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The Faraday rotation and circular dichroism of dilute gases in longitudinal magnetic fields and
subject to strong radiation fields are studied. The use of irreducible tensorial sets as bare-atom
states which are then dressed by the laser field allows a simple incorporation of the various mul-
tipole relaxation rates into the theory. The treatment considers magnetic fields which produce Zee-
man shifts much smaller than inverse collision times but which may be greater or smaller than the
multipole relaxation rates. Doppler broadening is also considered. Explicit expressions are given for
dipole transitions in a two-level system with arbitrary angular momentum for strong and weak mag-

netic fields.

I. INTRODUCTION

Tunable lasers with improved power output and fre-
quency stability and which cover larger frequency ranges
than heretofore are now becoming available. This has
stimulated experiments which use these sources to reinves-
tigate the classical magnetooptic effects with greater pre-
cision. An example is the experiment of Blum et al. on
NO.! In addition, high-intensity sources have enabled the
study of these same effects in the nonlinear regime where
stimulated and multiphoton processes must be taken into
account.> The optically induced analog of these
magneto-optic effects which exists in the absence of a
magnetic field has been discussed by Kaftandjian and
Klein® and Kaftandijan, Klein, and Hanle.*

The present work presents a unified treatment of mag-
netooptic effects including the nonlinear contributions. In
addition, effects due to dispersion near spectral resonances
will be treated correctly using methods which have been
developed in the theory of pressure broadening of spectral
lines.> These nonlinear and dispersion contributions are
important in the technology of Faraday rotators in high-
power laser systems® and for the investigation of the
molecular structure of gases in weak magnetic fields
which are of astrophysical or geophysical interest.

For example, recently a study of the magnetic optical
activity (MOA) of excimer molecules permitted a precise
measurement of the coupling of the angular momentum
of different electronic states.” Furthermore, studies of the
effect of nonconservation of parity on atomic processes
have been performed by Roberts et al.,® using the Fara-
day effect to examine the 647.6-nm transition in Bi
(which is also a simple method of determining the propor-
tion of atoms and molecules in the gas). A related
method, forward scattering, which will be discussed in the
following paper, has also be used by Gawlik et al.’ to
make precise measurements of the oscillator strengths of
atomic transitions. Both types of measurements, magnet-
ic rotation spectra and forward scattering, owe their pre-
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cision to the fact that they are measurements of the inten-
sity transmitted through crossed polarizers as a function
of frequency or magnetic field. The fact that they are
also magnetooptic effects permits the acquisition of sup-
plementary information such as the Landé factors and,
possibly, the individual broadening coefficients of the Zee-
man components.

Magnetic optical activity results from the asymmetry in
the indices of refraction for left and right circularly polar-
ized light, induced in a medium by a longitudinal magnet-
ic field. This activity has been traditionally divided into
magnetic circular birefringence (MCB) and magnetic cir-
cular dichroism (MCD). The first, MCB, is known as the
Faraday effect and is observed as the rotation of the plane
of polarization of linearly polarized radiation propagating
along a magnetic field. In general, the angle of rotation ©
is related to the left and right indices n;,n, and the dis-
tance traveled through the medium L by'°

O=(wL /2¢)(n,—ny) , (1)

where o is the angular frequency of the radiation. For
magnetic fields which are weak enough, the difference in
indices is proportional to the magnetic intensity H, so
that

O/L=V(w)H, . (2)

The constant of proportionality V(w) is referred to as the
Verdet constant and is characteristic of the medium being
studied.

MCD is characterized by the difference in the absorp-
tion coefficients a;,a, for left and right circular polariza-
tions. This results in elliptical polarization of the initially
plane-polarized radiation after traversing the medium.
The ellipticity is determined by

V=(wL /4c)a,—a;) . (3)

The fraction of the intensity of radiation which is
transmitted through crossed polarizers, I, /Iy, depends on
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both the MCB and MCD as
1, /I, =(sin’0 +sinh®¥)exp[ — (o, +a;)L /2] . (4)

Thus, for this technique, a study of both MCB and MCD
must be performed. Measuring the fraction transmitted

as a function of o is called magnetic rotation spectroscopy °

(MRS) and as a function of H,, forward scattering (FS).
Of course, in regions of strong spectral absorption, the
MCF will dominate, and in regions far from resonance,
MCB will be most important. Approximate expressions
involving one or the other effect in the appropriate region
can be found in the literature!! =13 as well as more general
expressions using phenomenological profiles.!* !>

In the following a comprehensive theory, valid through
spectral resonances, will be presented. The formalism of
this theory will be developed in Sec. II and a review of the
linear theory of magneto-optic effects will be presented as
a simple example. In this connection results for the line-
shape parameters useful for MOA which were given in a
previous publication!® on the linear effect will also be re-
viewed.

In Sec. III a discussion of the nonlinear or stimulated
MOA will be presented. The formalism will be applied to
a two-level system quasiresonant with a laser of arbitrary
polarization propagating along the magnetic-field direc-
tion. The two-level system will be considered to have ar-
bitrary magnetic substate multiplicity. Although an ana-
lytic expression for the nonlinear MOA is not obtained to
all orders in the laser field (except in the special case of a
j=1—j=0orj= %—> j=- transition) the necessary ma-
trix elements for-a numerical calculation of low-j transi-
tions are given by Giraud-Cotton.!” For arbitrary j, the
analytic expression for the first nonlinear correction to the
MOA (and to the Verdet constant near a transition) is cal-
culated. This contribution is the third-order Faraday ef-
fect.

When the laser polarization is elliptical, terms indepen-
dent of the applied magnetic field first appear in third or-
der. The contribution of these terms describes the self-
rotation which has been observed in gases by Tam and
Happer,!® in liquids by Maker et al.,!” and in doped
glasses.”® Previous theoretical expressions for this effect
which were found in the nonresonant?! and resonant?? ap-
proximations will be obtained as limiting cases. For di-
lute gases, the multipole relaxation rates which govern
these processes will also be explicitly displayed.

