurement
of the harmonic-oscillator coordinate.

II. THE MASTER EQUATION

Consider a large number of harmonic oscillators, the
kth oscillator having mass mk and frequency cok. We
choose the zeroth oscillator to be the system of interest
and regard the remaining oscillators as a bath to which
the system is weakly coordinate-coordinate coupled. The
Harniltonian of the system plus bath can then be written

II=m~ ~,+g g ~,a „a,+~, g g„~, ,
k (~0) k (~0)

where ak and ak are, respectively, the boson creation and
annihilation operators and the gk are coupling strengths.
Xk is the harmonic-oscillator coordinate observable given
by
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Xj, ——
2Pl kCOk

1/2

(ai, +ai, ) .

The first two terms in the Hamiltonian (1) represent the
free motion of the system plus bath while the third term
represents the system-bath coupling. For a discussion of
the generality of the Hamiltonian Eq. (1) as a model for
dissipative systems see Ref. 5. We could now easily ob-
tain an equation of motion for the total density operator
of the system plus environment. However, our interest
lies in the dynamics of the system rather than the bath so
we seek an equation for the trace of the total density
operator over the bath, that is, for the reduced density
operator of the system alone, p.

By taking a continuum limit for the number of bath os-
cillators and making the Born and Markov approxima-
tions, Agar wal obtained the following Schrodinger-
picture Markovian master equation for the reduced densi-
ty operator:

l
c),p= ice[a—ta, p] ——y[X, Pp+pP]

III. ZERO TEMPERATURE

At zero temperature, n =0, and the solution of Eq. (6)
is an arbitrary function I(f,f") of the arguments f andf, where f=uk, +uk, and

r

—p t —p tu= —e +e + +2i
2 p —p+

—p+t —p t
(e + —e ),

y —p, t —p, +tu= (e —e +).
p —p+

The eigenvalues p+ are given'by

I +=r+(y' ~')'"

The function I(f,f ) is chosen to fit the initial condition
at time, I;=0. We consider our system to initially be in a
superposition of coherent states. The harmonic-oscillator
coherent states

~

a, & are minimum uncertainty states hav-
ing mean coordinate (X& and mean momentum (P&
given by

(X& =(2irilmco)'~ Re(a), (P & =(2fimco)' Im(a) . (9)
(n+ —,

'
)mco[X, [X,p]], (3)

n = [exp(duo jkii T) —1] (4)

where we have dropped the subscript zero from the sys-
tem quantities since no bath operators occur in the equa-
tion and to allow for possible renormalization of the oscil-
lator frequency from its bare value coo. y is called the
damping constant, P is the system momentum observable,
and n is the expected number of quanta in a harmonic os-
cillator of frequency co at equilibrium at temperature T:

The magnitude of the scalar product of coherent states
i
u& and

i P& is

/
(a

f p& /
=exp( ——,

'
/
a —p f

) (10)

so that
~
a& and

~
P& are approximately orthogonal for

large
~

a —P
~

.
Consider an initial density operator representing a su-

perposition of coherent states:

The approximations involved in obtaining the Markovian
master equation (3) may be analyzed by choosing a partic-
ular distribution of the bath oscillator frequencies and a
particular coupling strength distribution. For example,
choosing the product of the frequency and strength distri-
butions to be proportional to frequency squared, up to a
certain cutoff frequency, Eq. (3) follows from the Hamil-
tonian (1) in the high-temperature limit, after suitable re-
normalization of the system frequency. Models which
are Markovian at low temperatures are more elusive and
temperature-dependent couplings may be necessary.

Instead of solving the master equation (3) directly we
solve for the quantum characteristic function X defined in
terms of the density operator p by'

p(0)=y&
~

&(P~ .
a,P

The quantum characteristic function corresponding to the
operator

~

a & (p
~

is from Eq. (5):

X=Tr(
~

a & (P
~

e"' e ') = (P
~

a &exp(A, P"—A,'a) .

