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The nonlinear evolution of the free-electron-laser amplifier is investigated numerically for a con-

figuration consisting of a helical wiggler and axial guide magnetic fields. A set of coupled nonlinear

differential equations is derived in three dimensions which governs the self-consistent evolution of
either the TE or TM modes in a loss-free cylindrical waveguide and the trajectories of an ensemble

of electrons. The initial conditions are chosen to model the adiabatic injection of a cold, cylindrical-

ly symmetric electron beam into an interaction region in which the wiggler amplitude rises slowly

from zero to a constant level in ten wiggler periods. Both self-field and space-charge effects have

been neglected in the formulation, and the analysis is valid for the high-gain Compton regime of
operation. Numerical simulations are conducted to model an amplifier operating in the neighbor-

hood of 35 6Hz, and for electron-beam energies of 250 keV and 1 MeV. (The free-electron-laser

operating at electron-beam energies less than 500 keV is called the ubitron. ) The growth rate in the
linear regime prior to saturation is found to be in substantial agreement with the predictions based

on a linear theory of the instability, and the saturation efficiency is consistent with that expected on

the basis of simple, heuristic phase-trapping arguments. Substantial enhancements in the efficiency
are found to occur due to the presence of the axial guide field.

I. INTRODUCTION

The free-electron laser (FEL) and the "ubitron" have
been successfully demonstrated for operation over a broad
frequency range from the microwave to the optical parts
of the spectrum and show promise as a high-power source
of radiation at millimeter and submillimeter wave-
lengths. ' " The distinction between the ubitron and the
FEL is not well defined in the literature. In our work, we
find it convenient to distinguish between the FEL and the
ubitron primarily on the basis of the electron-beam ener-

gy, and we shall refer to such devices as ubitrons when the
electron-beam energy is less than or of the order of 500
keV. While this choice of energy is arbitrary, it is
motivated by the fact that most devices that operate at en-
ergies below 500 keV are characterized by operation fre-
quencies that occur close to the waveguide cutoff. The
ubitron' therefore, may be thought of as a weakly relativ-
istic FEL operated as a microwave tube, and we em-
phasize that the physical mechanisms for the FEL and
the ubitron are identical.

The motivation for the present work is to develop a ful-
ly three-dimensional nonlinear analysis of and simulation
code for the FEL and the ubitron. Theoretical investiga-
tions of the ubitron and the FEL have been confined,
principally, to the linear regime however, a fully
nonlinear treatment is required to describe the interaction
through the linear stages to saturation. We judged it im-
portant to include the effect of an axial guide magnetic
field on the interaction in the analysis because (I) axial
guide fields are included in many experimental configura-
tions to confine high-current electron beams against the
effects of self-fields, (2) linear analyses of the interaction
have shown that substantial enhancements in the gain are
possible due to the presence of the guide field, and (3)
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nonlinear simulation in one dimension has shown corre-
sponding enhancements in the saturation efficiency.
Three-dimensional effects become important when the
transverse quiver velocity due to the wiggler magnetic
field becomes large. In this regime, displacement of the
electron from the axis of symmetry also becomes large,
and a one-dimensional approximation for the wiggler
magnetic field breaks down. In addition, the transverse-
mode structure of the radiation field is important in the
description of the overlap of the radiation field and the
electron beam and is a crucial feature of the analysis when
the interaction occurs in the vicinity of the waveguide cut-
off in ubitrons.

In this paper we derive a fully three-dimensional non-
linear analysis of the FEL and the ubitron for a configu-
ration in which an energetic electron beam is propagating
through a loss-free cylindrical waveguide in the presence
of a helically symmetric wiggler and a uniform axial
guide field. To this end, a set of coupled nonlinear dif-
ferential equations is derived which self-consistently de-
scribes the evolution of both an ensemble of electrons and
the electromagnetic fields. Space-charge fields are
neglected in the analysis; therefore, the treatment is ap-
plicable to the high-gain Compton (or strong-pump) re-
gime. The nonlinear current which mediates the interac-
tion is computed from the microscopic behavior of an en-
semble of electrons by means of an average of the electron
phases relative to the ponderomotive wave formed by the
beating of the radiation and wiggler fields. These equa-
tions are solved for the case in which a monoenergetic
electron beam of arbitrary initial cross section is adiabati-
cally injected into the interaction region. The adiabatic
injection is modeled by allowing the wiggler-field ampli-
tude to increase slowly from zero in ten wiggler periods.
The finite waveguide geometry is included in the analysis
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by the introduction of the boundary conditions appropri-
ate for either the transverse-electric (TE) or transverse-
magnetic (TM) modes in a loss-free cylindrical waveguide.
Thus, all transverse and finite-geometry effects are includ-
ed in the static wiggler and radiation fields in a self-
consistent manner. In addition, since the problem of in-
terest is that of a ubitron and a FEL amplifier, only
single-wave-mode propagation is considered. This per-
mits an average over a wave period to be performed which
eliminates the fast-time-scale phenomena from the formu-
lation. The resulting equations are equivalent to a kinetic
description of the problem and result in a great increase in
computational efficiency over a full-scale particle-in-cell
simulation.