Finally, we treat the case of dilute-gas spectra when the
collisional relaxation processes are small with respect to
the Doppler broadening of the transition. This produces a
MRS dominated by the Doppler effect.

In the following paper,”® based on the theoretical ap-
proach outlined here, the above considerations will be ex-
tended to include forward scattering, a technique in which
the Doppler dominance of the MCD and MCB is reduced.
Using this method a comparison with experiments on the
sodium D lines will be presented.

II. THEORETICAL FORMULATION OF MRS

As described in the Introduction, the Faraday effect
and MCD are proportional to the difference in the indices
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of refraction and absorption coefficients, respectively, for
right and left circularly polarized radiation. We introduce
the left (right) electric susceptibility X; (X,) of the gas, de-
fined through P(_,l,’l (P'1)), the circular components of the
polarization vector, by

PU 0 =XinEi ) » (5)

where E;,) is the left (right) circularly polarized laser
field. Now the effects can be equally described by the real
and imaginary parts of the difference in the susceptibili-
ties:!*

O +iV=(mwL /c)[X,(0)—X(w)] . (6)

Here, the magnetic susceptibility effects are neglected.
Cases requiring the magnetic contribution, such as O, in
the nonresonant region,>* can be easily included using the
same formalism.

The propagation direction of the incident laser radia-
tion is, as noted above, along the magnetic field which
also serves as the quantization axis for the atoms or mole-
cules. Under this condition, the costandard components
of the polarization vector defined above, M =*1, are
given by the correlation function

PP =(diPk)y =(—1)'=M(d1], (1))

N
_—_—ViTr[d[_l}u(k)p(cu)] , ™

where di}’(k)=d}}’e’*®R are the usual costandard com-

ponents (with the definition of Fano and Racah?’) of the
Hermitian electric-dipole-moment operator for an atom at
position R in an applied field of wave vector k and dj}’
the contrastandard form of these components. The
polarization-vector and laser-field components are always
taken in a costandard form for convenience in the inner
product. For simplicity, we have restricted the discussion
here to electric-dipole transitions (otherwise, the notation
must be generalized to allow Kth multipole transitions) of
N, atoms in a volume V. It has been assumed in Eq. (7)
that the atoms or molecules interacting with the radiation
field are independent, so that the trace is over the internal
coordinates and the momenta of a single system of in-
terest and a large thermal bath of perturbing particles.
The quantity p(w) is the Fourier transform at the laser ra-
diation frequency w of the time-dependent density opera-
tor for this situation.

The calculation of Eq. (7) will be performed using the
Liouville space-operator methods introduced by Zwan-
zig?® and Fano.?” These methods have been adapted to
nonlinear spectroscopy by the introduction of Floquet
numbers by Ben-Reuven and Klein*® and by use of a
time-independent scattering theory.?~3! The technique
involves the calculation of elements of the reduced density
matrix of the radiating or absorbing system. These ele-
ments are labeled both by the double atom dyadic vector
states and by the Floquet numbers fi,;,1i, of left and right
circularly polarized radiation. Using Liouville states de-
rived from the Hilbert space of angular momentum opera-
tors, the components of the vector representing the densi-
ty matrix in this extended space are written
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P:Il;n’ =(ajzm, 7bibmb;ﬁ1rﬁr lp », (8)

where j,,m, are the angular momentum and magnetic
quantum numbers of the state a. The extra index a,
representing all other quantum numbers, will be ignored
in the following. In the above, only p;g and pg}, are re-
quired for the calculation of X; and X,, respectively.

Since the laser radiation will be taken to be plane polar-
ized and hence a coherent superposition of left and right
circularly polarized components, the interaction of the
system with this field is best described using the standard
base. In the dipole approximation, the time-independent
operator for interaction with left () or right (#) circularly
polarized radiation is

2in= 2 ZinM), (9a)
M==1
where
U (M)=—Di'%, , %.M)=-D|E, . (9b)

The total interaction is therefore =% ;+ %, .

In the above, DH] is a tetradic operator defined on the
contrastandard components of the Hilbert space operator
d}}l. DJ} operates on a Liouville vector | X)) following
the definition

DI x )= |1alLx]) . 9¢)

The set of the three components D}, M=0,+1, defines
an irreducible tensor of rank 1 in the Liouville space.
Their matrix elements satisfy the Wigner-Eckart theorem
when the suitable set of Liouville states, the unitary ir-

PPN
oo,

(implying the limit e— +40), where the explicit depen-
dence on j and m due to the presence of the external mag-
netic field has been indicated in pgg, the equilibrium densi-
ty matrix of state ¢. This dependence usually arises
through the Larmor frequency as in Eq. (11).
The tetradic resolvent operator & (i§) in Eq. (12) con-
tains % =% ;+ % ,, the radiation-system interaction,
Gi&=[Q—L, — (o)) —Z +iE]", (13a)

and can be expressed in terms of G(i£), which is free of
this interaction, by the Dyson equation,

GUE=GUE)+GUE)X F (i), (13b)
where G(i§) is the resolvent operator
GUig)=[Q—L,—(Ilw))+i&]™", (13¢)

which is also the familiar linear-response line-shape func-
tion. Here, (II(w)) is the relaxation operator arising
from the interaction between the radiating system and the
thermal bath, averaged over all bath variables. The diago-
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reducible tensor set of Hilbert space, is used.*>!”

& (&) is, for M =+1, the amplitude E; , (E, ;1)
of the positive harmonic term in the external laser field
times the raising operator for Floquet numbers of the left
(right) circular polarization state, and for M = —1, the
amplitude of the negative harmonic term E;_;
(E, _))=E[',, (E; ) times the lowering operator for the
Floquet numberss 1i; (R, ).