(12)

With this initial condition the zero-temperature solution
to Eq. (6) is

g(A, , t) = (p i
a &exp(p"f af*)—

= (p
~

a &exp[A(up" —Ua) —A,"(u*a—up" )] .
X(g) Tr( cia —i.*a) (5) (13)

where A, is a complex variable and the trace is over the
system. From the master equation (3) the following equa-
tion for X is found:

Comparing with Eq. (12) we find the initial density opera-
tor Eq. (11) evolves as

[a, +[( i~+y)x+yx—*]a,+[yx+(i~+y)x*]a,,jx

yn(A, +A,*) X .—(6)

iu*a —Up" &(u p —Ua

ti (u*p—va*
~

u*a —ug'
&

(14)

This first-order partial-differential equation may be
solved by the method of characteristics.

The explicit time dependence of the coherent-state argu-
ments occurring here are
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u'a —Uf) = —'e " a 1 — +g2

P+t
1

LN

u'P —Ua = —'e P 1 — +a'~

+ —,'e + P 1+ (15)

u a —ug =e r' a cos(Qt) + i a—~g sin(Qt )0 0
(17)

u*P —Ua*=e 2' Pcos(Qt)+ i 13 —a* s—in(Qt)
Q 0

&= —,(p+ —p )=(y' —a2')' '.
Hence an initial superposition of coherent states remains
as a superposition of the same number of coherent states
under the evolution given by the master equation (3).

In the underdamped case, y & co, the eigenvalues Eq. (8)
are complex,

p+ y+——iA, Q=(co —y )'~

and the coherent-state arguments Eqs. (15) become

y+(y2 2)1/2 (20)

As y increases, p+ increases towards 2y and p decreases
towards zero. Hence we have a fast and a slow eigen-
value.

In the following we examine the limit of very large
damping, y ~&co, so that

6)
p+ =2y~ p —= ~ p —&&p+ .2y' (21)

The time dependence of the coherent states, Eqs. (15), be-
comes

r

ua —Up=e —(~ /&y)t + —&yt+e

made in quantum optical systems, which have frequencies
co=10' s ', so that we may expect the small damping

y «co approximation to be valid. Note that the results,
Eqs. (18) and (19), contain an exponential relaxation to the
vacuum state at rate y. However, a point of particular in-
terest is the rapid decay of the off-diagonal parts of the
density operator. For short times, 2yt «1, the decay
occurs exponentially at the rate —2y ln((P

~

a }),a quanti-
ty which increases with decreasing overlap of the initial
states. On taking diagonal coordinate-basis matrix ele-
ments one finds the'solution Eq. (19) to be consistent with
the result of Caldeira and Leggett for the destruction of
interference in their weakly damped low-temperature lim-
it.

In the overdamped case, '
y & a2, the eigenvalues Eq. (8)

are real:

After n oscillations, that is, at time t=2nn/0, the densi-
ty operator corresponding to the initial condition Eq. (11)
1S

r

u p —Uo,'=e —(a) /2y}t O + + —2yt+e

(22)

p(t =2mn/0 ) =g N t.1 ( 13
~

a } '

a, P

X ~e r'a)(e r'p~ . (18)

A diagonal initial density operator, p=
~
a)(a ~, thus

evolves as

p(t)=
~

Re(a)e ' ~ r1'+i Im(a)e r'}

This result valid only for the discrete times, t =2mn /0, is
otherwise identical to the result obtained in the small
damping limit, y «co, for which the initial condition Eq.
(11) evolves to

p(t) g N (13
~

a}[1—exP( —2yt)]

a, P

(19)

a result which has previously been obtained by making the
rotating-wave approximation on the master equation
(3)."' The rotating-wave approximation is commonly

I

X (Re(a)e ' r"+i Im(a)e (23)

Note that the imaginary part, proportional to the mean
momentum, is damped at the rate 2y, while the real part,
proportional to the mean coordinate, is damped at the
much slower rate co /2y. Thus the heavily overdamped
oscillator will respond sluggishly to forces trying to
change its coordinate. A similar result is found for the
strongly overdamped classical harmonic oscillator.

