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The consequence of time-reversal symmetry in a general second-ordeI optical process between de-

generate initial and final states is elucidated. The principle is applied to the pseudoscalar natural-
optical-rotation operator (RL, ML, ), which involves the interference of an electric-multipole (RL, )

transition and a magnetic-multipole (ML, ) transition. In addition to deriving point-group selection
rules, time-reversal effects on matrix elements between degenerate states of a chiral versus an achiral
molecule are compared and contrasted. Other non —time-reversal-degenerate states in chiral versus
achiral molecules (D3 versus C3„and D4 versus D~) are also compared. The analogy to the Jahn-
Teller effect, which also involves (albeit first order v-ibronic) matrix elements over degenerate states,
is mentioned, especially with regard to the formal "splitting" of the degenerate levels by the pseu-
doscalar optical-rotation operator. A comprehensive search among the point groups for
degenerate-state self-products that will give rise to the pseudoscalar function is conducted. Detailed
results for the coupling of (degenerate) irreducible representations for important point groups (and
their subgroups) are worked out for Tq (T), 0, D6d (D6, D3, C6„, C3„, C6, C3, D2d), and D4q. The
couplings to give dipolar (L = 1), quadrupolar (L =2), and octopolar (L =3) pseudoscalars are
shown explicitly. Attention is called to the differences in the transformation of a magnetic-
multipole operator and an electric-multipole operator, even though they both belong to the same ir-
reducible representation. The resulting differences in coupling coefficients for degenerate states are
given to help determine nonvanishing optical-rotation matrix elements. A summary and a discus-
sion of the conservation of parity and time symmetry in optical rotation are given.

I. INTRODUCTION

Natural optical rotation in random molecular systems is
due to intrinsically chiral molecules. ' The observed ro-
tatory strength is proportional to the matrix element
over R.M which is a pseudoscalar and is parity odd. In
terms of point-group-symmetry selection rules, the sym-
metry of the state wave-function self-products must
match the symmetry of the pseudoscalar operator R M
for this matrix element to be nonzero. Since most
ground-state molecules are nondegenerate, the direct self-
product of these ground-state wave functions yields the
totally symmetric irreducible representation. Therefore,
the observed pseudoscalar quantity R M also belongs to
the same totally symmetric representation in naturally op-
tically active chiral molecules, as is well known. " Few
studies have been made on degenerate ground or excited
states serving as the initial or intermediate states. For
many degenerate states, the direct self-product can yield
the symmetry to match that of the pseudoscalar operator
R.M whether the molecule is chiral or not. For example,
in an achiral molecule of C3„symmetry, R M belongs to
Az and EE(=Ai+A2+E) also contains Az. Will
point-group symmetry alone be sufficient to ensure the
observation of optical activity in a molecule? This is espe-
cially pertinent when some degenerate states are time-
reversal degenerate' '" (e.g., E of C4). Will time sym-
metry be needed? In the case of the Jahn-Teller effect,
which is proportional to the first order vibronic matr-ix

element (I 1 ~
(BH/BQ;)Q;

~

I 1 ), time symmetry is needed
to determine the selection rules. Even though some
direct-product representation of the degenerate state I 1
may satisfy the point-group-symmetry selection rule, hav-
ing the same symmetry as the vibration Q;, some matrix
elements may still be zero. ' ' This is because of the
"hidden" time-reversal symmetry which requires the
states with an even number of electrons to select only the
(perrnutationally) symmetric direct product [I i ]. Howev-
er, the Jahn-Teller effect is a first order process -while op-
tical rotation is a second-order optical process. The time
reversal of the latter involving four state vectors has not
been formally treated. Time reversal in first-order matrix
elements is relatively well known and some second-order
processes have also been treated as pseudo —first order7'
by lumping the two perturbations and the intermediate
states together as a single effective perturbation operator.
The questions we ask in this work are as follows.

(1) When a point-group-symmetry selection rule is satis-
fied, will the degenerate states of achiral molecules pro-
duce natural optical rotation or not, and why? Similarly,
how will the degenerate states of chiral molecules give op-
tical rotation'7 Will the contributions of the degenerate
components cancel or reinforce each other?

(2) In the case of time-reversal degenerate states, will
point-group symmetry be sufficient? What is the conse-
quence of introducing time symmetry? Because a single
component of the time-reversal degenerate state lacks time
symmetry, will a time-nonconserving property be observ-
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able for this component? What is this property? How
does it differ from the usual optical rotation due to the
parity-odd pseudoscalar R M?

(3) In the introduction of time-reversal symmetry, how
does the time reversal in a second-order matrix element in-
volving four state vectors differ from that of the first or-
der? What are the requirements for the permutational
symmetries of the degenerate components?

(4) A pseudoscalar operator for natural optical rotation
comes from the scalar contraction of one electric (Et )

and one magnetic (ML ) multipole. ' When degenerate
states are considered, will each degenerate state contain al/
orders (L=1,2, 3, . . . ) of multipoles? If not, which de-
generate state can contain which multipole? (The latter
affects the magnitude of rotatory strength. ) What are the
irreducible representations of these higher multipoles in
various point groups?

(5) The higher magnetic multipoles are functions that
contain angular momentum I in addition to the usual po-
sitional variables and are seldom studied. How do these
mixed functions differ from the usual pure electric mul-
tipoles in transformation and coupling characteristics?
The latter determine the selection rules.

We shall start by deriving the effect of time reversal in
second-order processes in Sec. II [to answer (3) above].
Then we will apply the principle to optical rotation of de-
generate states in Sec. III [to answer (1) and (2) above].
We will then deduce the electric and magnetic multipoles
contained in the degenerate states in Sec. IV. We will elu-
cidate their symmetries, selection rules, and coupling coef-
ficients with each other in the same section [to answer (4)
and (5) above].

II. TIME-REVERSAL INVARIANCE
IN SECOND-ORDER OPTICAL PROCESSES

To consider time reversal, we introduce a general term
I in a second-order matrix element over the perturbation
H':

I=H~~H„„=(g~,H' P„)(+H'g ),

where j is the initial and (identical) final degenerate-state
irreducible representation; p, v, m, n are the degenerate
components; and k is the intermediate degenerate-state ir-
reducible representation. In the absence of spin, the
time-reversal operator E reduces to complex conjugation
Kp (or the Wigner's time-reversal operator). In the pres-
ence of spin, the operator becomes E = UEp =o&Ep,
where o.

z is the Pauli spin matrix. With time invariance,
the operation of E on a component will give rise either to
the same component, except for a phase 6 when it is non--
degenerate, or to another degenerate component' multi-
plied by a phase factor, specifically when operating on the
spin functions K(?3)=('~; ).