The evolution of the atomic density operator in the ab-

“sence of the thermal bath, but in the presence of a longitu-

dinal magnetic field H,, is governed by the Liouville
operator

Ly=Lo—M,H, , (10)

where M, is the tetradic magnetic moment operator. For
transitions a—b which are well separated from other
electric-dipole transitions, the principle effect of the exter-
nal magnetic field in Eq. (10) is to remove the degeneracy
of the sublevels of a and b. In this approximation, L 4 is
diagonal in the dyads of the standard base of the Hilbert
space of angular momentum vectors as well as in the Flo-
quet numbers:

LA [jama’jbmb;ﬁlrﬁr »':“Qab |jama’jbmb;ﬁlrﬁr » ’
(11)

where Qg =z +(0im, —wim,), o) =gupH, is the
Larmor frequency of the ith'level, and g;up is the Landé
g factor of the level i times the Bohr magneton.

As is customary, the density matrix will be assumed to
have its equilibrium value p® at t— — 0, so that Eq. (8)
can be expressed as

Pab =3 Cjamasismp; s, B, | GGEU | jome,jom ;0,0 Dpiom,) (12)
(4

nal matrix Q is the Doppler-shifted Floquet frequency
matrix with elements 9;(w;—k; V,)+0,(0,—k, V,),
which depend on the frequency and wave vector w,k, of
left and right circularly polarized states. Henceforth,
these will be taken to be equal, corresponding to plane-
polarized incident radiation. Also in the above, V, is the
atomic center-of-mass velocity of a radiator in a quantum
state @. Note that this means that pfl(j,m,) contains a
velocity distribution function for the radiator and the
states a contain the center-of-mass momentum. All
velocity-changing collisions are ignored here. In addition,
the speed dependence of {II(w)) will be neglected. Both
these corrections can be included®® simply but would un-
necessarily complicate the notation.

For convenience of notation and also to preserve the
same algebraic form as in the strong-field theory
developed in previous Floquet-number and dressed-atom
theories,?” —3° we introduce the transformed Floquet base

o, =1,+%,, f,=1%-1,. (14)

Now, instead of harmonics of the left and right polari-
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zation components, we have Floquet numbers which in the field harmonics. In this new base, the field operator
the case of fi; correspond to the total number of harmon- of Eq. 9), & 1,,» Taises (lowers) both fi; and i, by one unit,
ics present irrespective of polarization and for B, apgd & ry, Taises (lowers) fi; and lowers (raises) fi, by one
represent the net angular momentum change carried by unit each, for M= 41 (—1), so that

td - b
I

U1 (M) | jamg,jymp;fip,6,)

1 jg—mg+1, . . .. . . A L Kra X
=3 S LU Galld e ) Gedame —mg | 1EM ) | jom,,jymy;fy+M, 5, = M)
Jerme
+(_‘1)jc_mc(ijdec ><jbjcmb_mc I 1iM> |jama:jc’;nc;ﬁl+ﬁ’ﬁ2iﬁ»]ElM(rM) . (15)

Here, the upper sign results from the action of % ;(M) and the lower sign from % (M) as defined in Eq. (9b), with the
definition (9¢) of D}}!. The Wigner-Eckart theorem on Hilbert space has been used to write the dipole matrix elements
as functions of the reduced matrix elements (j||d||j') and of Clebsch-Gordan coefficients (j,j’,ms —m'|1,+M). Note
also that the components of the vector representing the density operator in this basis are

Pab A0) = jamgsjsmy;Bip, Bz | ple))) . (16)

aa
As can be seen from the definition in Eq. (7), the elements of p:}, ? required for the M = *1 circular components of the
polarization are now p.yi(w) since Eq. (7) can be written in this base as

P =(N4 /MK ple) ) =(N 4 /7)) S (@l ) . ' (17)
a,b

Using Eq. (12), we can write for an isolated f—>i transition

Py =(N4/V) 2 (@} Gpmpojimi LM G GO | jome,jeme;0,0 0 em. ) , (18)
c v
where (df})),, represents the matrix element {j,m, |} | jyms ).

In the absence of a magnetic field (and later we shall see also in certain special cases), it is convenient to perform the
trace operation of Eq. (7) using an irreducible representation with respect to rotations. The corresponding standard basis
vectors | j,jp;KQ ) are defined in terms of the | j,m,,j,m, )) dyads according to the expansion

ljajb;KQ;ﬁl’ﬁZ»: 2 (_l)jb_mb<jajbma—mb IKQ> ’jamaijbmb;ﬁl’ﬁz» . (19)

my,my

The Qth component of a Kth-order multipole operator & IQ( of the Hilbert space has, using that basis, the simple expan-
sion in the Liouville space

. K|
oty 3 Sallf1li)

1JadssKQ ) | (20
ja,jb (2K+ 1 )1/2

so that, using the Wigner-Eckart theorem in Liouville space, the action of %, (M) in this basis corresponding to Eq.
(15) is
U1\ M) | jaJo; KQ;81,8,))
=#"1 3 (K,1,0,+M |K'Q')(2K'41)!2
K',Q'

’

pricrk |1 KK NP viex |1 K K
(—1)’”’0*"{. . ]<jcndllja>|jcjb;K’Q’;ﬁ1+M,ﬁziM»+(—1)’"“””‘{ ]

X Jb jc Ja ja jc jb

X o l|d| e ) | Jae; K'Q' 30+ M, i = M ) lEzM (M) » 1)

where the upper sign holds for left polarization and the lower sign for right polarization.

This basis is convenient3 for problems in which the system under consideration is rotationally invariant, since then
the corresponding Liouville operator is diagonal in the coupled states of Eq. (19). Thus, in the absence of magnetic
fields, L4 and (II(w)) of Eq. (13) conserve K and Q so that, using the definition of the components of the polarization,
Eq. (7), we obtain for an isolated transition, in the absence of a magnetic field,
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Py =(N4/VV3) 3 (Gplld| i) G LM Qi IM5 T, M| (14 2 9)% | jje;00,0,0 05 )y, (22)

c=i,f

which involves matrix elements of the linear response function, with w; =0, =,

Gﬁ(ﬁl,ﬁ2)= KGrJi: KQ3RL 1, | GGE) | jrji KQ3Ry, B, )
=[fij0—kV)—wy;— (5 +ig] " .