The organization of the paper is as follows. The gen-
eral equations are derived in Sec. II. The numerical solu-
tion of the coupled particle and field equations is given in
Sec. III for parameters appropriate to both ubitrons and
FEL's. A summary and discussion is given in Sec. IV.

5A(x, t) = Q 5At„(z)
l =0

I
Ji ( ki„r )e„sinai

ki„r

+Jt' (kt„r)eecosat

l J,(k,„r)e,sina,
ln~

+ Ji(ki„r)e,sinai '

for the TE modes, and
t'

5A(x, t)= y 5&i, (z) Jt'(kt„r)e, cosat
l =0
n=1

(4)

II. GENERAL EQUATIONS

B(x)=8pe, +B (x),
where

B (x)=28 (z) Ii(A, )e,cosX

——I, (A, )eesinX+I, (A, )e,sinX (2)

The physical configuration we employ includes a uni-
form axial guide field and a helically symmetric wiggler
field generated by a bifilar helix, so that the static mag-
netic field can be written in the form

for the TM modes, where for frequency oi and wave num-
ber k(z)

ai= I dz'k(z)+lB tot . — (6)

In Eqs. (4)—(6), Ji and Ji represent the regular Bessel
function of the first kind of order l and its derivative, and
ki„describes the cutoff wave number. In the case of the
TEi„mode ki„=—xt/R swhere Jt'(xi„)=0 and Rs is the
waveguide radius. For the TMi„mode ki„=—xi„/Rs,
where Ji(xi„)=0. Thus, there is an implicit limitation on
the magnitude of the beam currents which can be treated
self-consistently, and it is assumed that the mode ampli-
tude 5At„(z) and wave number k (z) are both slowly vary-
ing functions of z such that both

represents the wiggler field in cylindrical coordinates. In
Eq. (2), 8~(z) describes the wiggler amplitude, A,:k~r, —
X=B—k z, k (=2m/iL, where lL, is the wiggler period)
is the wiggler wave number, and I„(A,) and I„'(A, )
represent the modified Bessel function of order n and its
derivative, respectively. The adiabatic injection of the
electron beam is described by allowing the wiggler ampli-
tude to vary slowly in z, which is a valid representation as
long as

lnB ~(k
dz

In practice, we shall allow 8 (z) to vary only over
0(z (10K, , after which it shall be held constant. In the
simulation it is assumed that

ln[5At„(z) j «k,
and

ln[k(z)] ((k .
dz

The microscopic source current can be written as the
following sum over identical particle trajectories:

T

5J(x,t)= enb g—v (z x& oV&o tio)

5(t r; (z;x;p—,y;p, t;p) )

)U. (»'xoy;o t.o) I

8 sin (k z/40), 0&z &10k,
8~(z) = ~

8„, z ) 10k,~

Since the space-charge fields are neglected, the boun-
dary conditions at the waveguide wall may be satisfied by
expanding the vector potential in terms of the orthogonal
basis functions of the empty guide. Thus, we write the
vector potential of the radiation field in the form

where L is the length of the interaction region, Nz is the
total number of electrons, ni, is the average electron densi-
ty, v;(z;x;p,y;p, t;p) is the velocity of the ith electron at po-
sition z which entered the interaction region (i.e., crossed
the z =0 plane) at time t;p and transverse position
(x oy o), and

Z dz'
ri(z&xio&Vio&tip) tip+

Uzi (z &xio&yio&tio)
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The system is assumed to be quasistatic in the sense that
particles which enter the interaction region at times t0
separated by integral multiples of a wave period will
execute identical trajectories. As a result,

v'(z'x'p y p t p+'2nN/tv) =v;(z;x; p,y;o, t;0) for integer N.
The discrete sum over particles can be replaced by an in-
tegration over initial conditions, and we may rewrite (7) in
the form

T/2 5(t —r(z;xp, yp, tp) )5J(x, t) = en—bUzo f~ fdxodyoai«0 yo) «oct~~(to)v(z;xo yo to)—T/2 Uz Zcxo~yp~to
(9)

where u, p is the initial axial velocity, As=a.Rs is the cross-sectional area of the waveguide, T=Llv, p, and crj(xp yp)
and o.~~(tp) describe the distribution of the initial conditions subject to the normalization

„fdxodypoz(xp, yp)=Ab,

(12)

T/2
dt po i((to) =T,—T/2

where Ab is the cross-sectional area of the electron beam.
Substitution of the microscopic fields and the source current density into Maxwell's equations for the TE mode yields

5ai„+ —k —ki„5ai„—— P,pHi„
vz

and

W( —) T( —)

2k' (k' 5a )= P OH

where

5ai„=e5Ai„lmc, Pzp=uzplc cob =—4ne nblm,
and ui, v2 are the transverse components of the electron velocity relative to the basis vectors

e& ——e„cos(k z)+e„sin(k z)

and

e2 ———™e„sin(k„z)+eicos(kz) .