Therefore, there is no loss of generality in considering
another matrix element I', which is proportional to I and
which can be rearranged by applying the "turn-over rule"
for matrices

I I'=H ',"H.'„'=(Kg,H'y„")(K+H'g )

=(H' KP~, P„")(H' ziti„",P ) . (2)

The operation by L which is an antiunitary operator
yields

KI'=(KPp, KH' KP~ )(KP,KH' ~Kg„")

=(KQ KH' K 'K it/ )(KP KH' K 'K i'")

=aint (KPq, H'P~ )a2it (KP,H'g„")

2+ ~~m (3)

where a& and az are, respectively, the "eigenvalues" for
KH'tK '=aH' for the first and second H'.

a i and a2 are both unity if H is the radiative interac-
tion operator —(e/mc)A P. This is because both the vec-
tor potential and the momentum change sign under time
reversal (and the charge e is not changed). a is also + 1

for the vibronic operator (BH/BQ)Q. it =(+i)
=( —1) with X equal to the number of electron spins
and is also the eigenvalue for the twofold repeated opera-
tion of time reversal on any wave function, K P=x f.

The matrix element I' may be expressed as the average
of (2) and (3) as follows:

(4)

where we have taken care to keep the same order for the
first and second H' and where 1+% is the projection
operator which generates the totally symmetric irreducible
representation of time inversion. The fact that we can
project out a nonzero time-invariant (time-symmetric)
component is, of course, a prerequisite (selection rule) for
the existence of the matrix element. It is seen that be-
cause of the simultaneous permutation of m, n and p, v,
there is no clear-cut symmetry or antisymmetry in the ap-
pearance of the indices, even if the first and second H"s
are identical. However, if either the intermediate state or
the initial state is nondegenerate, we can rewrite Eq. (4)
for g& g„=fp as fol——lows (the ensuing arguments also
apply to the sum over the same component serving as the
intermediate state):

I'= ,' (H~ p"Hp. '+ a &a—,~'H p~ H„'g') . (5) '

This has permutation symmetry if the first H' is the same
as the second. For the radiative interaction
H'= —(e/mc)A P, this means that after the photon
creation and annihilation contained in 2 have been
evaluated, ' the first and second A.I' are replaced by the
same multipole-transition operator' ' to give Tz Tz
which may be equal to RiRi (both photons in the
electric-dipole mode), to M&M, (both photons in the
magnetic-dipole mode), to R2R2 (both photons in the
electric-quadrupole mode), etc. These processes can give
rise to Rayleigh optical activity' and optical rotation
in oriented systems. ' The time-reversal projection opera-
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tor in Eqs. (4) and (5) may be replaced by the following
permutation projection operator:

—,(1+K)= ,' (1—+a',~4P „),
where a"=(+1) =1 and where for the second-order
transition with identical operators (Tl. )(TL, ), a~ ——1.
Therefore, only the symmetric permutation, coming from
—,
' (1+P~„),of the degenerate-state direct product is per

mitted in the time-reversal selected second-order matrix
element between the same initial and final degenerate
states, regardless of whether the number of electrons is
euen or odd. If one had taken an antisymmetric permuta-
tion for the wave function using the projection operator
—,(1 P„),—then superposition of the symmetric projec-
tion operator —,(1+K) required by time-reversal invari-
ance would give a "null" matrix element. The necessary
wave functions, direct products for R 1R „M&M ~, and
RqRq for the point groups, are derivable from character
tables. For a first-order matrix element involving only
two state vectors such as that in the Jahn-Teller effect,
with a

&

——1, I&. =(+i ) =(—1),our results reduce to

I= ,
' (—1+K)H'„'J

= —,'(1+a,~ P „)H' JJ

= —,[1+(—1)"P „]H' JJ .

In other'words, only the symmetric direct product for an
even number of electrons and the antisymmetric product
for an odd number are permitted —a result in agreement
with that of Jahn and Teller.

III. TIME-REVERSAL INVARIANCE
AND THE MATRIX ELEMENT

OVER TIME-REVERSAL-DEGENERATE STATES

This permutation symmetry will not exist if the first
and second H"s are different multipole operators. Opti-
cal rotation for a randomly oriented (isotropic) system of
molecules' is the case in which the first H'=R (electric
dipole) and the second H'=M (magnetic dipole). Because
the time-reversal operator is antiunitary' and reverses the
order of states in a matrix, we choose to write the
optical-rotatory strength' in a more symmetrical form as
follows:

2mkXO
c&0= g [(E' Eb+«k) '+(E, Eb+«k—) '](&i

I
@'i

I

b & &b
I
M le &+ &j IM

I

b & &b
I

@'i
I j&)

3

=~(&KJ'I@'i lb& &Kb'111j&+&Kj'I 1 lb& &Kb'I @'~ lj&)

(8)

&i IN'»l» «, E~~(i =X«;—
3

1/2

where the A"'s stand symbolically for all the constants
and summations over appropriate states. ECj'=j, Kb'=b,
k =2m.v/c, M =(e/2mc)l is the magnetic-dipole operator,
and (j

~

8',
~

b ) is antisymmetric when the indices j,b of
its matrix elements are permuted. This is because of its
proportionality to the antisymmetric energy factor
(EJ Eb), viz. [Re—f. 10, Eqs. (17) and (A13)],

K(KJ'
~

I')
~

b) =K($')KJ'
~
b)

=(Kb ~K@',K '~K'q')

= —~'&Kb
i

a',
i
j'&,

K(Kj ~1~b)=K(1'kJ ~b)

=(Kb lK1'K '~K'J')

~z(Kb (1 ~j') .

(9c)

(9d)

X F»&8;P;) b) Rck

=(E, Eb)&j ~R,„~ b—)/«k . (9a)

=(E Eb)(R Li ~

b)*/«—k

= (E/ Eb ) ( b
~

R
& ~ j ) /«k-

= —&b
~

e', ~j), (9b)

As a result, under complex conjugation as well as under
time reversal, an artificial negative sign must be added,
making the transformation of the "effective" electric di-
pole, which is derived from momentum P, the same as
that of the magnetic dipole, as it should:

To illustrate the effect of degenerate states, we first use
the pair of C4 and S4 groups. The results for other
groups are given in tables. From Table I we see that in
C4 the pseudoscalars R+1 and R 1+ (derived from
8'~+1 and 8'~ 1+) belong to A, where R+=+R&+, .
The degenerate-state components g+ (=Kg+) may be
generated by time -reversal from each other. The
degenerate-state product EE contains P+f++g* g
=II II++II+II with the upper sign corresponding to
the time-symmetric component and the lower sign corre-
sponding to the time-antisymmetric component. But both
components belong to point-group symmetry A. Because
of this ambiualence of two A's, point group symmetry is n-ot

sufficient to determine a nonvanishing matrix element
with respect to a pseudoscalar which also belongs to A.
Therefore, time-reversal symmetry is necessary to deter-
mine which A, the one with symmetric combination or

'J
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TABLE I. Transformation of electric and magnetic dipolar operator products and self-products of degenerate states and the ma-
trix elements' thereof.

