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The dynamical solution of the driven classical anharmonic (AH) oscillator is obtained through a
region of optical bistability. The dynamical solution is observed to switch from the lowest to highest
steady-state (SS) root near a SS turning point with evidence of critical slowing down. The solution
of a widely used multiple-photon version of the AH.model is also obtained and is found to give qual-
itatively similar behavior. The average number of photons observed dramatically increases in the

bistable region and exhibits damped oscillations.

I. INTRODUCTION

Optical bistability (OB) is currently a very active
research area in nonlinear optics.! Certain authors®—>
have emphasized that under certain conditions optical bi-
stability is an intrinsic property of a nonlinear material it-
self (i.e., without resonator or cavity feedback). Indeed,
this is most easily seen in recent studies®3 on the classical
Duffing oscillator, whose steady-state (SS) solution for the
oscillator amplitudes shows mirrorless optical bistability
(MOB), in a region of its parameter space. Thus, for a
single value of an input field, there can exist an intrinsic
bistable response of the system. The MOB is due entirely
to what amounts to an excitation-dependent frequency
shift caused by the anharmonic contribution and, of
course, the excitation is driven by the oscillator-field in-
teraction. In view of the importance of this effect in such
areas as molecular multiple-photon absorption®’ and non-
linear response of a field mode to a nonlinear dispersive
medium,? it appears very worthwhile to generate the exact
numerical dynamical solution for the classical anharmon-
ic oscillator to study the dynamics of switching and the
stability of the SS predictions. The dynamical solution of
an often used®~® multiple-photon anharmonic model is
also generated for comparison.

The model for the driven, damped Duffing oscillator is
presented in the next section and the steady-state and
dynamical solutions are developed using a well-known
modal expansion. The equations of motion for a widely
used multiple-photon counterpart to the classical Duffing
oscillator are presented in Sec. III and the dynamical evo-
lution and stability analysis are presented for comparison
with the results of Sec. II. The dynamical evolution and
the method for calculating the expectation value for the
number of photons absorbed are presented in Sec. IV and
the results for the two cases are compared and discussed.

TABLE 1. Parameters used in the numerical calculations.

p=10"%g
d'=10-"° erg2cm!”?
€=10.5%10% Vcm™!

W= 1014 S‘l
ya=10" s71!
71=3X%10% s72cm™!
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The results of the calculations are summarized and dis-
cussed in Sec. V and Sec. VI is used for conclusion.

II. DYNAMICS OF BISTABILITY
IN THE DUFFING OSCILLATOR

The classical equation of motion for the anharmonic
oscillator (in which terms in the potential through cubic
are retained) is

. . t
g+vad+oig—vi9°= fL)COS(wt) ) (1)
where y,; is a damping rate due to an assumed coupling?
with other oscillator modes, p is the oscillator reduced
mass, and wq and 7, are defined from the expansion of the

potential
VV(R,)+ spotg’— spyig>+ (2)

about the position R, of its minimum. The driving force
f(¢) is defined as d’e(t), where d’ is the slope of the oscil-
lator permanent dipole moment at R, and €(z) is the slow-
ly varying part of the laser field strength [taken here to be
€ot /T, Or €27, —1t)/7, for t <7, or t>T,, respectively,
where €, is a peak field strength and 7, is a pulse half-
width]. Physically realistic values of these parameters are
given in Table I.

In the same way as in the analysis of Flytzanis and
Tang? (FT), we seek a solution by expanding g,

g=75(go+q 1" +q_je 4 -1 ), 3)

and equating coefficients of e *'®*, This leads to the set of
coupled, nonlinear differential equations,

qo+7d‘j0+“’?ﬂ0—%qu(%“YI‘]+lq-—l:O , (4a)

G+112i0G+1+YaG+1TioYaq 1

+(@f—0*g 41—V 1909 +1 AU . (4b)

u

The SS solution is obtained by setting the time derivatives
in Egs. (4) equal to zero. Then,
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Al=wp—a?, (5b)
where for 7, /w3 << 108 cm!, g8 ~ 7/1/w2)q‘fs’q_1

