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Quantum nondemolition measurement of the photon number via the optical Kerr effect
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This paper proposes a quantum nondemolition measurement scheme for the photon number.
The signal and probe optical waves interact via the optical Kerr effect. . The optical phase of the
probe wave is selected as the readout observable for the measurement of the photon number of the
signal wave. The measurement accuracy hn and the imposed phase noise b,P of the signal wave
satisfy Heisenberg's uncertainty principle with an equality sign, ((hn) ) ((b,P) ) = 4.

I. INTRODUCTION

A quantum nondemolition (QND} measurement, ' in
which an observable is measured without perturbing its
free motion, was first proposed in order to overcome the
quantum limit in the detection of gravitational waves. In
recent years, QND measurements were proposed in con-
nection with quantum optics. ' The QND theory for the
gravitational wave detector (Weber bar}, which consists of
a mechanical harmonic oscillator, is directly applicable to
the photon field, which is also described by an ensemble
of harmonic oscillators. In a QND measurement, precise
detection of an observable is accomplished at the expense
of an increase in uncertainty of its canonical conjugate ob-
servable. This uncertainty imbalance is similar to the un-
certainty relationship between two quadrature components
for nonclassical boson states such as the squeezed states
(or two-photon coherent states ) and number states.

Several schemes for a QND experiment have been pro-
posed so far. ' Unruh has pointed out that the interac-
tion should be quadratic for a QND measurement of an
oscillator state. Milburn and Walls have analyzed a
QND measurement using a four-wave-mixing interaction.
It seems, however, that little attention has been paid to
possible physical realizations. The ultimate limit of the
uncertainty product between the measurement accuracy
and the imposed noise on the conjugate observable has not
yet been investigated for QND measurements.

This paper proposes a QND measurement of the pho-
ton number using the optical Kerr effect, and obtains the
uncertainty relationship between the measurement accura-
cy of the photon number and the imposed phase noise.
The optical Kerr effect is used for an interaction which
gives the product of the probe and signal intensities to be
measured. The photon number of the signal wave is the

QND observable, and the optical phase of the probe wave
is the readout observable.

II. CONDITIONS FOR QND MEASUREMENTS

In a general quantum measurement, the observable of
the signal system, A„ is measured by detecting the change
in the observable of the probe system, A~, using the prop-
er interaction between the signal and probe systems ex-
pressed by an interaction Hamiltonian HI. The total
Hamiltonian 0 is expressed as

H=Hs+Hp+Hr ~ (l)
where H, is the unperturbed Hamiltonian of the signal
system and Hp is that of the probe system. Heisenberg' s
equations of motion for A, and Az are

dA,' =[H„A,]+[H,, A, ], (2)

and
dAp—i' =[Hq, Ap]+[HI, Aq] .
dt

(3)

The first commutators in Eqs. (2) and (3) contribute to
the free motion of A, and Az, respectively, while the
second commutators contribute to the interaction between
the signal and probe systems. In order to measure A, us-
ing Ay, [Ht, A&] in (3) should not be zero, and further-
more, it is necessary that Ht be a function of A, .

In general, a measurement of A, affects the motion of
A, itself in two ways. One is the change of A, due to the
second commutator in (2) during the time HI is switched
on for the measurement. This change should be avoided
in order to ensure that the free motion of A, remains un-
perturbed.

A broader definition of QND (Refs. 2 and 3) is a se-
quence of measurements such that the result of each mea-
surement is predictable from the first measurement. In
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III. QND MEASUREMENT OF THE PHOTON NUMBER

In the proposed QND measurement scheme the photon
number of the signal wave is measured via the phase of
the probe wave using the optical Kerr effect. The mea-
surement configuration is detailed in Fig. 1. The probe
wave is sensitive to the refractive-index change, which is
proportional to the signal intensity in the Kerr medium.
The reflectivity of mirrors M 1 and M2 is zero for the
signal frequency cos and unity for the probe frequency cop

so that an interferometer is formed only for the probe
wave. The sine component of the phase shift for the
probe wave passing through the Kerr medium is measured
in terms of the photocurrent of the balanced-mixer detec-
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FIG. I. Configuration for the QND measurement of the sig-
nal photon number. Transmissions of mirrors M 1 and M2 are
unity for signal frequency. Signal wave passes through the opti-
cal Kerr medium without changing its photon number. Phase
of the probe wave is modulated by the signal photon number.

this broader sense, the change of 2, by HI is allowable if
it is predictable. We adopt the more limited but practical
QND definition, 'however, in which a measurement should
not perturb the motion of A„even deterministically. In
this case [HI, A, ]=0 is essential.