Operator/
states

H~ =x+iy
II =x —iy

l =l„~il„
l =l„—il
xx+yy
xy —yx
xy+yx
xx —yy

xl» +yly
xly —yl„
xly ~yl„
xlx yly

iiri +
Ii-rr+
II H

H~H~
R l

R l~
R l

R~1~
(xl„)
(yl )

(xly )

(yl )

(Ii l )

(Ii+l- )++
(rr l )++

Definition

R
R

=M~
=M

[0 %)+
[+X+]
[ex@]+
[+'+]
[R M]+

[R XM]
[R XM]+
[R M]
(0 0)+
(0 %)-

(+x+)+
(+x+)-
(R.M)+
(R.M)

(R XM)+

E
A

A

E

A

A

E
A

A

A

(xl, )yy

—(xly )yy

+0
0
0
0

A

A

8
8
A

A

8
8

A

8
8
A

A

8
8

(xl„)yy

—(xly )yy

+0
0
0
0

S4

E
A

A

8
8
8
8

A

A

8
8
8
8
A

—(xl„)yy

(yl )yy

(xly )yy

0
0

&0
0

A)

, A2

.E

A2

Ai
E

—(yl )yy

0
—(II l )

0

D3

E
A)

A2

E
E
A)

A2

E

A]
A2

E

Ai

0
0
0

(H~l )

0
0
0

A)

A2

82
Bi
A]

A2

82
8]
A)

A2

8)
B2

A)

A2

8)
B2

0

(H~l )

0

A]

A2

B2

B]
8]
82
A2

Ai

A2

8]
82
8]
B2

Ai

A2
—(yl )yy

0
0
0
0
0

@0
0

'By definition (yl~)„„=(0
I y I

x ) &x
I

ly
I
0) and (II 1+ )++——(0

I

II
I
++ ) ( ++ I I+ I

0&, where 0 stands for the totally symmetric (2
or A~) state.
From this table under D3, we see that (using additional matrix elements by permutation of indices)
R~ =(xl„)»+(xl„)yy =(yly )~+(yly)yy =Ryy, in agreement with L. D. Barron (private communication).

the one with antisymmetric combination, will give the
matrix element. We may write the rotatory strength for
each degenerate component separately. After taking the
average of time reversal [assuming the intermediate state

l

Pp ( =Xfp) is nondegenerate] in the manner of Eqs.
(1)—(4), we get the angle of rotation for the

g+ component, proportional to &f+ I
8't I

I P+ &

(=&Kg
I
g', l

I P~&), as

+x)~(&~y I&, Io& &scoII IP. &~&~@ IIIo&.&lcoIN', Iy, &)

'~(&E:0 I@' I» &&oIII-O &+&&0 III0& &&oI@' I-0 &

o&.&IcoI &, I@ &~&ay I
g', Io& &sco (10a)

where we have made use of Eqs. (8) and (9) and a. =(+i ) =( —1) =1, regardless of an even or odd number of elec-
trons. For an odd number of electrons, however, because the operators are spin independent, care must be exercised to
use the states of the same spin for the matrix element. Similarly, we can write down the angle of rotation for the P
component,



32 DEGENERATE STATES IN OPTICAL ROTATION AND TIME-REVERSAL INVARIANCE 2261

,'(—I+K)m(&Ky+
I

@', 10& &Ko
I
l

I 0 &+ &K0+ I
l IO& &KO

,' m—(& K@+ I
e',

I
0) & Kol i

I @ )+ & Ky+ I

l
I
0) &Ko

I

a',
I @ &

Il IO& &Kol e', Iy )+&Kg I &, IO&&Koll I@ &), (lob)

which is seen to be identical to (10a). Therefore, in the
symmetrical combination of the state self-product
[A]=P*+iti++g* P =(Kg )*g++(KQ+)*g, the two
angles of rotations add to give nonvanishing optical rota-
tion for the time-reversal E state of a C4 molecule. In the
antisymmetric state product [A I, the two contributions to
angles subtract to give a zero matrix element. This is so
even though the apparent point-group selection rule is still
satisfied; a similar use of time reversal also applies to oth-
er time-reversal-degenerate states. For example, in the E
state of the T group, for which ESE=A+ [A I +E, only
the symmetric A =E*+E++E E will give optical rota-
tion. This result implies that the two opposite com-
ponents of E have the same natural optical activity for
random systems. This is different from the finding of At-
kins and Gomes for the opposite rotational optical ac-
tivity for

I
JM )-vs-

I
J-M ) components for oriented rota-

tors (see below).
For a molecule belonging to the S4 point group, we see

from Table I that the pseudoscalars R+I and R I+ be-
long to B. Similarly, the EE state products i''+i'
=II II and i'* i'+ ——II+II+ both belong to B and both
are symmetric. However, these products do not have can-
celled phases and are not the usual intermediate

I f+ ) & g+ I

in second-order perturbation, nor are they the
usual & g+ I g+ ) which belong to A, with coherent phase,
in the optical activity expression
pp=~ 1m(& 1i'+

I
R

I
0) &0

I
M

I g+ ) ). This is one reason
for the absence of optical rotation in the degenerate E
state in S4. To see the effect of time reversal, we take the
first state product f'+g =(Kg )'ill and write the ma-
trix element for the "rotatory-strength" operation:

pp
———2(1+K)M(&K@

I

8'i
I
0) &KO

I
l

I @ )

+&K@
I

l IO).&KOI 8'i
I @ ))

=A (&K@
I

w', IO) &KOI I
I g )

+&K@ Ill0) &KOINE'ilg ))
=

& @+ I
&i

I
o &.& o

I

l
I
@-&

+ & 0+ I
l

I

o & & 0
I

@'i @-& .

Strictly speaking, this is not a legitimate expression for
optical rotation as an observable because the "initial"
(f ) and "final" (g+) states have incoherent phases.
However, it will be a valid observable when it is squared

I

and the phase difference cancels as in Rayleigh and Ra-
man intensity formulas. Formally, since the optical-
rotation "perturbation" connects the two degenerate com-
ponents P+ and g, it therefore splits the energy as in the
Jahn- Teller effect.