For the TM mode, we find the similar result:
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1
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(16)
where

Z
COfi—=Qp+ f dz' k+1k

0 Uzand

In the preceding equations, HI„, T~
—', and W~

—' are
mode- (i.e., polarization-) dependent quantities defined as (17)
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and

+Ji+ i(ki„r)cos[(l + 1)X], (20)

G,' +'=-J,—,(kinr)sin[(l —1)X]

+Ji+,(ki„r)sin[(l + l)X] .

Finally,

(21)

1(p) = f dgoo~~($0) f fdOodrorooi(«0, 60)F
2 Rg

(22)

describes the average of the beam electrons over both the
axial phase and cross section of the waveguide. It is im-

is tbe phase relative to the ponderomotive frame,
$0(—:—cl)tp ) is the initial phase,

E,'+ '=-J'i, (ki„r )cos[(l —1)X]

v, p= —e5Ei„——vX(80+8„+58!„),cE 8
8Z C

where

5Ei„=—— 5Ai„, 58i„——V X5Ai„.1 8
c Bt

(23)

Substitution of the appropriate form for the vector po-
tential shows that

portant to recognize that this average includes the effect
of the overlap of the electron beam with the transverse-
mode structure of the radiation field (often included in
one-dimensional formulations in an ad hoc manner by the
inclusion of a filling factor) in a self-consistent way.

In order to complete the formulation, the electron-orbit
equations in the presence of the static and fluctuation
fields must be specified. Since we describe an amplifier
configuration, we choose to integrate in z and write the
Lorentz force equation in the form

v, pi ————[Qo—yk v, +2Q Ii(A, )sinX]pz+ —Q p, Iz(A, )sin(2X)
QZ y

, mc5ai„f—(co kv, )W~— 2k! vzji(—k! «)cosc!! 1!v T!—]
1 ( —) (+) (24)

v, pz —— [Qo—yk~ —v, +2Q~Ii (A, )sinX]p i
——Q~p, [Io(A, ) +Iz(A, )cos(2X) ]=1 1

'dz '
y y

+ ,' mc5a!. [—(a! kv. )T! —' 2k! v iJi—(k! r)cosa!+1 i, v, %+'] (25)
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~
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'~ is the relativistic factor, p is the momentum, and
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represents the growth rate of the wave mode. For the TMi„mode, we find
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In addition, we have that for either the TE~„or TM~„
modes

d
vg x =u(cos(k~z) —vzs111(k~z),

ck
(30)

u, y =u~sin(k~z)+uzcos(k~z), (31)

and

CO

f( =K+ lk
z Uz

(32)

Both the linear and nonlinear evolution of the FEL and
the ubitron amplifier are included in the formulation
through Eqs. (12)—(15) for the fields, and (23)—(32) for
the particles.

III. NUMERICAL SIMULATION

The set of coupled differential equations derived in Sec.
II is solved numerically for an amplifier configuration in
which a single wave of frequency co is injected into the
system at z =0. Maxwell's Eqs. (12)—(15) can be reduced
to a set of three first-order differential equations for 5a~„,
I ~„, and k. Hence, the numerical resolution of the prob-
lem consists in the simultaneous solution of 6NT+3
first-order ordinary differential equations, where NT is
the total number of electrons. The algorithm we employ
involves the use of a fourth-order Runge-Kutta method to
calculate the first three steps after the initial state, after
which an Adams-Moulton predictor and corrector is em-
ployed for all further steps. The averages in Eqs.
(12)—(15) are performed by means of an ¹h-order Gauss-
ian quadrature technique in each of the variables
(Pp, rp, 8p); hence, N =NT. For all cases discussed in this
work a choice of N = 10 was found to provide an accura-
cy of better than 0.1%.

The initial state was chosen to model the injection of a
solid, axisymmetric, monoenergetic electron beam of zero
emittance and uniform cross section. Hence, we choose
o.