(23)

In Eq. (22), K=1 for the dipole transition considered, fi;=1, fi;=M, and M=+1 or —1 corresponds to left and right
susceptibilities, respectively. Finally, { - - - )y means that an average over the center-of-mass speed V is to be performed

in Eq. (22).

The line-shape parameter (II}(,- ), having been assumed to be rotationally invariant and hence diagonal in K and Q, in-
volves the assumption of a spherically symmetric perturber bath. In this case it is independent of Q (and hence of pho-
ton polarization) and contains no interference effects between different multipole moments:**

{ H}(,- )= KQ: Ay, 0, | (I1) | jiji; KQs8,,8, )

= 3 (=D (jpjimy—m; | KQ) jriimj—m] |KQ)

mfxm;,

’ ’
mf,mi

X (2K + D'V jrmp,jimpi, By | (1D | jemg,jimi 58,8,)) . (24)

Note finally that, even though (Hf,-) has matrix elements
connecting different Zeeman substates, the line-shape pa-
rameter is completely independent of the Zeeman substate
involved in the transition. Thus, in the absence of mag-

netic fields, no Zeeman line-mixing effects occur.
Therefore, as is to be expected, in the absence of mag-
netic fields the linear susceptibility is independent of Q
and, obviously, no magnetic optical activity is observed in
the linear case. The case in which the incident radiation
is elliptically polarized (&;&,) which leads to self-
rotation in the nonlinear regime will be discussed later. In
addition, since % is not diagonal in K (in fact, in the di-
pole approximation it may raise or lower K by one unit—
or leave K unchanged—each time it is applied), it mixes
multipolar excitations and, therefore, the nonlinear
response function is composed of products of G(i§) func-
tions, each of which can be a matrix in a different invari-
ant subspace. This is true even in the absence of a mag-
netic field and is the reason for which the K index was re-
tained on G in Eq. (22). The nonlinear response clearly
remains diagonal in Q, however, so that it still leads to a
vanishing MOA for linearly polarized radiation in the ab-
sence of magnetic fields. '
: |

In the presence of a magnetic field, the rotational in-
variance is broken and neither L 4 nor {II(w)) is diagonal
in the states of Eq. (19). Nevertheless, if the magnetic
field is not too large, so that the Larmor frequency of the
a level, o, is much smaller than the inverse of 7., the
collision duration,

2j,0Te << 1, (25)

then the relaxation matrix [in the impact approximation,
at least, where {II(w)) becomes independent of w] will be
unaffected by the field. This has been discussed by
Omont.>* It has been assumed also that the perturber
bath remains spherically symmetric in the presence of the
field. Since the duration of typical collisions in neutral
gases is approximately 10~ 12—10~* sec, the collision ma-
trix will be rotationally invariant for magnetic fields
which are typically less than 50 kG.

However, as discussed in Eq. (11), the states which di-
agonalize the Liouvillian L, and the equilibrium density
matrix for an isolated transition in a magnetic field are
those derived from the Hilbert space of angular momen-
tum variables, |j,mg,j,my;f;, ;). Using these states,
Eq. (22) for an isolated transition becomes, in this basis,

PW=(N,/vv3) 3 3 (=1 ld ) Gpimy —my | 1M)

c=i,fmi,mf,

’ ’
m/ ,mg

)G, M0Gmpjim LM 1+ 2 9% | jerme,jem;0,00p2Gem,) )y

where, with 0; =0, =0,
Gfi(ﬁlyﬁZ)z «jfmf,jimi;ﬁl,ﬁz | G(i&) | jrmy,jimi ;8,180

f,mi;m},m,-'
(26b)
and where Qf is the diagonal matrix of Zeeman transi-
tion frequencies defined in Eq. (11) and (Il;) is the
impact-theory matrix of Zeeman off-diagonal cross relax-

(26a)

f
ation and diagonal decay rates with elements in the mag-
netic subspace,

(Ig )

’

e !
mf,m,-,mf,mi

=Y (piimg—m; | KQ) (jrjims—m| | KQ)
K,Q

X (—1)™ 7" (nk )y @7
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where (IIf; ) is defined in Eq. (24). Again, as in Eq. (22),
only fi;=1 and fi,=M are needed for the linear response.

Equation (26a) now contains the Zeeman line-mixing
effects which were absent from Eq. (22). Thus, even as-
suming that condition (25) is fulfilled so that the impact-
approximation line-relaxation matrix is essentially un-
modified by the magnetic field, another problem now
arises. The overlapping of different Zeeman transitions
implies, as is well known, that the magnetic rotation spec-
tra will not be the sum of the contributions of separate
Zeeman lines. This means that the large matrices of Eq.
(26) must be inverted.

There are, however, two cases in which these overlap-
ping line effects become small. First, the weak-field case

(I};) >>0f,0f , (28)

where (IIf;) is the dipole, K=1, zero-magnetic-field,
impact-theory linewidth parameter from Eq. (24). In this
case the off-diagonal terms and the Ks41 contributions
from the sum in Eq. (27) are negligible in the impact ap-
proximation, the linear response function is now diagonal,
and

Gﬁ.(/l\’ﬂ)z(a)——k’v—nf, (Hﬁ>+l§)mfm .

X Smf,mf, Smi»m,’ (29)
is to be used in Eq. (26).
The other case in which line mixing can be disregarded
is whenever the Zeeman transitions are well separated in
terms of their individual linewidths:

ol 0f >>( H},- ). (30)

This is the case for fields which are strong, although not
so strong that the relaxation matrix loses its spherical
symmetry, i.e., the condition of Eq. (25) is still satisfied.
Unlike the preceding case, however, all zero-field mul-

tipole moment broadening coefficients contribute to the’

relaxation matrix and we have

<Hﬁ mem; = 2<]ffnmf m; IKQ> <Hﬁ> (31)

The breaking of the spherical symmetry of the system
by the strong magnetic field reveals itself in the appear-
ance of the different multipolar contributions to the relax-
ation. This results in a line-narrowing effect as the mag-
netic field is decreased and line overlapping becomes im-

27T|df1|2——

OV /L ~ (N, /V)psd @
(Na/Vpi 3#ic 0)12)

The linear circular dichroism is negligible in this limit.

b +a)L+(coL— L)j

portant. Recent experiments on the Stark components of
the rotational spectrum of CH;F by Brechignac®® show
clearly the analog of this effect as a function of the exter-
nal electric field.