Next we consider the behavior of the off-diagonal parts
of the initial density operator,

~

a) (P
~

. When a=a and
P=b are real, i.e., when the initial mean momenta are
zero, the initial operator

~

a ) (b
~

evolves as

(2 ~b)[2 — 2( —42)i 2
—( /22) 2+ +2 —22 22

l2
+'

2

—( z&y)t +b
2

Pyt b —a
2

There are two processes here. First, the density operator is being reduced by a factor which is 1 at t =0 and (a
~
b }for
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4yt » 1. For a, one-gram mass in a harmonic-oscillator potential of frequency co = 1 s, the scalar product (a
I

b ) is

(a
I
b) =e ' ' / =exp[ ——,'(mco/2A')((X), —(X)t, ) ]=exp[ —(2.5&&10 )((X),—(X)q) ], (25)

where (X), and (X)q are the mean coordinates of the coherent states
I
a ) and

I
b ), respectively. For separations of

the mean coordinates of the superposed states exceeding nuclear dimensions (a b) will be negligibly small, e.g., taking
(X),—(X)(,——1 A we find (a

I
b) =exp( —2.5X10 ). Second, the initial superposition diagonalizes at rate 2y, being

replaced by a "classical" probability for finding the particle in the coherent state,
I

—,(a +b) ).
When a=ia and 13=ib are imaginary, i.e., when the initial coordinates are zero, the off-diagonal parts of the initial

density operator,
I
ia ) (ib I, evolve as

(
~

ia)(ib
~

),= (ia ~ib)' '*~i ' ""i e ' ~" +8 ~'
)2

e
~ ~ ~

(~2g2y), ib —ia py, ia +ib+e (26)

X(e '" 'y" —,'(a+b)
I

. (27)

Consider an initial pure-state density operator correspond-
ing to a superposition of two zero mean momentum-
coherent states

I
a) and

I
b):

p(0)=~-'(I. )(.I+ Ib)(b I+ I.)&b I+ Ib)&. I),
(28)

where 2V is a normalization constant. Using the result Eq.
(27) for y » to and yt » 1 this evolves as

Again there are two processes. First, the multiplying fac-
tor decays from one to (ia

I
ib ), but much more slowly

than when a and P are real. Second, the superposition is
reduced at rate 2y to a superposition of two coherent
states having opposite momenta and momentum differ-
ence proportional to a —b. This remaining superposition
slowly decays towards the vacuum.

Thus superpositions of zero mean momentum-coherent
states are rapidly diagonalized, while superpositions of
zero mean coordinate-coherent states are preserved in a
modified form. In other words, all "coordinate coher-
ence" rapidly decays away while "momentum coherence"
may still be found. This asymmetry is a result of the
coordinate-coordinate system to bath coupling, Eq. (1).

Still in the strongly overdamped limit, y &&m, we now
consider the long time limit, yt ~&1. We restrict our at-
tention to a=a, P=b, real. Then Eq. (24) yields

(
I
a)(b

I ), = (a Ib) Ie ' /' " '(a+&—))

where

p, =(x e (~ /zy)ta) p =(x
I

e (m /zy)tb) (31)

which agrees with a result obtained, using a path-integral
approach, by Caldeira and Leggett in their strongly
damped low-temperature limit. The first two terms of
Eq. (30) reflect uncertainty as to whether the oscillator is
excited in the coherent states

I

a ) or
I
b ). The third term

is a result of the fact that these states were initially super-
posed. However, for the times under consideration,
yt »1, it is apparent from Eq. (29) that this superposi-
tion has been replaced by the coherent excitation

I

—,(a +b)exp( tv t/2y ) ). No—te that since p, and pb are
Gaussians centered at (X), and (X)b, respectively, the
product p,pt, will be small when the overlap (a

I
b) is

small.

garded as a mixture of well-defined coordinate states of a
macroscopic oscillator. The interaction with the environ-
ment Eq. (1) has resulted in the collapse of the pure-state
superposition Eq. (28) to a mixture of well-defined coordi-
nate states of the macroscopic oscillator.

Taking diagonal matrix elements of Eq. (29), in the
basis of the system coordinate X, we find

(x
I
p(t)

I
x)

~—1(pz +pz +2p p ( a
I
b ) 1 —exP[ (cu /y)t) )—

(30)

p(t)=~ '
I
e (~'/zy"a ) (e —(~'/zy)'a

I IV. FINITE TEMPERATURE

+ I

-'"'"y"b)( ' y'b
I

+ 2(a
I
b)

I

e '" y"—,'(a+b))

X (e '" 'y"—'(a+b)
I

(29)