Even though S4 symmetry means an achiral molecule,
it is seen that time reversal gives no obvious reason for the
lack of optical rotation. Furthermore, the apparent
point-group selection rule for Sz is satisfied and the ma-
trix elements are not required to be zero. Because of the
phase-coherence criterion required for an observable, this
nonzero matrix element does not represent the usual in-
herent natural optical rotation for chiral molecules (see
Table II). Instead, it represents the splitting of degeneracy
by the optical-rotation operator. From the same table and
based on the above reasons, it can be concluded that none
of the degenerate states of achiral molecules gives optical
rotation, although the overt point-group selection rule is
satisfied. It may also be concluded that in chiral mole-
cules (C„and T) the time-reversal-degenerate states g+
and g have the same optical-rotatory strengths. In
achiral molecules (S2i2„+2) the two time-reversal-
degenerate states are connected and are formally "split"
by the optical-rotatory-strength operator.

The above results, Eqs. (10) and (11),are all for random
systems. For an oriented molecule, if the 1l+ and ill of E
can be separated, we consider the electric-dipole —electric-
dipole scattering (versus the electric-dipole —magnetic-
dipole scattering of natural optical activity) of light prop-
agating along the quantization axis z. If we define optical
activity as being proportional to the difference in scatter-
ing of right versus left-circul'arly polarized light we obtain
a result similar to that of Atkins and Gomes:

4p-&(&J
I R+ I

b & &b
I
R-

I J )

&J IR-
I
»—&b IR+ li &) (12a)

where K is a symbolic constant. This antisymmetric
combination of operator products (R+R —R R+) be-
longs to the irreducible representation A in C4. As men-
tioned before, the time-symmetric and antisymmetric state
products /+/++A' i)'j also belong to A in C4. There-
fore, point group symmet-ry is not sufficient, because again
there is an ambivalence Only the time .reversal operat-or
can resolve this. We start by writing the matrix element
over the i'+ component as in Eqs. (10) and then note its
relationship to the matrix element of the 1it component:

$p ———,(I+K)Ã(&Q+
I R+

I
0) &0

I
R

I Q+) —&@+ I

R
I
0) &0

I R+ I @+))

'&(&K0 IR+ lo&—&KOIR Iq+& &Ky IR IO&&K—OIR+ Iq+&

+&Kg+ IR IO)&KOIR+ I@ ) —&K@+ IR+ IO)&KOIR Iz/i ))
= —4p (12b)
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TABLE II. Matrix elements of pseudoscalar operators over self-products of degenerate states. ' '

Rectangular coordinates
[R M)+ over [4 4]+
[R M]+ over [4 4]
[R M]+ over [%'&&4]+
[R .M ]+ over [4 )& +]

AXA
AXE
AXE
AXA

Cg

AXA
AXB
AXB
AXA

S4

BXA
BXB
BXB
BXA

C3„

A2XA]
A, XE
A2XE

D3

A)XA)
A) XE
A)XE
A)XA,

D4

A)XA]
A] XB)
A] XB2
A) XA2

8] XA]
8) XB]
8) XB2
8) XA2

Polar coordinates
( R.M )+ over (%'4)+
(R-M)+ over (%.%')

(R-M)+ over (VX%')+
(R.M)+ over (~X+)-

A2XA)
A, XA,
A, XE
A, XE

A)XA)
A) XA2
A, XE
A)XE

A)XA)

A) X82
Ai XBi

8[XA)
8( XA2'

8) XB]
8) XB2

'By definition [R M]+ over [4 4] means four terms: (xl„) —(xl„)~+(yl~) (yl~)~—~. Refer to Table I, footnote a, for detailed
definitions.
See Table I for definition of the operators and degenerate-state products. In the entries here the direct products represent the sym-

metry of integrands in the matrix element. Nonvanishing matrix elements over off-diagonal components mean the formal splitting of
the degeneracy.
Underlined terms represent possible nonvanishing matrix elements. However, note that for achirality (C3„, S4, and D2d) none of

these matrix elements represents the diagonal matrix elements with canceling coherent phases and contains the (symmetric) sum (rath-
er than difference) of degenerate components. These latter conditions are required for natural inherent optical activity (see the terms
in inherently active chiral groups, C3, C4., D3, D4, for comparison).

where we have made use of the relationships
ER+E '=R+ and R+ ——R+, which also account for the
fact that R +R —R R + is Hermitian and time odd.
Equation (12) shows that the two opposite components of
E in C4, when oriented and separated, will have opposite
optical rotation expressible through the electric-
dipole —electric-dipole polarizability. This is in agreement

with the results of the Faraday effect in which the two de-
generate components are separated by application of an
external magnetic field. 'The same should be true of the
components of E~ and E2 of C5 and C6, etc., up to the
limit of C . In the limit of continuous symmetry this
approaches the case of separated and oriented rotors

~

JM) and
~

J—M), which was shown by Atkins and

TABLE III. Irreducible representations and degenerate base products of electric and magnetic dipoles and quadrupoles' in hexago-
nal groups and subgroups.

Multipoles
and products Bases and products

Z
(x,y ):—(E~„,E~y)
l,
(l, l,):—(E5I,E5g )

82

ES

D6d D6

A2
Ei
Ap

C,„

A]

E]

D2d D3 C3„

A)

A2

C6 /C3

A/A
E] /E
A/A
E) /E

R]M)
M2 CR ) @M]

M2 CR]M)

M2 C:R ) M)

R)M)

(xl. —»~,yl, —»y )

[ 2 (xl, +zl„), ~ (yl, +zl~)]
—:[Eiq Eie]

[ 2 (xl~+yl„), 2 (xl„—yl~ )]
=—[E4,E4y]

(zlz xi& —yly )

xly —yl„

E[ ——E) A2 ——Bp(IE5
E] ——E]g A2 ——82E5

E4 C:E)(3Eg

B]——82A2
B]CEiEs
Bp &E((8)Eg

[A2, A)]

E] /E
E] /E

E2 /E

Rp

R2
R2

[xy, —,(x' —y')] =—[E2.,Ez.]
[xz,yz] = [E5, Esp]—

1

1z
(3z2 r2) —A A(

Ep [B2,Bt]

A) A)

E E2 /E
E) /E
A/A

Transformations were first obtained in D6d. Symmetries in lower point groups are obtained from correlation tables. (D2d has C2
axis along x axis. ) For correlation see J. A. Salthouse and M. J. Ware, Point-Group Character Tables and Related Data (Cambridge
University, Cambridge, England, 1972) and C. J. H. Schutte, The Theory of Molecular Spectroscopy J (North-Holland, Amsterdam,
1976).
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Gomes to have opposite optical rotation for light propa-
gating along the quantization axis. However, neither our
g+ pair (though they have no parity) nor Atkin's