Another issue of interest is the uncertainty that is intro-
duced by the measurement of A, in the observable that
does not commute with A, . If the unperturbed Hamil-
tonian H, contains this observable, the motion of A, be-
comes unpredictable due to the uncertainty imposed on
the conjugate observables by the measurement of A, . To
ensure that the measurement of A, does not affect A, it-
self, H, should not be a function of the conjugate observ-
able of A, . A more general condition for continuous
QND observables is expressed as

[A, (t t ),A, (t2)) =0 (4)

in the absence of the interaction. It is clear that (4) is
satisfied if H, does not contain the conjugate observable
of A„because A„which commutes with H„ is a con-
stant of motion.

Summarizing the requirement discussed above, a rnea-
surement is the QND type when the observable A, to be
measured, the interaction Hamiltonian HI, and the
readout observable Ap, satisfy the following conditions:

(a) HI is a function of A„
(b) [HI, A, ]=0,
(c) [HI,Ap]~0, and
(d) H, is not a function of the conjugate observable of

and

(3)I 2 ~p~s+ apapas as
2Ve

Ag ——ng —ag ag,

(10)

=1 1 t 1
Ap ——Sp =— ap —ap2i Qnp+1 Qnp+ I

(12)

Here, a and a are the creation and annihilation opera-
tors, V is the volume for mode normalization, n is the
number operator, and S is the sine operator. Subscript s
and p denote signal and probe waves, respectively.

Conditions (a)—(d) described in the preceding section
are easily checked for (8)—(12), which ensure that the
present scheme provides a QND measurem'ent for n, For.
instance, condition (c) is checked using the commutation
relationship between the number operator and the sine
operator, that is,

[a a,S]=ic&0, (13)

where C is the cosine operator.
The change in the operator, Sp, in terms of n, and the

material parameters is derived by integrating Heisenberg' s
equation of motion. The usual time-evolution equation
should be rewritten into the spatial-evolution form for the
present traveling-wave problem. The localized operators
are used for this purpose. A traveling wave is expressed
as a sequence of wave packets, which move at the velocity
U =cameo/e. The operators a and a are regarded as con-
stant within the length of one packet. The electric field
operator for the probe wave is written as

tor. The sine component is regarded as the phase shift it-
self when the phase shift is small.

The electric field energy of the probe wave, Hp, is ex-
pressed by the dielectric constant e and the electric field
Ep as

H, = f f f —,'eE,'dV.

The perturbation energy Hl resulting from changes in e
due to the presence of the signal electric field E, becomes

HI —— 27' 'EpE, V. 6

Here, g' ' is the phenomenological third-order nonlinear
susceptibility for the optical Kerr effect. The. signal wave
is assumed to be stationary (nondepletion approximation),
and X' ' is defined as

(3) 2
( ~~)probe wave =& Es

Substituting the second-quantized formulas of Ep and E,
into (5) and (6), we obtain the operator formulas of the
unperturbed Hamiltonian, Hp, for the probe wave (and
similarly, H, ) and the interaction Hamiltonian Ht. The
Hamiltonians Hp, H„and HI, the QND observable A„
as well as the readout observable Ap, for the scheme are

1

Hp ——%cop (ap ap + —,),
H, =Ra)s(a, as+ —,

' ), (9)
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E (t,z) =+fico /2VeIap(t, z)exp[ —i(copt —kpz)]

+apt(t, z)exp[i (cop t —kpz) ]I, Pp(L) =Pp(0)+ ~Fns . (22)

(14)

where z is the coordinate of the direction of propagation,
and kp is the wave number of the probe wave.