~ =cr~~ ——1, and initially set pz ——0 and p~~
——mc(yp —1)'1/2

In addition, the electron positions are chosen by means of
the Gaussian algorithm within the ranges —m. (fp(7T,
0&Op&2m and R;„(ro&R,„; hence, we may model
the case of either a solid or an annular electron beam.
Within the context of this beam geometry, the plasma fre-
quency is related to the total beam current Ib by means of
the relation

conditions on the radiation field are chosen such that
I ~„(z=0)=0 and k (z =0)=(co /c —k~„)' for an arbi-
trary initial power level. Observe that the time-averaged
Poynting flux P„ for the waveguide mode is related to the
field amplitude by the relation

2c4 R2
(35)

Hrn

for the TE&„mode, and

mc Rg
2 2

P~= 2 CO k+ 5Q~+
8e H)n

for the TM~„mode.
It is important to observe that, although the analysis

applies to the high-gain Compton regime, collective ef-
fects are included through the dielectric response of the
plasma to the waveguide mode, and the analysis is not
purely for a single particle. Thus, while the wave number
is set initially by means of the vacuum dispersion relation,
the system evolves through an initial transient regime into
a fully self-consistent dielectrically-loaded waveguide
mode.

The first case we consider is that of a wide-band 35-
GHz-ubitron amplifier operating in the TE~~ mode. To
this end, we assume a wiggler field with an amplitude and
period of B =2 kG and A, =1.175 cm, and a waveguide
radius of Rg ——0.36626 cm. The electron beam configura-
tion is that of a solid (i.e., pencil) beam with an energy of
250 keV, a current of 35 A, and an initial radius of
R,„=0.155 cm. The initial distributions in the axial
phase space and the beam cross section are shown in Figs.
1 and 2. Each dot in the illustration of the axial phase
space (Fig. 1) describes a "phase sheet" composed of 100
electrons, distributed throughout the cross section of the
beam. Each phase sheet, therefore, represents a cross-
sectional slice of the beam, which is chosen initially as
shown in Fig. 2. The circle shown in Fig. 2 represents the
waveguide wall. Each phase sheet is initially chosen to be
identical; however, the subsequent evolution of the parti-

Axial Phase Space (k~z =0)

0.146—

4e Ib
(33) 0.144—

In order to satisfy self-consistently the neglect of space-
charge fields and treat the high-gain Compton regime, we
must require that

N
0.142—

0.140—

0.138—
2

COb Ug

&/2 k 2 ~ll
yo k

(34) I

-n/2 n/2

within the uniform-wiggler region. This limitation on the
beam current will vary with the choice of energy, wiggler,
and axial magnetic field strengths, and wiggler period, but
will be adhered to in all the cases we study. The initial

FIG. 1. Initialization of the axial phase space. Each point
represents the superposition of 100 particles distributed
throughout the cross section of the beam.
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Beam Cross Section (k z=O)

Group I Orbits

Group

Vii

c

0.4—

0
~ ~

~ ~
0 ~

B = 20kG
= 1.176 cm

Vb ——260 keV

Bo tkG)

I

10 12

k x

FIG. 2. Initialization of the beam cross section.

V=U e(+U~t8 (37)

~=+u~/u~~, and X=+m/2, where u„,u~~ are constants,
and

2Q„u, ~I, (~)u
Qo —yk~u~

~ 2Q~I ) (&)
(38)

The self-consistent solution for the axial velocity as a
function of Bo, B, A, , and y may be found by substitu-
tion of the expressions for y and U„ into

uii+u =(1—y )c (39)

The solution is obtained by numerical means, and is
shown in Fig. 3 as a function of Bp for A~=2 kG,

=1.175 cm, and Vb
——250 keV (y=1.489). As shown

in the figure, there are two types of orbit. Group-I orbits

cle trajectories in the presence of the radiation field is fol-
lowed self-consistently. It should be remarked that the
particle distribution described herein represents a uniform
electron beam. The positions (r&, 8o, p&o) were chosen by a
ten-point Gaussian weighting, and the nonuniformity in
the positions of the electrons is compensated for by a
nonuniform weighting of the particles.

We now digress, briefiy, to describe the types of single-
particle trajectory in the combined wriggler and axial guide
magnetic fields. The optimum orbit for the FEL and ubi-
tron operation is characterized by a coherent electron
motion in phase with the wiggler. Such orbits would have
a constant axial velocity (to preserve the resonance condi-
tion between the particles and the ponderomotive wave
formed by the beating of the wiggler and radiation fields)
as well as a transverse velocity of constant magnitude. A
class of orbits of this type may be found in the presence of
both a wiggler and an axial guide field. These ideal
orbits describe helical trajectories about the axis of sym-
metry (axicentered), and are characterized by

FIG. 3. Graph of the axial velocity as a function of the guide
magnetic field for the ideal helical orbits.

are found for relatively low axial guide fields and are
characterized by Qo& yk v~~. In contrast, group-II orbits
occur for high axial fields and have Qo&yk v~~. The
dashed line represents orbitally unstable trajectories.