~

I+M )
pair (which have parity) can be called true chiral enantio-
mers according to Barron, ' in the sense of chiral isomers
giving natural optical rotation by the usual R M or
electric-dipole —magnetic-dipole mechanism. Barron de-
fined an enantiomer of a truly chiral object as that ob-
tained by charge conjugation plus space inversion (see
below);

IV. HIGHER MULTIPOLE PSEUDOSCALAR
AND SELECTION RULES OVER DEGENERATE

/TATES
In this section we explore the distinction between dif-

ferent degenerate states (e.g. , E2 versus E1 in D6) in their
self-product in generating different pseudoscalars (dipole
R1 M1, quadrupole R2.M2, and octopole R3 M3). We

derive the transformations of the electric (R„) and mag-
netic (M„) dipoles (n = 1) and quadrupole (n =2) and oc-
topole (n =3) operators in point groups D6d, Td, and D4d
and then show how they transform in subgroups of these
reference groups. These are shown in Tables III—VII. It
is found that in chiral groups (for example, C6 and D6)
Eq cannot generate a dipole pseudoscalar but can generate
quadrupole and octopole ps eudoscalars. In achiral
groups, the higher the symmetry, the fewer degenerate-
state self-products that will give the pseudoscalar func-
tion. For example, in D6d, only E3 (not E1 or E2) will
give the pseudoscalar B& and then only for the octopole
scalar. In Td, only E (not F1 or F2) will give the pseu-
doscalar A2. In S8, E2 contains the quadrupole and octo-
pole but not the dipole component. The various pseudos-
calar products in D6d are, using the symbols defined in
Tables III and IV, given by

e A e A
R1 M1 —— (xl„+yly+zl, ) = (E»E51„+E1yE51y+82 A2) C81,

2mc .
" ' 2mc

2e A
R2 M2 —— [ 2 (x —y ) 2 (xl„yly ) +—xy —', (xly +yl„)+xz—', (xl, +zl„)

3mc

(13a)

+yz —,
'

(yl, +zly ) + z (3z —r ) —,
' (2zl, —xl„—yly )]

2e A'

(E2 E4y+E2SE4x+E5$E17J+E5$Elg+ ~
1 &B1)+B1

3mc 1z
(13b)

TABLE IV. Irreducible representations and degenerate base products of electric and magnetic octopoles in hexagonal groups and
subgroups. '

Multipoles
and products

R3p
R3+)

R

R3+2
M3 +3

M3 +)

M3 +)

M3+)
M3p
M3p
M) XR2
M3+2

Bases and products

2 z(5z~ —3r2)

[x(5z —r2),y(5z —r ) j
=[E,„,2 E„,2]

[y (3x ' —y 2),x (x —3y 2) ]
=—[E3e,E3,]

[xyz, 2z(x —y )]—= [E4e,E4, j
j [5l„(x'—y') —

10lyxy ],
[10l„xy+5ly(x 2 —y2}]]—= [E3„'',E3„' ' ]

I [ —l„(x —y ) —2lyxy],
[ —2l„xy+ly(x2 —y2)]J

= [E5„,E5„]
[2l„(3z —r ),2ly(3z —r )]

= [Esxv~E5yv]
[8l,xz, 8l,yz]:[E5„„,E5$„]-
4l, (3z —r )—=A2
—8(l„xz+l~yz) =A2
l„yz —l~xz

[40(l„yz+lyxz ),40(l„xz —lyyz)]:—[E2„,E2„]

[401,xy, 20l, (x' y')]-
—= [EZv, E2v j

D6 /D3

A2 /Aq

E) /E

828) /A2A j

E /E
B]82 /A ]Ay

Ej /E

Ej /E

Ej /E
A2 /Ap
A2 /A2
Al /Ai
E /E

E2 /E

C6v /C3v

Aj /A)
Ej /E

828 j /A2A i

E2 /E
828 j /A2A )

Ej/E

E) /E

E, /E
Ap /A2
Ap /A2
Al /A)
E2 /E

E2 /E

82

[F11,A2]

A2
A2
Ai
[B1,B2]

[B1,B2]

82
Ei

E3' ' CEsE2

Es CEsE2

Es CEs(3

Es C A2(3Es
A2 ——A2A]
A2CEsEs
A I CEsEs
E2 CEsEs

E2"' =A2E2

C6 /C3

A/A

Ej /E

88 /AA

E /E
BB/AA

E) /E

Ei /E

Ei /E
A/A
A/A
A/A
E /E

E2 /E

As a price to pay for insisting on the same degenerate components as base functions in the correlation from D6d to nondegenerate
representation in C6„ /C3„(e.g., for E3), one must choose a different x axis and let o.„pass through it in C6„ /C3„. There is no loss of
generality. However, D2d has a C2 axis along the x axis, the same as D6 and D6d. Superscripts e and a on A s denote the origin of
A as coming from the product of E's or the product of A' s. Triple primes denote different transformation matrices for the E's.
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TABLE V. Irreducible representations from degenerate base products of electric and magnetic dipoles (R1,M1) and quadrupoles
(R»M2)'in Td, 0, T, and S4.

Multipoles
and products

R1
M1
R1 M1
R1gM
M2 CR1g}M1

M2 CR1g}M1

R2

R2
M2.R2
M, g R2
M2g R2

M2g R2
M2g) R2

M2g R2

M2g}R2

Degenerate bases and products

(x,y, z)
(l„,ly, l, )

xl„+yly+zl,
[(yl, zl» ), (z—l„—xl, ), (xl» —yl„)]
[(yl, +zl„),(zl„+xl, ),(xl„+yl„)]—:[M2e, M», M2g]
[ 2 (2zl, —xl„—yl»), (V 3/2){xl„—yl»)

[ 2 (3i~—r2), (V 3/2}(x2—y )]=[e„,e„]
(yz, zx, xy) =(g', g, g)

I I I It/
eg eg +ep eg

I II Ill
eg ep —eU egg

[(j /V 2)( —e„' ' ' e„+e„' ' ' e„),
(1/V 2)(e„' ' ' e„+e„'' ' e„)]

M,&g'+M»q+M, &g

[ 2 (2M2gg Mzgg M—»7J)—
(V 3/2){Mzgg' —M2qq)]

[(M»g+ 7/M2$ ), (M2gg'+ gM2$),
(M2gg+(M»)]

[(M» g —
gM2g ), (Mpgg' —gM2g ),

(M2g71 —gM» )]

F
ACFgF
[F]CFeF
FCFgE

ECFgF

ECFgE
FCF@F
A CEgE
[A]cEISE
ECEgE

ACFgF
ECFgF

FCFgF

[F]C F@F

0
F1
F1
A1CF1g F1
[Fi]&FiFi
E CE g}F

ECF1g)F1

ECF1g F1
F2 CF1F1
A1CEE
[A2]cEgE
ECEgE

A1 CF2E2
ECF2g F,

F,CF2g F,

[F)]CF2@F2

Td

A2 CF2F1
F2 CF2g F1
F1 CF2gF1

E'"CF2F1

ECF2g)E2
F2CE2g F
A2CE"'g E
A]CE"'E
ECE'"g E

A2 CE1g}F2
E"'CF1F2

F1 CE1gF2

F2CE1gE2

E,B
E,A

B
E,B
E,A

A, B

A,B
E,B
B
A

A,B

B
A, B

'E"' denotes a different transformation matrix from E.