Following Flytzanis and Tang, it 1s convenlent to find
the roots of the equation for ¢;1¢">} =g} |% Then
lq(SS) (r in FT’s work) is V2 times the root -mean-
square (rms) solutlon (in SS) implied by the first-order
part of Eq. ( [FT’s detuning is —A, and their anhar-
monicity constant has a different meaning from ours in

that our —y;¢2 in Eq. (1) is replaced by yg? as appropri--

ate for the Duffing oscillator. A consequence of this
difference is that the optically bistable region occurs for
+A herein and in FT, respectively.] The SS problem
reduces to finding the roots of the cubic equation

x34+ax+b=0, (6a)
A
g% 2= +% ;’0 : (6b)
1
4
a= |— | [oys)?—+4A%, (6¢)
1
4 2
A
b= |2 l% 0 | oy 2+ 547
— [f(t)/,u]z] . (6d)

Optical bistability occurs when Eq. (6a) has three real
roots, which occurs when b2/4+a%/27 <0. These roots
are plotted in Fig. 1 where we use the time axis for con-
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venience in comparing with the dynamical results. Note
that a must be negative. Then b2/4 < |a3/27|. Our ex-

perience shows that this occurs when the two terms in
(6d) tend to cancel (which requires that A%2> 0). Thus, for
small times, f(¢)/u in Eq. (6d) is too small for the condi-
tion to be satisfied, and we are in a single small-root re-
gion. Then we pass into the bistable region with increas-
ing f(¢)/u. Then we pass into the single large-root region
for maximum strengths where [f(z)/u]® becomes too
large for the condition to be satisfied. The solution is
symmetric on either side of 7,=100 ps. The dynamical
solution is also obtained by direct numerlcal integration of
Egs. 4).

III. DYNAMICS OF BISTABILITY
IN THE ANHARMONIC MULTIPLE-PHONON
TRANSITION MODEL

For comparison, the Heisenberg equations for the ex-
pectation values A and N of the shift and number opera-
tors, a and aTa, respectively, for a widely used quantized
anharmonic oscillator model®~# are solved numerically.
In the rotating-wave approximation (RWA), the equations
for A={a) and N={a'a) are®

A=—isA—Ly,4 +2iXNA—éQ, (72)
——Q(A A*)—y4N , (7b)
where
5 fy d'e(t)
12 pog’ vV 2utiar,
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FIG. 1.

Results for 8=wo—w=0.8%10'? s~! and the parameters of Table I. Solid curve: classical steady-state solution; dashed

curve: classical dynamical solution; dotted curve: multiple-photon dynamical solution; dots: classical dynamical solution; squares:

multiple-photon dynamical solution.
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and 8=wy—w. It should be pointed out that Egs. (7a)
and (7b) are based upon an approximate Hamiltonian®
with regard to the cube of the operator g and that low-
order decorrelation is required to close the hierarchy of
equations to Egs. (7a) and (7b). It is further noted that
Egs. (7a) and (7b) are the continuum limit for the
quasicontinuum coupling treated in Ref. 7, which leads to
relaxation and damping (Ref. 9), y;. In lowest-order
decorrelation, Eq. (7b) can be obtained directly from Eq.
(7a).

The steady-state solution of Egs. (7) results in the equa-
tion of state,

2% 172

lgy | =

Q, and Q; are each + of the corresponding values ob-

tained from the equation of state® from Eq. (5a).

In Fig. 1 we plot |g, | [both the dynamical and SS
solutions from Egs. (4) and (5), respectively] and
(2%/uwy)!’?| 4 | [the dynamical solution from Eq. (7a)].
Note that both of these quantities correspond physically
to V2 times the root-mean-square (rms) values of the os-
cillator position which would be obtained if one treated

the slowly varying parts of the solution (¢, g_, (aty, _

and (a)) as constant relative to the rapidly varying parts.
For example,
1/ 172

2% 4] .