The purpose of the adiabatic entry taper in the wiggler
field is to inject electrons into the wiggler region onto tra-
jectories approximating these ideal helical orbits. Numer-
ical integration of the particle trajectories (i.e., in the ab-
sence of a radiation field) shows that such injection is
feasible for particles initially on axis [i.e., r(z =0)=Oj as
long as the orbit parameters are not too close to the mag-
netic resonance at Qp-yk~v~~. Thus, there are practical
limitations on the operation of the ubitron and the FEL
near magnetic resonance. Of course, the injection process
is not perfect, and the orbits differ slightly from the ideal
trajectories in that periodic motion is also observed corre-
sponding to I.armor oscillations due to the axial guide
field, betatron oscillations due to the transverse gradient
in the wiggler field, and higher harmonics of the wiggler
period. These problems intensify somewhat for electrons
which are injected off axis [i.e., r(z =0) ~ 0], in addition
to which the magnitudes of the transverse and axial veloc-
ities of the ideal helical component of the motion vary
with radial position. This occurs because the electrons
"see" a higher average wiggler field as the displacement
from the axis grows, and an electron injected at an initial
radius of ro will be characterized by a wiggler velocity
o 28

2Q„U
~

(Io(ko)I ] ( A, ) /A,

Qo Zk u~~+2Q Io—(AO)I)(k)
(40)

where Xo=k ro. As a consequence, the finite extension of
the electron beam will correspond to a spread in (u, u~~)

across the beam which, in turn, will result in a broadening
of the wave-particle resonance. The net result of all of
these effects is that the beam may display a very complex
overall bulk motion, and we emphasize that all of these
effects are included in the simulation in a self-consistent
way.

In order to illustrate the particle trajectories which
occur in the combined field structureit is u,seful to show
the evolution of the beam cross section at a series of axial
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Beam Cross Section (k z =75) Beam Cross Section (k~z =152)

0- 0—

k x

FIG. 4. Representation of the beam cross section at k z =75,
which is shortly after the start of the uniform wiggler region.

Ic x

FIG. 6. Representation of the beam cross section at
k.z =152.

positions within the interaction region. We consider a set
of parameters consistent with group-I orbits and choose
an axial field of Bo——1.3 kG. This is sufficiently far
from the magnetic resonance (see Fig. 3) that injection
onto near-ideal orbits is possible. In Fig. 4, we show the
beam cross section at k z =75, which corresponds to a
point just after the start of the uniform wiggler region at
k z=62.83. Note that the initial value of the radiation
field was chosen to correspond to an input power of
I';„=10W at a frequency co/ck =1.3, so that the pertur-
bation to the single-particle orbits at this point due to the
electromagnetic field is negligible. It is immediately evi-
dent from the figure that the beam has been substantially
compressed due to the focusing effect of the wiggler. In
addition the beam center is shifted off axis corresponding
to the helical motion imposed by the wiggler. Thus, the

beam has "spun up" due to the transverse velocity v aris-
ing from the combined influence of the wiggler and guide
magnetic fields. The injection process for these parame-
ters yields orbits close to the ideal helical trajectories, and
k~r„„«,-0.25 for the beam center which is in good
agreement with the result expected from the ideal trajec-
tories. The beam also displays a rotational motion about
the center which is accounted for by the combined effects
of the variation in U across the beam cross section and
the betatron oscillation due to the transverse wiggler gra-
dient.

The overall bulk motion of the beam is expected to
display a periodicity at the fundamental wiggler harmonic
and to twist the beam into a helix about the axis of sym-
metry. Such motion is observed as is shown in Figs. 5—8,
which displays the beam cross section as it evolves from

Beam Cross Section (k z =150) Beam Cross Section (k z =154)

~ ~

~ ~ ~ ~ I

k x Ic x

FIG. S. Representation of the beam cross section at
. k z = 150, corresponding to the linear phase of the interaction.

FIG. 7. Representation of the beam cross section at
k„z= &54.
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Beam Cross Section {k~z='156)

k x

FIG. 8. Representation of the beam cross section at
k z=156.

k z = 150 through 156 (approximately one wiggler
period}. Note that this is well within the region of strong
linear (i.e., exponential) growth of the radiation field, and
substantial amplification of the input signal has occurred.
As a result, each phase sheet has reacted in a slightly dif-
ferent way. This is indicated by the "smearing" of the
dots in Figs. 5—8 which marks small displacements of the
beam centers in each phase sheet as well as small differ-
ences in the rates of rotation about the beam centers. We
conclude, therefore, that the motion of the beam includes
an overall bulk helical motion about the symmetry axis at
the wiggler period, as well as a "pinwheeling" type of ro-
tation about the beam center at a much longer period.