TABLE VI. Irreducible and degenerate base products of electric and magnetic octopoles in Td and S4.

Multipoles
and products Bases and products S4 Td

R3
R3

R3

M32

M33M31M3p

E2g) M1

M33M32M31

CR2M1

M33M31M3P

CR2g M1

M3

M3

fE,AJ

B
[E,A]
[E,B]
[A,B]
[E,B]

[E,A ]

[E,B]

[E,A]

30xyz

f ~x[(5z2 —r2)+(x~ —3y2)], ——„y[(5z2—r )+(y —3x2)],(y2 —x2)z]
= f(z2 —y2)x, (x —z )y, (y —x )z J:—f T&„,T(», T&, ]

f
—

&
x[3(5z2—rz) —S{x2—3y2)], —~y[3(5z2 —r )—5(y2 —3x2)],(5z —3r }zJ
= f(5x —3r )x, (5y —3r )y, (5z —3r )zI = f T2„,Tz», Tz, ]

3 (yzl„+zxly +xyl,"
)

[(xyl„+xzl, ), (yzl, +xyl„), (xzl„+yzl» )]—:[F~„,F~», F~,]
[(xyl» —xzl, ), (yzl, —xyl„), {xzl„—yzl» )]:[F2„F2»,F2,]-
[ & {2xyl,—yzl„—zxl»), (V 3/2)(yzl„—zxl»)]

f [{—V 3/2)e„—2 e„]l„,[(V 3/2)e„—2 e„]l»,e„l, J

= [{V 3/2)(y2 —z2)l„, (V 3/2)(z —x )1», (}/3/2)(x —y2)l, ]
=[F2,F2,F2 ]

f [—2 e„+(A3/2)e„]l„,[—
2 e„(}/3/2)e„]l»,e„l,J-

=[ z (3x —r )1„, z (3y r)1», ~ (—3z r)1,]-
=—[K„FI,FI, ]

f [—(20/W3)F2 —20F2 ],[ —(20/W3)F2 —20' ],[—(20/V 3)F2 20F~ ]J-
—=[F2„F2 F2, ]

[(4Fi 4Fi ), (4F', 4F, )—, (4F', 4F, )]- —
y

' z z

=-[Fi„Fi, FI, ]

A1

T1

T2

A2CF2g F1
F1 CF2g}F]
F2 CE2g F1
E( EgF
F2 CEF1

F1 CEF1

El»2.

E II
1

Both T and Fare used to denote the three-dimensional irreducible representation, T for electric octopole, F for magnetic.
Primes and double primes here are used to denote different bases for the same irreducible representation with the same matrix of

transformation.
'The definition of e„,e„ from electric quadrupoles has been given in Table V.
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3

R3.M3 —— g ( —1) R3~M3
m = —3

3e A
[B2(A 2+ A 2 ) +E,z, 2(Esu+Epq„+E5» ) +E, ~2(E5, +E5g, +E5y', )

e a

+E3eEp„' ' E3,E3„'' +E4e(E2„+E'2„'' )+E4,(E2„+E2„'' )]CB ) .

The various pseudoscalar products in Td are, using the symbols defined in Tables V and VI, given by
1

R) M) —— g ( —1) R(~M) ~ F2 ——F) CA2,
m= —1

(13c)

(14a)

R, .M, = —(3z r )——(2zl, —xl„—yl )+ (x —y ) (xl„—yl )
v3

3mc 2 2 ' ' 2 x y

+ [yz—(yl, +zly )+zx(zl +xl, )+xy(xly+yl )]
3
2

2

(e„e„'' ' +e„e„' ' ' +F2gF ~~+F2&F»+F2~F») C A2,
3mc

2

R3 M3 —— (A ) A2+ T)„F2„'+T)yF2y +T),F2z+ T2„F'(„'+T2yFIy +T2,F'),' ) C Az .
32mc

The pseudoscalar products in D4d are obtained from Tables III, IV, and VII as follows:

R3 M3 ——

e A'

R) M) —— (E,„E3I +E,yE3I +BzA2)CB(,
2mc

2e A
Rp M2 —— (Eg,E2„+E2,E2y+E3qE(„+EgE)g+A 2B) ) CB(,

3mc 1z

2

[B~(A2+A z ) +E, ,(E3„+E3q„+E3»)+E, ,(E3„+E3fU+E3yg )+E3eE )„'
' +E3,E', g'

+E2e(E2++E2+' )+E2,(Ez„+E2U )]CB)

(14b)

(14c)

(14d)

(14e)

(14f)

The correlations to lower point groups are given in the
corresponding tables. The "selection rules" of these pseu-
doscalars over the components may be perceived from the
definitions of the electric (R„) and magnetic (M„) mul-
&poles 10,25

TABLE VII. Equivalence of the symmetry designations' of'
electromagnetic multipoles in D6d and D4d.

Equivalent
transformation
matrix in D4d

4m.
R M=eT

2n +1

1/2

(15a)

eA (4~n)'"
mec

1

X g C(n —1, 1 n;M m, m, M—)

LmX&" 'E'„( M (8,$) . +Sn+1
(15b)

where C is the Clebsch-Gordan coefficient and I. and
S are orbital and spin angular momentum operators,
respectively, with m=+1, —1, and 0 corresponding to
raising, lowering, and z-component operators. The matrix
element we consider is symbolically [referring to Eq. (8)]
given by

B2
(E,„,E, )

A2
(Esl E51 )

(E»,E1&)
(E4„,E4y)
B1
(E2„E2,)
(Es~ Esp)

(E3g,E3,)

(E4g, E4, )
(Et I I El I I

)

(Es Es )

«s. Esyv)

(Esv)u ESg'v)
A'
A2
(E2u, E2v)
(El/I Et y I

)

B2
(E1„,E1y )

A2
(E3l E3ly)

(E»,E1&)
«~ E2)
81
(E2 E2 )

E12 12
(E g,E,)

«2g E2.)
(E1' ' E' ' '

)

(E3„E3.)
«3 u E3yv)

(E3gu, E3gv)
A

A2
«z. E2.)
(E2u, E2v

'See the definitions in Tables III and IV.