2%
Hawo

2
V224G ) e~ (a')(a)=

Similarly V2(g—540)ms~ |9 |, where g is the classi-
cal oscillator position [Egs. (1) and (3)].
A linear stability analysis!® yields the eigenvalues

Ar=—3y4+i(8*+12Y*N?—8YN§)'/? ©)

from which a solution representing a small displacement
from the SS solution can be constructed as a linear com-
bination of exponentials whose arguments are A.z. Points
lying on the equation of state [Eq. (8)] are stable or unsta-
ble depending on whether ReA, <0 or ReA. >0, respec-
tively. It is easily verified from (8) and (9) that all points
on the SS curve in Fig. 1 between the turning points and
the upper and lower roots are unstable, whereas all other
points are stable. Damped oscillations (Fig. 1 above about
80 ps) occur for displacements from the SS solution when
the term in the square root is positive. Instabilities occur
when it is negative and the second term of Eq. (9) is
greater than +y,;. Equation (9) is evaluated for
5=0.8x10"? s~ ¥=3.95x10'"° s~! [Eq. (70)], and
N=(a'a)~(a")(a)=|A4|*~11.9. The latter quantity
is estimated graphically (Fig. 1) from the SS classical
value  of |q(;s’ | and the  correspondence
|y | =(2%/uwy)’?| 4 | ~0.5x10"% cm (near 100 ps).
The second term in Eq. (9) is calculated to be
+i(0.53%10'2 s~1). From Fig. 1 a graphical determina-
tion of the oscillation frequency (near 100 ps) gives a
value of +i(0.78x10'? s~!), which is very nearly the
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Q2 =4N[1y3+(5—2XN)?], ®)

which is identical in form to the corresponding SS solu-
tion obtained from Eq. (6a) and that discussed by Flyt-
zanis and Tang.3 The condition for OB, i.e., two real pos-
itive roots for N for a given driving field Q, is that
8/v4> +V/3. For the condition 82/y% >> 1, the high-field
(Q4) and low-field (Q;) switching points are Q, =-58%/X
and ;= %87/,21 /X. Using the relations, Egs. (7¢), and the
correspondence

value for the detuning 6. The agreement is reasonable
given that N is determined from the classical SS solution.

Even though the SS, Eq. (8) is identical in form with
the relation obtained using conditions given by Egs. (6),
the turning points differ slightly due to small discrepan-
cies in the numerical parameters according to Egs. (7c). It
is not at all clear that the dynamical evolution for the two
models should show close similarity. There are in general
two coupled first-order equations in real variables which
correspond to Eq. (7a), and because of the anharmonic
contribution, these cannot be precisely reduced to a single
second-order equation, even in the absence of damping 7.
Equation (7b) can be obtained from Eq. (7a) using the re-
lation N=|4 |2 Since N=(a'a), and N~(a")(a)
= |4 |?only if a* and a are approximately decorrelated,
the N= | 4 | 2 result suggests that the model described by
Egs. (7) (based on the transformed Hamiltonian of Nar-
ducci et al.%) is essentially classical in character and not a
true test of quantum mechanical (QM) effects in the
anharmonic oscillator. The close numerical agreement of
the results of the two models (Fig. 1) reinforces this obser-
vation. This is entirely consistent with the results of Ro-
zanov and Smirnov!! who considered the Schrédinger
equation through the fourth-order anharmonic contribu-
tion and showed that the quantum effects in the hysteresis
regime are unimportant if the oscillation amplitude suffi-
ciently exceeds the width of the wave packet.

IV. DYNAMICAL EVOLUTION AND PHOTON
STATISTICS

In Fig. 1 the dynamical results from integration of Egs.
(4b) and (7a) for the magnitude of the oscillator ampli-
tudes are plotted versus time for comparison. The time
axis represents a ramping field. Superposed is the SS rela-
tion from conditions given by Egs. (6) with the SS field
corresponding to the instantaneous value of the ramping
field as indicated on the horizontal axis. Also plotted is
the expectation value of the number of photons absorbed
versus time for the two cases. The latter is determined by
time integration of Eq. (7b) for the model based upon
quantization of the anharmonic oscillator® (QM) model;
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for the classical anharmonic oscillator, it is given approxi-
mately by :