The evolution of the waveguide mode corresponding to
these transverse beam motions is shown in Fig. 9. The
electromagnetic wave was a TE~~ waveguide mode (for

Rs ——0.36626 cm} at co/ck~ =1.3 which corresponds to a
frequency of f=33.2 6Hz. Beam voltage and current
were 250 keV and 35 A, respectively, for an average beam
power of 8.75 MW. As shown in the figure, the growth
of the wave mode was approximately exponential after an
initial transient period for k~z & 80. During the linear
phase of the interaction the growth rate was
1 &~/k =0.029, and a small increase was observed prior
to saturation at k z =267. The radiation power at satura-
tion was 1.87 MW for an overall efficiency of g =21.4%.
A complete spectrum of the efficiency at saturation versus
frequency is shown in Fig. 10, in which the dots "epresent
the numerical results of the simulation. We observe that
peak efficiency occurs for co~„k-l.3ck, with a band-
width dc'/co~, k —54%.

Saturation is by means of particle trapping in the pon-
deromotive wave formed by the beating of the radiation
and wiggler fields. This is clearly shown in Fig. 11 in
which we plot the axial phase space at saturation for the
case of co/ck~ = 1.3. The solid lines in the figure
represent approximate separatrices calculated under the
assumption that all particles are executing the ideal helical
trajectories. Thus, the actual number of electrons trapped
may differ slightly from that shown in the figure, but the
conclusion remains valid. The beam cross section at
saturation is shown in Fig. 12. Although the figure seems
to show a chaotic state in which the initial uniformity in
cross section of each phase sheet has been destroyed, a
closer examination of the positions of the electrons within
each phase sheet shows that the electron positions have re-
tained their coherence and appear much as shown in Figs.
5—8. However, the beam centers in each phase sheet have
shifted markedly so that the superposition of the electrons
in all the phase sheets gives the appearance of a random
distribution.
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FIG. 9. Evolution of the radiation power and growth rate of
the TE~~ mode as a function of axia1 position.

FICx. 10. Spectrum of the interaction efficiency vs frequency
for the TEj~ mode.
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0.15

0.10

0.05

0.00

~ -0.05

- 0.10

-0.15

-0.20—

-0.25—

I

5rr 67' 7n

FIG. 11. Representation of the axial phase space at satura-
tion.

The consistency of the code has been checked several
ways. The most fundamental is the requirement of energy
conservation between the particles and the wave, and
agreement between the energy lost by the beam and that
gained by the wave was found to be significantly better
than 0.1% in all cases considered. In addition, the growth
rate in the linear regime has been checked against the pre-
dictions of a three-dimensional linear theory of the in-
teraction. Although the linear theory represents an
idealized model in which all particle trajectories are
described by the ideal helical orbits, agreement between
the simulation and the linear theory is good. At the fre-
quency corresponding to peak efficiency (co/ck~=1. 3),
the linear theory predicts a growth rate of I &;„/k =0.031,
which compares well with the simulation result of
I ~&/k„=0.029. Finally, an estimate of the efficiency on
the basis of the simple heuristic phase-trapping model

yields an estimate of a 19.1% efficiency, which is close to
the 21.4%%uo efficiency obtained from the simulation.

The case of the TM~~ mode has also been examined us-
ing the simulation code. In order to facilitate comparison
with the TE&~ mode, the parameters specifying the exter-
nal magnetic fields and electron beam remain unchanged;
that is 80 ——1.3 kG, 8 =2.0 kG, k = 1.175 cm,
Vb

——250 keV, Ib ——35 A, and the initial beam radius is
Rb ——0. 155 cm. The only alteration is in the choice of the
waveguide radius in order to shift the waveguide disper-
sion curve relative to the beam resonance line [i.e.,
co=(k+k„)v~~]. We choose Rs =0.76223 c'm so that the
waveguide cutoff is identical to that of the TE~& mode,
and the interaction occurs over the same frequency band.
Numerical results then yield a peak efficiency

,„=5.92% at a frequency of co/ck =1.78. This is sig-
nificantly lower than the peak efficiency of 21.4%%uo found
for the TE» mode at a frequency of co/ck =1.3. The
growth rate was also significantly lower, and we observe a
growth rate of only I'»/k~=0. 012 at the frequency cor-
responding to peak efficiency. For this reason, we shall
confine our attention in the remainder of this work to the
TE modes. However, we emphasize that no attempt was
made to optimize the interaction with respect to the TM~~
mode, and it would be unjustified to conclude (as in the
case of the gyrotron, for example) that the FEL and the
ubitron interaction favors the TE mode.

The cases discussed thus far dealt with waveguide
modes with an / =1 azimuthal mode number. Examina-
tion of the dynamical equations shows that as long as X is
an approximate constant along the particle trajectories
+=+m/2 for the ideal helical orbits) a selection rule ex-
ists whereby TE~„or TMI„modes interact via wave-
particle resonances at co=(k+lk )v~~. It has been conjec-
tured, therefore, that no interaction is possible for the
I =0 modes, and numerical study of test cases for TED&

and TMO~ modes has, indeed, shown that no gain occurs.
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FIG. 12. Representation of the beam cross section at satura-
tion.