It can be seen that spectroscopic measurements of the
shapes of the individual Zeeman components contain in
principle more information on the intermolecular poten-
tial than zero-field measurements. Nevertheless, to ob-
serve these individual transitions it is necessary that the
Doppler width not drown the components. For this, the
condition, difficult to fulfill,

ol ,0f >w0p 32)

must be satisfied. Here wp is the Doppler width,
wp=w(u/c) with u the most probable center-of-mass
speed, and u=(2kT/m)'?2. Elsewhere,>2 we have
described a Doppler-free method of observing MOA using
two counterpropagating laser beams.

In the following, we shall always assume that the mag-
netic field is not too strong so that collisions can still be
described by the spherically symmetric theory [i.e., Eq.
(25) is satisfied] and also that either Eq. (28) or (30) is
satisfied, either of which leads to a relaxation matrix diag-
onal in the Zeeman states.

The linear MOA can now be obtained by neglecting
% % in Eq. (26a), performing the indicated velocity aver-
age, and calculating the difference between left and right
susceptibilities as in Eq. (6). For this purpose, the case for
which the Doppler effect is large and the laser frequency
is near resonance will be considered. First, the weak-field
case for which the condition of Eq. (28) is fulfilled, the
linear Faraday complex rotation for the f—i transition at
00— <<@p, is

(1 Y7

7|dp |? © Zzp)
1

- eq
(N /Vpii=—22 "

ji(ji+1)—jf(jf+1)
2 b

X |of +of + (0} —w})

(33a)
where Z' is the first derivative of the plasma dispersion
function Z (Ref 37) with  the argument
zp=(w— a)f,—(ﬂf,))/a)p Using Z'(zp)=—2[1
+252Z(z5)] and Z(0)=iV'w, Eq. (33a) becomes for very
small detunings (Aw ~0)

iGek D—jpGip+1)
2

(33b)

For well-resolved Zeeman components, where the condition of Eq. (30) is fulfilled, we have for the linear effect of the

transition j;m; —jrm; +q

7|dgy |20 o',

(O 4wy /L =g(N , /V)psd
+ q A/ )p, ﬁCCOD

1—

kr "

Grilmi+q)—m; | 1 Y*Z(z,(m;)) , (34)
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where the argument of the dispersion function Z is
zq(mi)=[ O —Of
—of (m;+q)+opm;— (I Ymm)/0p -

For large detunings, the expressions in Egs. (33a) and
(34) can be written in the form of Eq. (2), which is linear
in the magnetic field. Approximate expressions for the
Verdet constant V(w) have been given for special cases in
the literature.!'=!> There are three principle contribu-
tions, usually'* denoted A4(w), B(w), and C(w), which
arise from the magnetic-field dependence of the energy
levels, the wave functions, and the level populations,
respectively. The recent study of the MCD of the excimer
molecule Cs-Ar is a good example of the usefulness of the
method. A calculation of the expression corresponding to
Eq. (2) for the MCD (which can be expressed in terms of
A, B, and C through the dispersion relation for MCD and
MCB), when compared to experimental measurement,
permitted the determination of the Hund’s-rule coupling
scheme for the Cs-Ar ground state for the first time.’
The usefulness of excimer molecules in short-wavelength-

laser design indicates the importance of this method."

General expressions for the nonlinear contributions to the
Verdet constant will be given in Sec. III.

In addition, the linear Faraday effect has long been
used in the identification of the electronic spectra of mole-
cules. Since for P and R branches, the MOR is roughly
inversely proportional to the rotational state j, band
heads, which correspond to low-j values, are easily identi-
fied. Carrol,*® in 1937, introduced the use of this effect
for studies of the perturbation of certain vibrational-
rotational levels of an electronic state by nearby states be-
longing to another electronic state. A systematic study of
these effects can furnish complementary information on
the potential of the perturbing states. It should also con-

Pil=—(N8v) 3 3 (dM)}i(p;?mi—p;.?mf)
1

me,m; M=%
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tribute to the determination of electronic states inaccessi-
ble to classical absorption spectroscopy once the molecu-
lar vibrational-rotational constant of the accessible elec-
tronic states is known. An example of this was the
analysis of the laser-induced fluorescence spectrum of the
M—1!3 transition of Na, and NaK which revealed the
perturbation of the 'II state by a nearby °II state.>**

When the laser is very intense, stimulated or nonlinear
effects must be taken into account, and these correlations
will be treated in Sec. III. Heating or thermal lens effects
which involve considerations of the thermal equilibrium
of the interacting system will not be taken into account.
This is the usual assumption of no back reaction in the
system-bath interaction. The nonlinear MOA and the A4
and C contributions to the third-order nonlinear Verdet
constant will be calculated for transitions in two-level sys-
tems with arbitrary angular momentum.

III. NONLINEAR MOA

To carry the calculation described in Sec. II to higher
order in the radiation-matter interaction %, of Eq. (9), we
must calculate matrix elements of the (i) resolvent
operator defined in the Dyson equation (13). To do this
we restrict the states considered to those effectively cou-
pled by the laser field, i.e., to those that are quasiresonant
with the incident frequency. This is the rotating-wave ap-
proximation (RWA) which considers only denominators
of G functions in the Dyson equation which contain
near-resonance detunings.