0
(n)~ > nP,=¢, (10a)
n=0
—e
n=el (10b)
(4% +wig?)
EO:%M_u_ . (10c)

fiwg

The Poisson distribution (for the probability of populat-
ing the nth level from n=0 at t=0) is the exact result'?
for a harmonic oscillator forced by a term linear in gq.
For the harmonic case g is given by Eq. (1) with
Y4=71=0 and is observed to diverge with ¢ for w=w.
For an oscillator which is damped (y;540) and/or anhar-
monic (y,540), g is, of course, finite on resonance
(w=wq), and the average number of photons absorbed ¢,
[Eq. (10a)] is just the ratio of the classical oscillator ener-
gy at any time to the energy of one vibrational quantum.
Finite damping and anharmonicity, which are crucial to a
physically sensible solution of Eq. (1), also appear in the
Schrodinger equation12 for the oscillator. However, if
these are treated as small perturbations there, then in
zeroth order, Egs. (10) hold, with ¢ calculated from Eq.
(1.

V. DISCUSSION

One obvious effect of neglecting anharmonic terms in
the Schrodinger equation [while including them in Eq. (1)]
is the neglect of unequal level spacing in Egs. (10). How-
ever, the qualitative agreement between (n ) and N [from
Eq. (7b)] suggests that Eq. (10c) is a reasonable estimate
of the average number of photons absorbed, at least
within the limitations of both theories. In Fig. 1 (and in
other calculations not presented here), {n) and N [from

Eq. (7b)] agree almost quantitatively in the optically non- -

bistable region of the motion and qualitatively in the bi-
stable region. In the optically bistable region, where the
dynamical |g4,| switches from |gSy | (lower root) to
¢S | (higher root), the character of the absorption is
dramatically altered.. The magnitude of the oscillator am-
plitude as calculated from Egs. (7) is observed to follow
the lower SS root of the classical equation up to the
switching region where it evolves more slowly to the
upper state compared to the classical result. As the field
is ramped down past the lower critical field, both solu-
tions relax toward the lower SS by exponential decay
governed by the relaxation rate y;. The switching-up
time (i.e., the time of transit from the lower state to the
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first crossing of the upper state) for the classical anhar-
monic oscillator (AHO) is 7,~9.73 ps, whereas that for
the multiple photon AHO is 79~12.5 ps.

The switch-up rate is governed in both cases by a com-
bination of contributing factors. The critical slowing
down in the neighborhood of the switching point as deter-
mined from Eq. (9) extends the rise time beyond a Rabi
half-period, and this is expected to become more evident
the slower the ramping rate of the field. The rise times
are noticeably different in the two cases and, since the
conditions are identical, this is a manifestation of
discrepancy in dynamical response in the neighborhood of
the region of critical slowing down.

The increased absorption in the bistable region is sig-
nificant, especially since bistability occurs under non-
resonant conditions. Indeed the detuning & is here
0.8%10'2 s~! or over 30% of the Rabi rate [Egs. (7c)] at
its peak value (at 100 ps). For this detuning, the absorp-
tion by a nonbistable oscillator is minimal; for example,
see Fig. 1 for times less than the onset of the bistable
behavior (i.e., less than about 60 ps). Also, other calcula-
tions at §=0.9x10'? s~!, where no dynamical switch
occurs since A? [see Egs. (6)] is too large relative to the
field strength for the upper critical point to be ap-
proached, show that the maximum number of photons ab-
sorbed is less than about 1.5.

VI. CONCLUSION

We have presented here the dynamical response of a
Duffing oscillator in the bistable region, the steady-state
properties of which were analyzed earlier by Flytzanis and
Tang® (more recently by Goldstone and Garmire with
propagation of the field included), and compared the
behavior with that of a widely used®~® model based upon
a quantized anharmonic oscillator. The results exhibit
critical slowing down in the switching dynamics and sta-
bility in the bistable region. These results give impetus
for further studies of cavityless optical bistability for sys-
tems corresponding to more physically realistic potential
functions in order to eliminate the model dependence of
the results. Also further study is required to reconcile the
classical and multiple-photon model results by solving the
quantum problem for the unapproximated model Hamil-
tonian without the requirements of lowest-order decorre-
lation.
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