FIG. 13. Spectrum of the interaction efficiency vs frequency
for the TE~~ mode.
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Higher harmonic interactions may also be studied by the
selection of higher-order (i.e., I ~ 1) modes, and the results
of a series of simulations are shown in Fig. 13 for the
TEz~ mode. As in the case of the TM~~ mode, the param-
eters specifying the external magnetic fields and the elec-
tron beam are chosen to be identical to those used to study
the TE~~ mode in order to facilitate comparison of the in-
teraction at the two harmonics. Only the waveguide ra-
dius has been changed to Rg ——0.28 cm in order to bring
the intersection points between the TEq~ dispersion curve
and the beam resonance line, co=(k+2k )v~~, sufficiently
close together to obtain a relatively broad-band gain spec-
trum. The growth rate found at the frequency which cor-
responds to peak efficiency (i.e., co~„k/ck =2.9) was
I 2&/k =0.025 which is comparable to that found for the
TE&~ mode (I ~~/k~=0. 0'29 at co/ck =1.3). The efficien-
cy is plotted as a function of frequency for the TEz& mode
in Fig. 13. While the bandwidth b,co/co~„k —43% is com-
parable and the frequency is more than doubled relative to
the TEt~ mode, the peak efficiency of 4.7% is greatly de-
creased.

We now turn to the case of a higher-energy electron
beam. In Fig. 14 we plot the variation of the axial veloci-
ty of the ideal helical orbits versus Bo for 1-MeV elec-
trons and a wiggler characterized by B =1.0 kCx and
A,~ =3 cm. As indicated in the figure, group-I orbits are
found for axial guide fields Bo & 6.4 kG, and group-II or-
bits for Bo & 8.2 kG. No such orbits are possible between
these limiting values. The first case we consider is that of
Bo ——3.5 which corresponds to a group-I type of trajecto-
ry, and we assume a 1-MeV, 50-A electron beam with an
initial radius of 0.2 cm. The waveguide radius was chosen
to be Rg =0.45 cm, so the upper and lower intersection
frequencies between the TE~~ dispersion curve and the
beam resonance line are well separated and occur at
co/ck~ =10.9 and 2.8, respectively. Gain is, indeed, found
in the vicinity of these frequencies, as shown in Fig. 15 in
which we plot the interaction efficiency versus frequency
for this case. We observe that the efficiency drops rapidly
near the upper (lower) range of the lower (upper) frequen-
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cy band. The lower frequency band corresponds to fre-
quencies f-28 GHz which are comparable to those
found for the TE&~ mode for a 250-keV beam, and al-
though the bandwidth is narrower than that found previ-
ously (see Fig. 10) the efficiencies are comparable. The
upper frequency range shows a broader bandwidth and
somewhat reduces efficiency (g~„&-13.7%).

The results of a series of simulations for Bo= 11~ 75 kG
and Rs ——0.5 cm are shown in Fig. 16 for parameters con-
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FIG. 16. Spectrum of the interaction efficiency vs frequency
for the TE~~ mode and parameters corresponding to group-II or-
bits.
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sistent with group-II orbits, in which we plot the interac-
tion efficiency as a function of frequency. It should be
remarked that for some of these runs a small fraction of
tlie beam was lost to the wall. The procedure followed
when this occurred was to eject such particles from the
simulation, and the efficiencies shown include this effect.
The bandwidth observed was b,co/co~„k=57% over a fre-
quency range of 28—45 GHz. However, while the fre-
quency range is comparable to that used for the lower-
energy (250-keV) case, the observed efficiencies are con-
siderably higher. We observe a peak efficiency
g~k —47% at frequencies in the range co~„k/ck~
=3.0—3.1, which is more than double that found for the
group-I orbits with a 1-MeV beam in this frequency
range. It should be emphasized here that this efficiency is
found with uniform wiggler and guide magnetic fields,
and no magnetic field tapering was used. This enhance-
ment in the interaction efficiency associated with group-II
orbit parameters has also been observed in one-
dimensional simulation.

The small degree of variation in the efficiency about the
line of best fit is difficult to account for precisely due to
the complexity of the system of coupled equations. Some
of the causes of this additional structure undoubtedly in-
clude the following: (1) variations in the number of parti-
cles which are lost to the wall, and the positions (in z) at
which they are lost, (2) the variation in the ponderomotive
potential with the frequency at which the interaction
occurs, and (3) variations in the evolution of the radial
profile of the beam near saturation (where the radiation
field is large) which have an effect upon both the overall
filling factor and the trapping fraction. However, this is
an area of ongoing investigation, and we cannot rule out
the possibility of an additional modulation of the interac-
tion due to departures of the electron trajectories from the
ideal helical orbits.