Under this approximation, the matrix elements in the
expression for the susceptibility, Eq. (26a), are calculated
in a subspace restricted to vectors which have resonant G
functions. This means that only eight matrix elements of
I (i§) are required for an isolated j;— j, transition:

X { (d4] )fi[«jfmf:jimiiﬁl gig) |jfmfsfimi;ﬁ',ﬁ' »ElM,

+jrmy,jim; 1,

A

M| GG8) | jymp.jim;; — M, M'WE, ]

A

—(dlifl (<jfmf’jimi;T’M| g(ig) ljimi:jfmf,ﬁ'aﬁl NEy,,

+ «jfmf7jimi;/l\»ﬁ| g(ig) Uimi,jfmf;—ﬁ',ﬁ' NE, 1}, (35)

where Bw; << 1 has been assumed (B=#/kT).

In the calculation of these matrix elements in terms of
the interaction-free response functions G through the
Dyson equation (13), the Liouville vectors to be con-
sidered in the RWA are restricted to the subspace spanned
by the vectors |j,me,j.m¢;0,8,)) with fi,=0,+2,+4, ...
(an even integer), j. =j; or j for the even-parity part and,
as indicated in Eq. (35), ljfmf,j,-m,-;’l\,ﬁzi 1)» or
| jimi,jemp; —1,8,%1)) for the odd-parity part.

T

As can be seen from Eq. (15), the required matrix ele-
ments of & (i€) are coupled to matrix elements between
all these states (i.e., the intermediate states are dressed
with all possible numbers of angular momentum harmon-
ics), unlike the case of the first-order calculation in Sec. II
which contained only a single odd subspace G function.
Since there are an infinite number of coupled Dyson equa-
tions for these matrix elements, a solution of the Dyson
equation (13) in terms of these diagonal G elements is not
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possible. However, a solution in terms of continued frac-
tions*! can be obtained which yields the susceptibility to
all orders in the external laser field. A closed-form solu-
tion can be obtained in certain special cases. For example,
for isolated transitions involving two levels with the same
Landé g factor (e.g., a normal Zeeman effect, or the
Paschen-Back effect), matrix elements of L, are diagonal
in the irreducible representation of Eq. (19) and indepen-
dent of K. This is the same as the case in the absence of
magnetic fields. The Gy(fi;,f,) functions of Eq. (26) are
also diagonal in this representation [assuming the condi-
tion of Eq. (25)]. The use of the irreducible representation
simplifies the higher-order calculation since now, in the
even subspace, fi; can no longer be any even integer but is

Py = (N4 /38V)(js||d]|ji Ypd
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limited by the | Q| (and, hence, K) of the irreducible vec-
tors with which it is associated. This is because the dipole
interaction % (,)(+1) raises or lowers i, at the same time
as it raises or lowers Q, so that in the even RWA subspace
where 1i;=0, |fi;| can never be greater than |Q|. But
Q is limited by the definition |Q | <K <j, +j,. Thus,
the vectors which span the even subspace in this case are
|jeje;KQ;0,8,)) with |f,| <2j, (or 2j,—1 for half-
integral angular momentum). Similar arguments apply to
the odd . RWA subspace where the vectors are
|ipisKQ Lot 1), |jijrKQ;—T,8%1) with ||
limited as above to |fi, | <j; +jg.

The expression for the susceptibility in terms of these
invariant vectors is, again in the RWA,

X 3 il U \ML M GG g 180, B Dy,
M'=*1

+ Qs ML, M| &) | jpjis 1M — M, MU W E, ]

(=D TGl 1d) )T G 1M,

M| FGE) | jijr; 1M M, M N E,

+ Qs IML M| 9G8) | jijps 1M — M, NE, 1, (36)

assuming only the initial state is populated and Bw; << 1.

For low-j transitions, the calculation is greatly simpli-
fied now, since, for example, in 1—0 or %—»% transi-
tions, the coupled Dyson equations which determine the
matrix elements in Eq. (36) are limited in number. In this
case the only diagonal irreducible matrix elements of the
RWA even functions Gcc(ﬁ,ﬁz) which occur have
fi,=0,12. Also in this case, K =0,1,2. In the RWA odd
subspace the diagonal functions Gab(T,ﬁz) all have
fi,=+1. Thus, the solution of the coupled matrix ele-
ments of the Dyson equation now involves only low-
rank-matrix inversion. The complete expression for this
case has been developed by Giraud-Cotton.!” We limit the
following discussion to the third-order contribution to the
susceptibilities and calculate the self-rotation and Verdet
constant to this order of approximation.

A. Self-rotation

The simplest case in which the irreducible representa-
tion diagonalizes the interaction-free resolvent operators is
the one for which the magnetic field is zero. Since, as was
noted previously, the susceptibility is independent of Q in
this case, the nonlinear susceptibilities X, and X; will be
the same for linearly polarized light and no MOA can
occur. However, for elliptically polarized light, there will
be an effect proportional to the difference of intensities of
the left and right circularly polarized components. The
calculation of the matrix elements of Eq. (36) outlined
above yields the following expression for the third-order
complex rotation:

T
(é (3)+i\1/(3))/L

=[AB =B /7 s 1(GH1, DImG LA, 1))y

X (p$—pSF (i, f)

A=(v, ) 2T Ldn ]
- A ﬁC ’
37)
Fli,f)= 3 (=DK1 174K) K 1 1
s P ! Jr Ji Ji
7 4K) e
s Ji JroJr ||’

L (K)=7,(K) /7 (1),

where B (,)= |dgE; (/%] is the Rabi frequency of the
left and ri§ht circularly polarized components,
¥4(K)=Im(Il,, ) is the impact limit orientation (K =1)
and alignment (K =2) relaxation rate of level a, and p&? is
the field-free population of level a.