The unperturbed and interaction Hamiltonians are the
same as (9) and (10) except that ap and a, are the local-
ized operators which are slowly varying functions of t and
z. The localized operators depend only on z in many
problems of nonlinear optics in which spatial evolution of
the traveling wave is temporally stationary. In this case,
the time derivative d/dt is replaced by the derivative
—(c+eo/e)d/dz for a traveling wave that propagates to-
ward the +z direction. Heisenberg's equation of motion
for Ep then leads to the spatial-evolution equation for
ap(z),

E'O—itic
E'

1/2 2
d 1

ap(z) = — copco, X n, ap(z) .
dz P 2V e

(15)

The time during which the wave packet passes through
the Kerr medium from z =0 to L corresponds to the time
Hl Is switched on.

Integrating (15) form z =0 to L, and using the fact that
n, is a constant of motion, we obtain

ap(L) =exp(iVF n, )ap(0),

where
' 1/2

2c Ve

((bn,"')') = ((hn, )')+ ([hgp(0)]')/F . (25)

Equation (24) shows that our measurement is ideal in the
sense that the true expectation value (n, ) is measured.
Equation (25) indicates that, the measurement accuracy is
([Sy,(0)]')/F.

The observable n,' ' is defined in (23) rather intuitively.
More detailed derivations for Eqs. (23)—(25) are described
in the Appendix.

IV. SELF-PHASE-MODULATION EFFECT

Equations (8}—(10) are idealized in the sense that they
do not include the self-modulation of the phase caused by
the signal and probe waves. In order to treat the Kerr
medium more realistically, we must consider the full
Hainiltonian. We shall then show that it is possible to ar-
rive at a QND measurement arrangement which is
describable in terms of the ideal Hamiltonians (8)—(10).

The perturbation energy due to the third-order non-
linear effect is

The signal photon number to be observed is expressed by
the readout observable Sp(L) as

n,' '=Sp(L)/~F =n, +Pp(0)/V~F .
In the interferometer —balanced-mixer combination shown
in Fig. 1, the dc term (Pp(0)) is canceled out. Taking the
expectation value and variance of (23},we obtain

(n,'b') = (n, )

and

The operator v Fn, in (16) corresponds to the phase shift
in ap. Using (12) and (16), the sine operator Sp(L) for the
probe wave at z =L, is written as

a'= f f f fEdI, dv

= 4 f f f g&igvIE;EJ'EkEtdV . (26)

Sp(L) =—exp(iVFns) ap(0)
1 1

2l '
&np+I

—exp( i~Fn, }ap—(0) . (18)
1

~np+1
When the intensity of the probe wave is large enough,

that is, (np ) && I, we can adopt the "phase operator" Pp
of the probe wave' which allows us to write

Here, X' ' is defined not only for the optical Kerr effect
but also for every process in which four photons are emit-
ted or absorbed. In contrast, it should be noted that 7' '

in (6) is phenomenologically defined for the optical Kerr
effect, especially for the phase modulation of the probe
wave by the signal wave.

In the presence of two optical frequencies, co, and cop,
and using (14) and a similar expression for the signal
wave, the perturbation Hamiltonian H' is expressed as

Sp =sin(Pp ) (19) a'=as +ap +II
where

(27)

Cp ——cos(Pp) . (20)

Using (12) and (18)—(21), we can derive

sin[pp(L)] =sin[pp(0)+ v Fn, ],

The fact that Pp commutes with n, leads to the equation

sin(Pp+ V Fn, ) =sin(Pp )cos(V Fn, ) +cos(Pp )sin(V Fn, ) .

(21)

~s D~sP (cos icos~ cos~cos )as asas as
2 (3)

+5 M(as, as)],
(3)

Hp D cop [X (cop cop cop cop )ap ap ap ap

+5 M(ap, ap)],
~t =dcoscop P (cop scop a)s cos)apapas as

(3)

+23 M(a, ,a„ap,ap)],

(28)

(29)

(30)
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where ~(a, ,a, ) represents terms in which the order of a,
and a, is interchanged, and

3A2a= ", (31)16 '
H,' and Hp express the self-phase-modulation for the sig-
nal and probe, respectively. The products of the creation
and annihilation operators can be reordered using the
commutation relationship, which yields excess quadratic
and constant terms like aa aa ~a aa a+ 2a a+1.
These excess terms are not essential since they only pro-
vide a constant phase shift.