IV. SUMMARY AND CONCLUSIONS

In this paper we have developed a fully self-consistent
nonlinear theory and numerical simulation of the ubitron
and the FEL amplifier in three dimensions. The particu-
lar configuration considered consists of a cylindrically
symmetric electron beam of arbitrary cross section inject-
ed into a loss-free cylindrical waveguide in the presence of
both a helically symmetric wiggler and a uniform axial
guide magnetic field. In addition, the adiabatic injection
of the electron beam has been modeled by including an
initial taper of the wiggler-field amplitude. The system of
equations derived describes the self-consistent evolution of
both the wave fields and the trajectories of an ensemble of
electrons. The analysis has been performed for both the
TE and TM modes, and describes the overlap of the trans-
verse mode structure and the electron beam (i e , the. .
filling factor) in a self-consistent manner. Space-charge
fields have been neglected in the analysis, so the treatment
is applicable to the high-gain Compton regime of opera-
tion. In addition, self-field effects of the electron beam
have been neglected. Since the problem of interest is in
the ubitron and the FEL amplifier, only single-wave-mode
propagation is considered. This permits an average over

the wave period to be performed which eliminates the
fast-time-scale phenomena from the formulation, and re-
sults in a great increase in computational efficiency over a
full-scale particle-in-cell simulation code.

The electron trajectories are integrated using the exact
Lorentz force equations, so that we are able to examine
the detailed motion of the electron beam in the combined
field structure. Overall bulk motion of the beam exhibits
a dominant oscillation at the fundamental wiggler period,
as expected, which twists the beam into a helix about the
axis of symmetry. In addition, a significant focusing ef-
fect is observed to occur due to the radial inhomogeneity
of the wiggler which can result in a significant contrac-
tion in the beam radius. Superimposed on this bulk
motion is (1) a shear in the electron velocity across the
beam, and (2) a slow-time-scale betatron oscillation whose
net effect results in a slow pinwheeling motion about the
beam center. Larmor motion due to the axial guide field
is more difficult to identify because the period may be
comparable (especially near magnetic resonance) to the
wiggler period. However, the adiabatic beam-injection
technique was found to be effective as long as the parame-
ters were not too close to magnetic resonance, and the
Larmor motion can be kept small.

Numerical simulations were conducted for parameters
corresponding to a 250-keV ubitron and a 1-MeV FEL.
In all cases, comparison of the energy lost by the particles
to that gained by the wave showed energy to be conserved
to within an accuracy significantly better than 0.1%. The
consistency of the simulation was also checked by com-
parison of (1) the growth rate found by the code with that
predicted from a linear theory of the instability, and (2)
the saturation efficiency obtained in the simulation with
that found by simple phase-trapping arguments. In both
cases, good agreement was found.

The parameters chosen to model the 250-keV ubitron
and the 1-MeV FEL were chosen so that the output fre-
quency was in the neighborhood of 35 GHz for both
cases. In each case, the peak efficiency for the TEii mode
was found to be in the neighborhood of 20% for parame-
ters corresponding to group-I trajectories (i.e., a relatively
low axial guide field). However, the group-II type of tra-
jectory was found to result in substantial enhancements in
both the efficiency (-45%) and bandwidth for the case of
the higher-energy (1-MeV) beam. This is consistent with
the results found for a previous one-dimensional simula-
tion of a 1.25-MeV beam. The amplification of the TM&&
was also studied for parameters associated with the 250-
keV ubitron, and found to result in substantially lower
growth rates and saturation efficiencies than the TEii
mode. However, since no optimization of the parameters
for the TM mode was attempted, it is premature to con-
clude that the FEL and the ubitron interaction favors the
TE mode.

Higher harmonic interactions have also been studied,
and arise from the azimuthal variation of the modes in a
cylindrical waveguide. Since the phase of the TEi„and
TMi„modes vary as exp(ikz+il8 cot) and the az—imuthal
variation of the ideal helical orbits is given by 8-k~z, the
beam resonance condition is co=(k+lk„)U, and both the
TEI„and TMI„modes resonate at the 1th Doppler upshift.
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It should be remarked that such higher harmonic interac-
tions do not depend upon a corresponding higher harmon-
ic component in the single-particle orbits. In view of this,
simulation runs were made for the TE2t mode, and
growth rates were found to be comparable to those for the
TEtt mode at approximately half the frequency. The
saturation efficiency, however, was found to be greatly re-
duced relative to the TE~& mode.

In view of the high efficiencies found for the 35-6Hz
examples shown, important future areas of investigation
include the detailed scaling of the saturation efficiency at
a given frequency with such parameters as the beam ener-

gy and the wiggler parameters. The extremely high effi-
ciencies found for parameters associated with high axial

field group-II trajectories lend particular importance to a
determination of the operational limits of this regime. Fi-
nally, it should also be noted that these results have been
obtained for a monoenergetic electron beam, and the in-
clusion of a finite energy spread in the simulation is
currently being pursued.
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