For large detunings, only the rotation of the elliptically
polarized radiation is important. The angle of rotation
can be approximated by )

O%/L=—[A(B}—BN /v i b} p§S—p§OF (i, f)
(38)

where Awg=w—wg. In the opposite limit of near-
resonance detunings with an important Doppler broaden-
ing, wp >>Awg,¥ g1, the circular dichroism dominates and
we have
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VO /L =[AB}—B) /v 7ioplp§—pfIFGLf) . (39)

Explicit expressions for F(i,f) are given by Giraud-
Cotton!” for arbitrary values of j;,j; for dipole transitions
J

—(1/15)I0712)+T71(2)], Aj=0
lim F(i,f)=

J— o

The alignment relaxation rate alone dominates the self-
rotation for Aj =0 transitions, as is the case for nonlinear
phenomena in the absence of magnetic fields (cylindrical
symmetry with respect to the propagation direction).
However, for Aj=+1 transitions, a combination of orien-
tation and relaxation rates occurs.

Finally, we note that the self-rotation of the axis of po-
larization of the incident elliptical radiation when
Awg >>¥5i,0p is of opposite sign for Aj=0 and Aj=*1
transitions without modification of its ellipticity. In the
opposite quasiresonant limit Awy,Y s <<@p, only the el-
lipticity is affected, again with opposite sign for Aj=0
and Aj=+1 transitions. This last result, in the special
case where the orientation and alignment rates are the
same, has been discussed previously by Saikan.?

B. Verdet constant

The third-order contribution to the Verdet constant was
studied for the first time by Yu and Osborn.® They calcu-
lated the influence of the intensity on both the diamagnet-
ic and paramagnetic contributions, that is, on the terms
independent of and dependent on the temperature. The
calculation presented there considered only the normal
Zeeman transition j;=1—j;=0. Using the method
presented above, we shall study the more general case of
dipole transitions between levels of arbitrary angular
momentum. We shall examine successively the case
where the Zeeman effect is small with respect to the width
J

CJajp;KQ3 1,82 | G | jajn; K'Q; 1,8, )
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Jji—jg=Aj==1,0. Here we note that for high-j values it
has a particularly simple form that displays the depen-
dence on I'(1) and I'(2), the orientation and alignment re-
laxation reduced rates:

(/2O (07 D4+ T (=TT ) +T7 ()]}, Aj=+1.

r

of the levels involved and the case where it is large enough
to lift completely the level degeneracy. The first case is of
interest for the study of Faraday rotation in gases in the
earth’s magnetic field and subject to strong laser radia-
tion. The second corresponds more nearly to the typical
conditions for Faraday rotators in high-power glass-laser
systems.

The expression defining the Verdet constant, Eq. (2), is
valid for detunings from resonance which are much larger
than the width and Zeeman shift of the transition being
studied. This detuning must, however, be less than
B=#/kT in order to preserve a product form for the
system-bath density operator. Under these conditions, we
can expand both pgl(j,m,) and G, (fi;,8,) in powers of
the magnetic field H,.

Recall that in the presence of a magnetic field the ir-
reducible tensor basis does not diagonalize the resolvent
operators. Nevertheless, as long as the detuning is much
greater than the Larmor frequencies [which is the basic
condition for the validity of Eq. (2) which defines the Ver-
det constant], we can write

G=G°1-M,H,G% , (40)

where G° is the magnetic-field-free resolvent operator
with matrix elements in the irreducible basis as given in
Eq. (23). In Eq. (40) only M, has off-diagonal elements
and only in the odd-parity RWA subspace,'” so we can
write for those matrix elements

=GE(+1, 085 g+ (— 1725+, (K100|K'Q)Y(2K + D26 (+1,8,)G5 (+1,8,)

1
X g.,[ja(ja+1>(2ja+1)]“2{

+ (= DEHE g L p G+ 1)(2), + 1112 1 K K
bLIb b Ja Jb Jb ||’

with the magnetic-field-free GX as defined in Eq. (23).

jb ja

K ’
Ja

(41a)

In the even-parity RWA subspace, M, has only diagonal elements, but, since these matrix elements of the resolvent
operators do not depend on the detuning, Eq. (40) is only valid in the weak-field limit; thus we write

KJaja; KQ30,8, | G | jojas;KQ;0,8, ) =

where w; =ugH,.

—(0.8,Q) Bk k' ©r8 >>Va(K)
G (0,8,)[1+g,0. 0GK (0,8,)18¢ k» 0182 <<Va(K)

(41b)
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Note that a term independent of the magnetic field appears in Egs. (41a) and (41b). This term is the self-rotation term
discussed above. It contributes a term proportional to the difference of intensities of the left and right circularly polar-

ized components as can be seen from Eq. (36).
dependent on the sum of these intensities.

The remaining terms in the nonlinear effect, as we shall see, are always

In order to investigate the 72 dependence of the third-order Verdet constant, found by Yu and Osborn,® in the
strong-field limit, we expand pgd(j.m,) to second order in Bwrg.:

— 12, +3)/51"% | joje;20;0,0)) | , 42)

pedieme) = Efpiq 1+(ﬂngc>21”(jc3;l) (2 -+ 1) j.j¢;00;0,0))
c=i,
—BorgeljeUe + 1(2je+1)/31'? | joje; 10;0,0))
+[(Borge /31 Ljc e + 1412
[
where pi=Z—le~P?j, is the equilibrium population of

sublevels c¢in the absence of a magnetic field. This expan-
sion can be limited, in the weak-field case, to first order in
Borg..

To simplify the notation in the strong- and weak-field
limits of the Verdet constant, we distinguish a diamagnet-
ic contribution ¥, (from the magnetic-field dependence of
the resolvent operators) and a paramagnetic contribution
V, (from the H, dependence of the sublevel populations)
as in Ref. 6:

Viw)=Viw+ V(o) . (43)

The expressions for those coefficients in the two limits
discussed in the previous calculations of the linear effect

where 4 is defined in Eq. (37), and the Fy(j;,js) are real
coefficients which depend on j;,js and the relaxation rates
only. They are tabulated in Ref. 17 for Aj=0,+1 transi-
tions separately. Here we shall study only the case of
large j. This case is appropriate for Faraday rotators in
high-power laser systems which are usually composed of
doped glasses and have ground states with large angular
momentum  eigenvalues or gases where the rotational
number of populated states may be large.