(E1„,E1y )

«3 E3~)

(E1g E1 )
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1/2
e A 4m.

2' c 3

amount of s, p, d, or f orbitals (proportional to Ypp,
Y(, Y2~, or Y3 ) in a given linear combination of
atomic orbitals (-molecular orbitals) belonging to the E~
irreducible representation may be estimated, for example,
from the perturbed united-atom Rydberg orbitals to
which these E1's correlate. ' The leading dipolar pseu-
doscalar matrix element is then proportional to

1

X g ( —1) rF, ML~ I')+, (16a)
M= —1

pg, =c)ptd)(qI"(»)Y(+) ~&) M)
~
q2"(»)Yz+) &+ .

(17)
where the C„'s are constants. ' ' The general selection
rule is hl & 2n —1, km~ =0 if the intermediate state is a
function of » only. The largest contribution will come
from the leading dipolar-pseudoscalar term shown expli-
citly. The latter has the selection rule AI = + 1 and
AmI ——0. For the D6 point group, the E1 irreducible rep-
resentations contain Y~+& (or, x,y) as well as Y2+& (or
xz,yz) and Y3 +& (xz, yz, etc.). The wave function

~

I )
may therefore be represented symbolically as a linear
combination,

I
r &

=WE1 p 1 O'I (») Yl+I+ d 1 0 2 '(») Y2+1+ ' ' '

(16b)

where p &
and d

&
are constant coefficients and the y's are

functions in radial coordinates, all of which are special to
the particular potentials of the molecule. The relative

I
r & =IF.,=d2q 2"(»)Y2,+2+f2''3"(»)Y3, +2+

~~E =Cldzfz~'p2 (")Y2,+z
l
+1 ~1

I
0'3 (")Y3,+2&+

(18a)

(18b)

where d2 and f2 are constant coefficients.
When intermediate states are considered, the coupling

coefficients in Table VIII and other direct-product

we assume from now on that the intermediate state has no
angular dependence. This may be compared with the E2
irreducible representation in the same D6 point group, in
which the lowest spherical harmonics are second order,
i.e., Y2+z (as x —y, xy). Thus,

TABLE VIII. Coupling of multipole degenerate irreducible representations' in D6d and D4d.

Mixed electric and
magnetic multipoles

I I » I IE3gE3„+E3,E3u
E3eE3„' —E3,E3„' '

E3gE3 +E3.E3: '

I I I I IE3eE3„—E3,E3u

Pure electric multipoles

E3gE3g —E3,E3,
E3gE3, +E3,E3g
E3gE3 —E3 E3g
E3gE3g +E3~E3

"Pure"

E2g
E2.
A2

Transformation matrix
"Mixed"

Bl
B2
A2

"Mixed"
D4d

Bl
B2

E4gE2U+E4, E2u
E4eE2u —E4eE2„
E4gE2u+ E4eE2
E4gE2„—E4,E2„

E4eE2.+E4.E2.
E4eE2s E4~E2e
E4eE2.—E4.E2.
E4eE2. +E4.E2.

A2
BI
B2

E2.

Bl
B2

A2

Bi
B2

El„Esly +ElyEsl„
E) Es l E)yEsly
E) Es l +E)yEs ly

E) Es ly E)yEs l

ElxEsg+ElyEs~
Ej Es~ —ElyEsg
El„Esp —ElyEsq
Ei Es~+EjyEsg

E2g

Bl
B2

E4x
E4y
B)
B2

Ez

Bl
Bp

l„g—

ling

l„g+ l»g
l„g+

ling

l„g—

ling

E2s

Al

E„

Al
A2

E2u
E,

E4eE4y +E46E4x
E4eE4„—E4,E4y
E4eE4 +E46E4y
E4eE4y —E4.E4

E4eE4, +E4,E4g
E4eE4e —E4.E4.
E4eE4, —E4eE4e
E4eE4e+ E4,E4,

B2
Bl
A2

E4e
E4.
A2
Al

Bl
B2
A2
Al

'The definitions of the degenerate components are given in Tables III and IV.
The degenerate transformation matrix is given only for the mixed electric- and magnetic-multipole case in D6d. (The pure electric-

multipole product has a 2&2 matrix differing by a sign from the mixed case for c2 and o.d. ) Corresponding definitions in D6q and
D4d are in Table VII.
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tables ' ' will aid the determination of selection rules.
The symmetries of the multipole pseudoscalars given in
the tables not only serve to deduce the selection rules, but
also will guide the derivation of magnetic pseudoscalar po-
tentials for asymmetric perturbations. '

V. CONCLUSIONS AND DISCUSSIONS

We have searched among common point groups of in-
terest for degenerate-state self-products that contain the
pseudoscalar symmetry. These degenerate states are given
in Table IX. The pseudoscalar operator is found to paral-
lel the vibronic operator of Jahn and Teller in that it
can connect components of degenerate states. For these
degenerate states we can now answer the questions raised
in the Introduction. The answers are summarized below.

(1) Degenerate states of achiral molecules will not yield
natural optical activity, even if their self-products contain
the pseudoscalar symmetry thus satisfying the point-
group selection rule. This is because only incoherent
products of (different) components constitute the pseudo-
scalar symmetry component. This point is made clear by
contrasting chiral versus achiral point groups (Tables I
and II), C~ versus S4 (both of order 4), D3 versus C3U

(both of order 6), and Dq versus D2d (both of order 8). It
is also quantitatively illustrated for E of S4 in Sec. III. In
Sec. III it is shown that the two degenerate components of
C4 contribute equal natural optical-rotatory strength in
random molecular arrangements. The same is true for
other E degenerate states of C3, D3, and D4 molecules
(Tables I and II). Thus, the two components reinforce
each other.

(2) For time-reversal-degenerate components, e.g. , the

P+ and P of C3 and C4, it is shown (Sec. III) that
point-group symmetry alone is not sufficient to arrive at
the above result. There is an ambivalence which only the
time-reversal operation, converting P+ to f+, can resolve.
In addition to the natural optical activity proportional to
the pseudoscalar R M, the time-reversal component is
shown (Sec. II) to have "oriented" optical activity propor-
tional to R+R —R R+ when light propagates along
the quantization axis of g+ and f Th.e former (R M),
which is parity odd, is observable because of the chiral
molecule's lack of parity symmetry. The latter
(R+R —R R+), which is time odd, is observable be-
cause of the single time-reversal component's (g+ or g )

lack of time symmetry. It is also seen that the lack of
time symmetry in one of the time-reversal-degenerate
components, such as P+ in the E, is not the source of iso-
tropic natural activity in C4. This is because the similar
component of E in S4 produces no natural optical activi-
ty.