As in the zero-temperature case we take our initial den-
sity operator to be a superposition of coherent states of
the form Eq. (11). Solving Eq. (6) for the corresponding
initial quantum characteristic function we find

X(A, t) =g N p. (f3
I
a)expIA. (uP" —ua) —A,'(u*a —ug') I

a, P
For the example following Eq. (24) the coherent-state
coordinate variance is 2X10 ' m so that the coordinate
is localized over nuclear dimensions. Thus the mixture of
coherent states, Eq. (29), may for practical purposes be re-

(

&(exp I n [ Azuv +/(.* u*v

+
I
~

I

'(
I
u

I
'+"—»] ) (32)
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where u and v were defined in Eq. (7). Unlike the zero-
temperature case this quantum characteristic function
does not have the simple form of Eq. (12). However, the
quantum characteristic function and the diagonal
coherent-state density-matrix elements are related by'

(z
~ p ~z) =—fy(A)exp( —

~

1,
~

—Ax*+A,"z)d A, ,

(33)
where as usual d A, =d [Re(A, )]d[Im(A, )]. Now the densi-
ty operator p can be expressed in terms of these diagonal

. coherent-state matrix elements by'

v =0, u =exp[( —y+ico)t] . (35)

The diagonal coherent-state matrix elements found from
Eqs. (32) and (33) are then

f f '+ '
i e-i'i'(z

i
iz&d'zd'5(.—|~.+» '

(34)

We first examine the extremely underdamped case,
y «co, so that

(z
~ p ~z) =+X &(p ~

a)[n(1 —e y')+1] 'exp
a,P

(z —ae ' 'e y')(z" —p*e' 'e y')

n(1 —e y')+1
(36)

We now substitute this result into the expansion Eq. (34) 'and take matrix elements in the coordinate basis,
~

x ):

(x —y ~ p ~x+y) =(2m'o' ) gK p(P ~

a)exp[a'y(mao/R)5 ]
a,P

Xexpt ——,
' (T„[x—(A'/2miv)' 6] jexpI ——,

'
(7~ [y —o~(2mcv/A')' 5] j

e
—y t( ~e —i rift +pe e t rll i

)

(37)

The variances of the diagonal, o.~, and off-diagonal, o~,
variables are

cr = [2n(1 —e y')+1],
2m co

(38)

2

p, = (2iro„)

X exp I
——,o.„[x—(A'/2m')'/ e y'2a cos(cot)] j,

(40)

pi, ——(2ircr„)

1

2' CO
[2 (1— 2y')+1] XexpI ——,o.„[x—())i/2miv)'/ e y'2b cos(a)t)] j .

These results have previously been derived for the case
a=P by Milburn and Walls. ' Starting from the initial
coherent-state value the variance of the diagonal part in-
creases from )yi/2m' to (2n+ 1)i)i/2m' in a time of a few

y '. The off-diagonal variance decreases from A'/2miv to
about (2n+1) 'A'/2m' after a similar time. Thus the
environment tends to eliminate the off-diagonal
coordinate-basis density-matrix elements. Although the
degree of elimination achieved increases with temperature
so too does the degree of diagonal spreading.

Consider an initial density operator of the form Eq.
(28). From Eq. (37) the evolution' of its diagonal coordi-
nate basis matrix elements is found to be

(x
~ p ~

x ) =K '[p, +pb+2p, pbcos(8)(b
~

a )'i],
0= i o„[(fi/2m') / e y'2x (b —a)sin(a)t)

+ (fi/2m')e y'sin(2tvt)(a —b )], (39)
—2yf

yI = 1 —o„(R/2m')e y'= 1—
2n(1 —e 2y')+1

where

) (e 2yt+ (roi/2—y)t)—
(coi/2y )t —2y t)— (41)

Using these expressions in Eqs. (32) and (33) we find the
diagonal coherent-state matrix elements to be

p, and pb are the contributions of the diagonal parts of
the initial density operator and the third term is an oscil-
lating interference resulting from the initial superposition.
The exponent of the scalar product (b ~a) is zero at
t=0, and tends to 1 for yt &~1, at which time the third
term is decreased by the overlap (b

~

a) of the initially
superposed states. Recalling the example following Eq.
(24), (b

~

a ) will be negligible for macroscopically
separated initial coherent states of a macroscopic oscilla-
tor. For small times yt &&1 and for high temperatures,
n =kT/fico~~ 1, we find the exponent il =(4k&Ty/fico)t,
and we recover a result of Caldeira and Leggett.