When 7' ' is caused by a nonresonant electric state tran-
sition, all of the X' ' coefficients can be set equal in each
of Eqs. (28)—(30) as Kleinmann" did for the second-order
nonlinear optical constants. H' is then expressed as

H 4 yg ag ag ag ag + 4 yp ap ap ap'ap +pl/tag ag ap ap j

(32)

where X„Xp, and X;„,are defined as

negative X' medium. The self-modulation term can be
canceled out if the probe light passes through another
negative 7' ' medium. It has been pointed out that a neg-
ative 7' ' is physically possible in a medium having an
electronic nonlinearity. '

V. MEASUREMENT ACCURACY
AND THE IMPOSED PHASE NOISE

In general quantum measurements, the product of the
measurement accuracy and the additional uncertainty im-
posed on the conjugate observable is expected to satisfy
the inequality of Heisenberg's uncertainty principle.
However, whether the equality sign is achievable or not in
a QND measurement has not yet been investigated. We
will show that the proposed QND measurement scheme
provides the minimum uncertainty product of measure-
ment accuracy for photon number and imposed phase
noise.

Consider the case without the self-phase-modulation ef-
fect for both the signal and probe waves. The output
phase of the signal is, in analogy with (22),

Xg =24DcogX ( qco,
'

~co,
—cog, cog ),

2 (3)Xp:24DcopX (cop jcopy cop/cop )

24DcopcogX ( cop ~ cop ~ cog ~ cog )
(3)

(33)

(35)

P,'=P, +U Fn (36)

where a prime denotes an observable after passage
through the Kerr medium. Taking the variance of (36),
the imposed phase uncertainty for the signal wave is

The self-phase-modulation of the signal wave is allow-
able for a QND measurement of n„beacusen, is the con-
stant of motion in spite of the self-phase-modulation term
in (32). The self-phase-modulation of the probe wave,
however, should be removed since the motion of Pp is af-
fected by the second term in (32).

One scheme for the avoidance of the self-modulation
effect is to use a resonant X' ' medium. If the nonlinear
medium has an actual level of A'(co, +cop), as is shown in
Fig. 2, only the process in Fig. 2(a) is dominant while the
processes in Figs. 2(b) and 2(c) are off resonance. This al-
lows us to pick up only the process resonant with the level
in (28)—(30), favoring it over the remaining interaction
terms. It should be noted that perfect resonance should be
avoided since the imaginary part of 7' ' dominates at res-
onance, causing optical loss.

Another scheme is to cancel the effect by means of a

&(~y, )'&;,—= &(~y,')'& —&(&y, )'& =F&(~, )'& . (37)

Multiplying (37) and (38), we obtain

&(~,)') ...((&y, )');,= &(&,)'& &(~y, )'& = —,
' .

(39)

The last equality stands for the probe wave in a minimum
uncertainty state.

The uncertainty product for n,' ' and P,
'

gives the un-
certainty relationship of a simultaneous measurement for
conjugate variables. If we suppose both the signal and
probe waves are minimum-uncertainty states, the uncer-
tainty product is given by

The measurement uncertainty for the signal photon num-
ber is derived from (25) as

&(«, )'& ...—= &(«,"')'& —&(«, )') =((&P )'&/F .

(38)

7l Qlp
„7laq

&(~.;"')')((~y;)')

=[((«,)')+((~y )')&F][((~y,)')+F((«)')]

(b)
+4F((«)') ((«, )2)

4F («g)~ («p)

FIG. 2. Resonant process where g' ' for mutual phase modu-
lation is enhanced compared with the self-modulation effect; (a)
g' '(co~,' —~„co~,cu, ) process, (b) g' '(co„'co„—cu„co,) process, and

The equality stands for the case when

(40)
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F((hn, ) ) =
2 =((brtt~) ) . (41)

In this case the phase variance of the probe wave (right-
hand side) is matched with the photon-number uncertain-
ty for the signal wave (left-hand side). The inequality re-
lationship (40) coincides with the general uncertainty rela-
tionship of the simultaneous measurement for conjugate
variables by Arthurs and Kelly. '