(3) In Sec. II, we show that for a second-order optical
interaction, time reversal does not give additional spin
selection rules as in the Jahn-Teller effect. ' It is shown
that the permutation of degenerate components, however,
is meaningful when the operators in each of the second-
order processes are the same, e.g., for Rayleigh scattering
when both radiative interactions are in the electric-dipole
mode. The formalism developed in this section permits
the later consideration of optical rotation in degenerate
states with even and odd numbers of electrons.

(4) The various degenerate states differ in the order of
the electromagnetic multipoles they contain. We have de-

TABLE IX. Degenerate irreducible representations and pseudoscalar self-products.

I" does not contain a pseudoscalar: C„q, D„q, D2„+~ d, S2(2„+I), Oq.
contains a pseudoscalar.

CHIRAL GROUPS
Xo time-reversal degeneracy:
contains dipole pseudoscalar A~.. D3(E), D6(E~), T(F), O(Fl).
contains quadrupole pseudoscalar A&. D3(E), D6(E&,E2), O(E,F2), T(F).
contains octopole pseudoscalar A ~. D3(E), D6(E&,E2).

Time-reversal degeneracy:
contains dipole pseudoscalar A: C3(E), C6(E&), C4(E).
contains quadrupole pseudoscalar A: C3(E), C6(E&,E&), T(E), C4(E).
contains octopole pseudoscalar A: C6(E&,E&), C4(E).

ACHIRAL GROUPS
Xo time-reversal degeneracy:
contains dipole pseudoscalar BI or A&(X ): C3„(E), C6,(EI), D2d(E).
contains quadrupole pseudoscalar Bl or A2(X ): C3„(E), C6,(E&,E2), D2d(E), D4d(E2), Td(E).
contains octopole pseudoscalar B& or A2(X ): C3„(E), C6,(E&E&), D2d(E), D6d(E3), D4d(E2).

Time-reversal degeneracy:
contains dipole pseudoscalar B: S4(E& ).
contains quadrupole pseudoscalar B: S8(E2).
contains octopole pseudoscalar B: S8(E2).
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rived self-products of degenerate states that not only give
rise to a dipolar pseudoscalar (R, Mi ), but also quadru-
polar (R2 M2) and octopolar (R3 M3) pseudoscalars in
important point groups (Sec. III). Because the occurrence
of these pseudoscalars differs from group to group, we
have derived the most general pseudoscalar products in a
higher symmetry and exhibited their correlation upon des-
cent into groups of lower symmetry [Sec. III, Eqs. (13)
and (14), and Tables III and VI]. Furthermore, since
different-order pseudoscalars represent natural optical ac-
tivity of different orders of magnitude, we considered the
selection rules (Sec. IV) for various degenerate states
which have a unique correspondence to a given order of
pseudoscalar (e.g., in D6 and D4d, E2I3IE2 admits only
quadrupolar and octopolar pseudoscalars and not dipolar
pseudoscalars [see Table IX and Eq. (18)]).

(5) In order to handle the direct products involving a
new type of basis function (the magnetic multipoles), we
have derived the difference in transformation between two
functions which belong to the same irreducible representa-
tion, but one of which has the axial vector (I. ) incorporat-
ed [e.g., M„of Eq. (15)] while the other has none [e.g.,
R„ofEq. (15)]. The resulting difference in coupling coef-
ficients (Table VIII) is important in the selection rule due
to pseudoscalar-potential perturbations of achiral mole-
cules.

Last, we would like to offer a few words in a philosoph-
ical vein. Throughout this work, the chiral molecules we
consider are molecules without parity (no S„symmetry),
yet interactions with polarized light in optical rotation
and (degenerate) electronic energetic considerations in
chemistry all involve electromagnetic interactions which
conserve parity. We are, therefore, assuming that optical
isomers with given handedness belonging to the chiral
groups (see Table IX) all have long lifetimes (compared to
radiative interaction time) due to a high potential barrier
for inversion (i ). Namely, the molecules are prepared in a
left- or right-handed state $1 or titty. Only a linear com-
bination ' generated by the parity projection operator
will give truly parity-conserved states 4'+—:

iEp t/ttt + —iE+t/tt—
2

(19)

where E+ is the energy for the even ( + ) or odd ( —) pari-
ty state. At any given time, an arbitrary state is a linear
combination of the two parity-conserved states +— with
appropriate time developments. Thus by inverting Eq.
(19) we get

(q'++'p )
2

1 +, —i(E E+)t/it —iF.+t/R—
2

which yields PL, at t=o and gz at t=it/[2(E E+)]. —
The latter is the time for inversion. This is the classic
double-we11 potential problem ' and E —E+ is the
splitting due to "tunneling" and is dependent on the
height of the barrier separating the two wells. For an in-
finite barrier, the splitting E —E+ ——0 and the inversion
time is infinite. For most such molecules the inversion
barrier is of a vibrational nature. For molecules belonging

to the D3 group (e.g., twisted C2H6) or C3 group (twisted
CC13CH3), it would be interesting to look into the rota-
tional barrier for interconversion, especially for C3, which
has time-reversal degeneracy. In any case, allowing for
inversion of left-to-right isomers and vice versa takes into
account conservation of parity for electromagnetic in-
teractions. The concomitant time-reversal symmetry
for such an interaction is also adopted. It is within this
framework that we used the time-reversal operator to
search for additional selection rules (Secs. I and II).
Strictly speaking, left- and right-handed isomers in the
real world may not be of the same energy, and the linear
combination coefficients in Eq. (19) may not be equal (i.e.,
&1/V2), thus destroying the parity of the states. This is
due to the weak neutral-current coupling ' of the
electromagnetic interaction to the weak nuclear interac-
tion V~„„which is parity nonconserving. However, since
we confine ourselves to one isomer, all of our symmetry
arguments for optical rotation remain valid. This weak
neutral-current coupling mainly operates on the electron-
spin singlet S through spin-orbit interaction ( V, , ) and an
intermediate spin triplet T state, ' ' viz. ,

&S
i Vp„, i

T&&T
i

V, , is&/bE

s(~.p [
T&&T (~.i [s&/aE

--&s[p[T&.&T[i[s&/aE+ (21)

where p is the linear momentum, l is the orbital angular
momentum, o. is the Pauli spin operator, and the matrix
element is different for left and right isomers. The opera-
tor p l is also a pseudoscalar. Therefore, the selection
rules for the natural-optical-rotation operator over degen-
erate states also app/y to this coupling. It is conceivable
that this coupling may also give a nonzero matrix element
for the two time-reversal-degenerate components of
achiral molecules, thus splitting the degeneracy by a mag-
nitude3 of around 10 ' eV.
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