Next we examine the heavily overdamped finite-
temperature case. For y &&co Eq. (7) yields
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(z
~ p ~z) =g pf p(p

~

a) exp [(p"—a)e r'+z —z ] exp — [(@+a)e ' r"—z —z ]vrs 4r 4s

r= 1+n(l —e "'), s=l+n(1 —e " ' r) .
Substituting this result into Eq. (34), taking coordinate-basis matrix elements and evaluating the integrals we find

& x —y ~ p ~

x +y & =(2ira„' ) '~'g N p( p ~

a )exp[ —,
' o (2m ai/iii)(f3* —a) e r']

a, P

XexpI ——,o„[x—(iii/2m')' (p*+a)e '" ~2r"]zJ

Xexp[ —,'o.
—~ y +(2mcolfi)' (p"—a)e r'y] .

(42)

(43)

The variances of the diagonal, o.„, and off-diagonal, a~,
parts are

o'„= [1+2n(1—e ' r)],2' 6)
(44)

02=
2m' [1+2n(1—-e r')]

V. DISCUSSION

Zurek has recently discussed the behavior of a quantum
system coupled to a bath consisting of a large number of
other quantum systems. ' He investigated how a system-
environment coupling may lead to a diagonalization of the
system density matrix. The basis in which the density
matrix becomes diagonalized is called the pointer basis
and is determined by the form of the system-environment
interaction Hamiltonian. Specifically, the pointer basis
will be the eigenstates of the system observable which

At high temperatures and after a time of a few y
' the

off-diagonal variance becomes fi /4mks T= ( A, /4' ),
where A, is the de Broglie wavelength associated with the
oscillator's mean kinetic energy at temperature T. '

However, the spreading of the diagonal part occurs at a
much slower rate determined by the quantity co /y. Thus
for times t such that y/co » t »1/4y the density matrix
has been substantially diagonalized in the coordinate basis
without much thermal spreading of the diagonal matrix
elements. The degree of diagonalization increases with
temperature and the off-diagonal variance can be made
arbitrarily small by making the temperature sufficiently
high.

As in the underdamped case we can use the result Eq.
(43) to calculate the diagonal coordinate-basis density-
matrix elements for an initial density operator of the form
Eq. (28). For short times such that co t/y, 2nco tly &&1
we find

&x iplx&=~ '(p'+ps+2p~~&i la&'""'"""»
(45)

where as usual the first two terms arise from the diagonal
parts of the initial density matrix. For higher tempera-
tures the exponent of (b

~
a) is (2coksT/yh)t, Eq. (45)

then agrees with the high-temperature strongly damped
result of Caldeira and Leggett.

(p —q ~ p ~ p+ q ) = (2iriii) ' I J dx dy

X exp[ 2i (py +qx—)lfi]

X(x —y ~p ~x+y) . (46)

Since the coordinate-basis density-matrix elements are a
product of Cxaussians in each of the variables x and y,
Eqs. (37) and (43), the momentum-basis density-matrix

commutes with both the free and interaction parts of the
Hamiltonian.

These observations are particularly relevant to the
theory of quantum measurements. ' In this context we
have a quantum system on which a measurement is to be
performed, a meter from which the measurement result is
read, and an environment which together with the meter
forms the classical measuring apparatus. Following
Zurek, the meter-environment coupling determines the
pointer basis. Due to its interaction with the environment
the meter density matrix becomes diagonal in the pointer
basis, corresponding to a classical probability distribution
for it to be found in a given pointer eigenstate. The
system-meter coupling is designed so that the eigenstates
of the system observable being measured are correlated
with pointer basis states of the meter. Thus the environ-
mental reduction of the meter state also reduces the sys-
tem state, as required in quantum measurement theory.

We have considered in detail only the cases of large un-
derdamping, y ~&co, and of large overdamping, y ~&co. In
the former case the system undergoes many oscillations
before the damping effects are significant, whereas in the
strongly overdamped case the system is prevented by the
damping from completing even one oscillation. Now the
coordinate X, which couples the system to the environ-
ment in the Hamiltonian Eq. (1), is not a constant of the
motion. Hence as the system oscillates coordinate eigen-
states evolve through various mixtures of coordinate and
momentum eigenstates. Only in the overdamped case,
when the damping can exert a significant effect before the
system begins to oscillate, will the pointer basis be clearly
defined as the coordinate basis.