VI. CONCLUSION
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A QND measurement scheme of the photon number
using the optical Kerr effect has been proposed. The opti-
cal phase of the probe wave is sensitive to the refractive
index change due to optical intensity (photon number) of
the signal wave without affecting it. The process is for-
mulated quantum mechanica11y. The measurement accu-
racy and the imposed phase noise on the signal wave satis-
fies the Heisenberg uncertainty principle. This demon-
strates that the minimum product of the measurement ac-
curacy and the imposed uncertainty on the conjugate ob-
servable is achievable in the proposed QND measurement.

1 into the probe wave a~ and the reference wave a„. In
this process, the zero-point fluctuation (vacuum st-ate
quantum noise) b is introduced as'

a~ =v pa+Pl r}h- ,

a„=v gb —Vl —t)a, (A2)

where tl is the reflection coefficient of beam splitter 1.
The value g is assumed to be small aiming at the ideal
homodyne detection. The phase of the probe, wave is
shifted by the Kerr medium as Eq. (16):

a~ =a~exp[i(VFn, +m/2)], (A3)

where the phase shift m/2 is added by adjusting the inter-
ferometer configuration. With the value —,

' for the refiec-
tion coefficient of beam splitter 2, the waves d and f are
written as

d = (az +a„)/V 2,
f=(a, —aq )/v 2 .

(A4)

(A5)

The electrical current is the difference in the photo-
currents of the two detectors, and measures the following
operator:

I= (ftf dtd) —. — (A6)

V=ArcV'eo/e . (A7)

Here, e is the electron charge and ~ is the time constant
for the traveling-wave quantization, which is related to
the cross-section area of the beam, A, and the normaliza-
tion volume V, as

APPENDIX

In this appendix the output of the proposed
interferometer —balanced-mixer detector is derived. The
observed photon number is defined as the output current
divided by a normalized factor which changes the current
into the photon number. Equations (23)—(25) are derived
by the obtained formula for the observed photon-number
operator.

Figure 3 shows the present scheme in which the annihi-
lation operator for each part of the interferometer is speci-
fied. The probe laser output a is divided by beam splitter

obs 7 1 I
e 2&tl(1 7J)v F (ata)—

f f dd—
2V'7)(1 71)VF (ata )— (AS)

Substituting (Al) —(A5) into (AS), we obtain

The photon-number operator, n,'"', which is actually ob-
served is defined by I as

Optical Kerr medium

z=0 (a a —b b)n,

(ata )

ap ap

Probe a)
Laser

I I

Beam
Splitter l

a,
Beam
splitter 2

Detector

f„.
Detect

FIG. 3. Detailed description of the annihilation operators in
the interferometer —balanced-mixer detector. Probe wave and
reference wave are denoted as a~ and a„respectively. Zero-
point fluctuation, b, is mixed at beam splitter 1.

+ t, (A9)
(e' 2tl cos8—)a b+(e ' —2rj cosO)b a

2Vg(1 g)v F (a a)—
where the notation &=V Fn, +m'/2 and the approxima-
tion sin( V Fn, ) =v Fn, are used.

Since the noise b is the zero-point fluctuation, the ex-
pectation value of (A9) is obtained as (n, ), which is Eq.
(24)

Taking the variance of (A9) we obtain
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([A(a a)] )(n, ) +([b(a a)] )((~ns) & ((e'e —2gcosg)(e 'e—2ricos8))(a a)
(ata )' 4'(1 g—)F(a a )

(A 10)

ln the case that the probe laser radiates a coherent state, (A10) becomes

1 —4 1 — cos8((~n,' )'& —((~n, )'& = [((&,)')+(., &']+
4g 1 —ri

(ata) . (Al 1)

The first term in the right-hand side is much smaller than
the second term due to the assumption ~F (n, ) && 1. Us-
ing the relation ri(a a ) =(azar') and the approximation
g « 1, (Al 1) is rewritten as

Since the probe wave is assumed to be a coherent state,
(A12) is rewritten in terms of the phase variance as

(A13)

4F(apta )
(A12)

which is Eq. (25)
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