For the large-j case, we assume also that the initial-state
population and lifetime are much larger than those of the
final state, p;? >>pf and y¢>>v;. The linear effect, Eq.
(33b), becomes in this case

can be written in the following forms. ViV = — 1y A(pS /302
(1) Weak field, Doppler broadened, wp>>Awy w5 Alpi/30p)
S>>V i >>0OL,0L: ,
2.2
VP = pg ABE+ BT X(ps—pSOF (i js) X[8i+8f+(8i—8gp)Ui —if)/21,
Awl. o2
we Awf./wp/wby}i(l) i (45)
(44)
V= ppAB+ B ) —iBup A(pfd/6wp)g; i —Jf>/2
X[P F2 u]f)+p;'qF3(]an)] . .
A S Neglecting the difference between the y,(K) values, the
Xe " opyh(1), third-order contribution becomes
J
VP = — up dpSm' 2 fopyie DB B)(1/1200,)

X {8(g;+87+28; /T)(1—Aj>) +[2(g; +87)+48; /Ti+j | Aj | (1+Aj)(g;

—gr) 1A},
(46)

- mz ‘UZ . . .
V¥ =PupApi/(wprh)e Aen’ (B2 +B)g; /T [(1—Aj?)/30j —Aj /20] .

In these expressions, Aj=0 for @ transitions, Aj=+1
(—1) for R (P) transitions, respectively, and j is the
highest of the two quantum numbers j;, jr.

We note that in this weak-field, large angular momen-
tum, Doppler-broadened case, the diamagnetic contribu-
tion dominates and only the Faraday rotation is modified
in third order. The ellipticity is unaffected.

(2) Large magnetic field, collision broadened,

[
ol 0} >>Aws >>7 5 >>0p:

V= —up A —pN B2 +BDIFainip) +iFs(inip)]
(47)
V) = —BupABE+BDIpF s irip) +05Fissjg)]

—iBPup Ay (B2 +BDIp§Fsinir) +PFFolini )1,

where the Fy(j;,j) are real functions of j;jr, the relaxa-
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tion rates, and the ratio Awg; /¥ ;. They are tabulated!” as
the Fy, k=1,3, for Aj=0,*1 transitions.

In the large-j;,p$%, ;! limit, the linear effect of Eq. (34)
becomes

Va''= upA(pf1/600%)(1—2iy i /bay)

X[gi+gr—jAj(gi—gs)] s
, (48)
V;l)i ByBA(p?qg,-/Acoﬁ)(l—iyf,-/Aa)ﬁ)

X(1—jAj—Aj?) .

The third-order contribution to the Verdet constant be-
comes.in this case

V=~ ppAp(B; +BD)

X(®y/A0};+i®,/viA0})
(3) 2 49)
V)= — upApi( B +BY)

X[ B(®3/Aw}; +i®,/y;Awk;)
—iBuy i /A0}i] '
where, for Q transitions,
Q= [2(g; +87)+8—8r1/15jT;
+(g,~2/gf+gf2/g',-)/30j ,
®,=g;/15j ,
®3=g;/30jT; +8{/30j¢y ,
Dy=g;(1+g;/87)j /75,
and for R and P transitions,
Q=—Ajlgi+8r+2(jAj+6)(g —gf)]
X(gr/8i—8i/8r)/240

+[13(g; +87)—14jAj(g; —gr)1/40jT; ,
®,=g;/60j ,
D@y=g; /15T, —Aj{ 2(g; +g,)[1—jAj(g; /gr—1)]
+6(g; —gs)} /240 ,
D,=g;[2j(g;+85)—5Aj(g; —gr)1/1200g .

Note that when g; ~0 (or gs~0) the quantities involv-
ing g; (or g¢) may be simply omitted in Eq. (49), whenev-
er the Landé factor appears in the numerator or denomi-
nator, provided that all products have been performed in
the ®’s. Note that the ellipticity and not the rotation is
primarily affected by the third-order contribution. How-
ever, since the radiation is nonresonant, the ellipticity is a
small effect so that very little change in the MRS is to be
expected when intense laser radiation is incident. This
conclusion is at variance with that of Yu and Osborn,®
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who studied only spinless, noninteracting systems (i.e., a
normal Zeeman effect). It is seen that, when relaxation is
taken into account, terms proportional to I';”" appear
which are at least as important in gases as those evaluated
by Yu and Osborn. In addition, the term in T'~2 in Eq.
(42) appears here as a contribution to the ellipticity or
imaginary part of the Verdet constant. This corrects what
we believe is a misprint in the Yu and Osborn article,’
where it appears in the real part. Except for this, our ex-
pressions reduce to theirs in the appropriate limit.

IV. CONCLUSION

Nonlinear response methods have been applied to calcu-
late the components of the susceptibility which describe
the MOA in intense laser fields. This formulation has
been applied to generalize previous calculations of the ef-
fect. In particular, the third-order contribution for a
two-level system with arbitrary angular momentum and
an anomalous Zeeman effect has been presented. Exten-
sion of this calculation to an exact solution for this two-
level system has been discussed for the case of a normal
Zeeman effect or Paschen-Back effect.

Arbitrary polarization of the incident laser field has
been included. When this polarization is elliptical,
magnetic-field-independent terms arise. A self-rotation
effect is shown to appear when the laser field has a large
detuning. For near-resonance conditions, a modification
of the ellipticity occurs. These results generalize those of
Maker and Terhune?! and Saikan.??

The calculation of the third-order term in the applied
laser field which depends linearly on the longitudinal
magnetic field strength leads to nomlinear corrections to
the complex Verdet constant. Several cases of practical
interest have been studied. First, the case of weak-
magnetic-field energy (compared to the collisional line-
width) in Doppler-broadened transitions was investigated.
These conditions are those which arise in problems of as-
trophysical interest. A second study was for the case of a
laser detuned from resonance in a strong magnetic field,
which is of interest for studies of Faraday rotators in
high-power laser systems.
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