In Sec. IV we found the coordinate-basis matrix ele-
ments of the system density matrix, (x —y ~ p ~

x+y).
The momentum-basis matrix elements are also of interest
and may be obtained from the coordinate-basis elements
by a Fourier transformation. We seek them in the form
&p —q I p I p+q&, :
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2 o„=2 A'mco[2n(1 —e r')+ 1]g 4 x

and in the highly overdamped case y &&co,

2

rr&
—— cr~ =

2 fimco[1+2n(1 —e r')],
p 4 g 2

(47)

2 —co
o~q —— o„=—A'mco[1+2n(1 —e ~ r )]X

The highly underdamped coordinate-basis variances and
the momentum-basis variances are identical up to multi-
plying factors. After a time of a few y

' the variances of
the diagonal variables in both representations are propor-
tional to 2n + 1 and the variances of the off-diagonal vari-
ables proportional to (2n + 1) '. For high temperatures n

is large so the diagonal variances are also large while the
off-diagonal variances are small. Recall that the eigen-
states of the system observable X coupling to the bath os-
cillate through mixtures of coordinate and momentum
eigenstates. In this case the interaction tends to eliminate
the off-diagonal elements of the density matrix in both
representations at the expense of spreading in the
diagonal-matrix elements.

The zero-temperature highly underdamped result, Eq.
(19), shows comparable behavior. The damping of the
parts of the density operator off diagonal in the coherent-
state basis depends not on the mean coordinate or momen-
turn of the coherent states but rather on the scalar product
of the initially superposed coherent states. Coherences be-
tween zero mean coordinate-coherent states are damped
just as effectively by the highly underdamped coordinate-
coordinate coupling as coherences between zero mean
momentum-coherent states.

In the highly overdamped case differences between the
coordinate-basis and momentum-basis density-matrix ele-
ments appear. For instance, comparing the coordinate-

elements will be a product of Gaussians in the variables p
and q. The variances in the diagonal, p, and off-diagonal,
q, momentum variables are, in the highly underdamped
case y &&co,

2

oz —— os = , f—imco [2n (1—e r')+ 1],

basis variances, Eq. (44), with the momentum basis vari-
ances, Eq. (48), we find that after a time of a few y

' the
diagonal coordinate-basis variances and the off-diagonal
momentum-basis variance remain at essentially their ini-
tial coherent-state values. However, the off-diagonal
coordinate-basis variance has decreased by a factor of
about (1+2n) ", which is small at high temperatures.
Thus we find a diagonalization of the density matrix in
the coordinate basis without an associated increase in the
diagonal variance. The original coordinate distribution is
unaltered by the diagonalization process.

Comparable behavior was found in the zero-
temperature highly overdamped case. Comparing Eq. (24)
with Eq. (26) we recall that a coherence between zero-
momentum coherent states is damped much more rapidly
than a coherence between zero-coordinate coherent states.
We have already discussed how macroscopic oscillators
are collapsed into a mixture of states of well-defined coor-
dinate in the zero-temperature case. Microscopic oscilla-
tors, however, require a high-temperature bath to be diag-
onalized in the coordinate basis, with higher temperatures
leading to more complete diagonalization. The resistance
of the overdamped oscillator to changes in its coordinate,
Eq. (23), is reminiscent of the watchdog or quantum Zeno
effect in which continuous measurement of an observable
inhibits its change. '

To summarize, we have demonstrated for the system-
environment coupling given by the Hamiltonian (1) con-
tentions of Zurek concerning environmental diagonaliza-
tion of the density matrix. In particular we have found
that when the system oscillator is heavily overdamped by
a high-temperature bath the diagonalization in the coordi-
nate basis occurs without substantial disturbance of the
oscillator s coordinate probability distribution. The envi-
ronmental interaction given by the Hamiltonian (1) thus
provides a model of a coordinate measurement on a har-
monic oscillator leading to diagonalization of the density
matrix, otherwise referred to as collapse of the state vec-
tor.
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