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Electron-loss and excitation cross sections for a He+ ion colliding with various atoms
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A unitarized impact-parameter method is applied to calculate the electron-loss and excitation
cross sections for He+ ions colliding with atoms. The projectile ionization and excitation are dom-
inantly caused by the average potential field of the target atom (atomic number Z2). The inelastic
process of exciting the target atom contributes negligibly except for light target elements. %'e adopt
the Moliere potential to describe this average potential field. The energy dependences of the
electron-loss cross sections in He, N&, and Ar targets are in good agreement with the reported data.
In the case of the Kr target, the present theory yields larger cross sections than the data, especially
below 1 MeV impact energy of a He+ projectile. The calculated loss cross sections at impact veloci-

ty ranging from 2UO to 6Uo (Uo=2. 18X10 cm/s) show a weaker Zz dependence in the large Z2 re-
gion than that given by the Bohr formula. As for the cross section for exciting the ground state of a
projectile to the first excited state, a similar weak Z2 dependence can be found. The recent experi-
mental results using 40-MeV F + ions colliding with He, Ne, Ar, and Kr'targets have supported this
tendency.

INTRODUCTION

In the ion-beam —material interaction, the problem of
charge states of incident ions passing through matter has
been studied intensively. In order to determine the
charge-state distribution and to investigate the charge-
changing effect of impinging ions both on the energy loss
and on the energy straggling for energetic ions, the data
of the cross sections for electron loss and capture play an
essential role. Moreover, the energy and material depen-
dence of these cross sections is of great interest for a sys-
tematic and comprehensive understanding of atomic col-
lisions in matter, including in solids.

As for a helium-ion beam, a large amount of the
energy-loss data has been compiled since it is a basic
quantity to analyze the depth profiles of impurity atoms
using the Rutherford backscattering method (RBS). The
effective charge in the stopping phenomena, which is in-

terpreted as the effective charge that a heavy ion has ac-
quired through the resultant excitation of electrons in
matter, is a useful quantity to arrange and predict the
stopping-power data for heavy ions. Recently the average
charge of helium ions with -MeV energies, obtained
from the charge-state distribution, has been reasonably re-
lated to the effective charge, where the experimental data
reveal a strong Z2 (target atomic number) oscillation in
the average charge. ' This effect can be explained
theoretically by the fact that the electron-capture cross
section for a He + ion displays the oscillating behavior
with respect to Z2 while the electron-loss cross section for
a He+ ion remains monotonic. ' In order to calculate the
electron-loss cross section in atomic collisions, the first
Born approximation (FBA) is widely used, where we have
to estimate the contributions independently from two
cases. One case is that a target atom is excited and the
other case is that it remains in the ground state in a col-
lision. These two cases are referred to in this paper as the

inelastic part and the elastic part, respectively. Judging
from the elastic part contribution, the electron-loss cross
section for a He+ ion is nearly proportional to Zz for
small-Z2 targets, while for large-Zz ones it depends on
Z2 more weakly since the target electrons screen the elec-
tric field provided by the nucleus. There are qualitative
agreements with the data in the Z2 dependence of the loss
cross section. Quantitatively, however, there are non-
negligible differences except for small-Zz atoms. This
seems to imply that the FBA breaks down around the
velocity v-Z, vo (Z& is the atomic number of a projec-
tile), where the loss cross section is maximum. Neverthe-
less, the FBA is actually of great use in treating excitation
and ionization processes, since the closure expression and
a scaling law for the cross sections are available. ' It is
not, however, quantitatively satisfactory for low impact
energies (or velocities). On the other hand, based on the
free-collision approximation, Bohr" estimated the loss
cross section for an ion colliding with heavy atom at a
high velocity U to be

a~„, traoZ2 (vo/v)(Io/I——)' for v/vo & (I/Io)'

where vo ——2. 18&( 10 cm/s, ao ——0.529 ~ 10 cm, Io
= 13.6 eV, and I denotes the binding energy of an ejected
electron in eV. This formula has a different velocity
dependence from the asymptotic velocity dependence of
the FBA, and has presented at least qualitative agreement
with data.

The aim of this paper is to give more satisfactory
dependences of the loss cross section for He+ ions on the
physical parameters U and Z2 over wide ranges. At the
same time some new aspects in the investigation of the ex-
citation cross section for He+ projectiles with respect to
Zz are also presented. In Sec. II, our calculation formulas
are described, and Sec. III is devoted to present numerical
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results and discussions. The atomic units (e =m =A'=1)
are used throughout the paper unless otherwise stated,
where the velocity and the length are measured in units of
the Bohr velocity uo and the Bohr radius ao, respectively.

II. FORMULATION

R=vt +ebb, (2.1)

where e~ is the unit vector perpendicular to v, and t
denotes the time chosen such that the internuclear dis-
tance R is a minimum at t =0. Once the probability
8'(b) for a given reaction as a function of impact parame-
ter b can be obtained, the cross section o. is calculated
directly from the following:

a=2m f db b&(b) . (2.2)

The total Hamiltonian H of our system is written as

H'=Hp +H, + V;„,(t), '

Hp ————,b, )
—Z( /r ),

(2.3)

Let us consider the collision system composed of a pro-
jectile with one electron and a neutral target atom with
Z2 electrons. The position vectors of electrons from the
nuclei are denoted by r& and r2j (j=1,2, . . . , Z2) (see
Fig. 1). The extension of the theory for a projectile with
more electrons is straightforward. Vfe assume that a pro-
jectile moves with the constant velocity v on a straight-
line trajectory with impact parameter b. Therefore the
relative position vector R of the projectile from the nu-
cleus of the target atom is described as

FIG. 1. Schematic of the coordinate system.

(2.4)

da„k(t)
l

at
= g (n;k

I V;„,(t) I
n', k')

n', k'

According to the usual procedure, the wave function is ex-
panded in terms of the linear combination of the product
of eigenfunctions for the electrons both in the projectile
and in the target atom such as

—~e ')~
y(t)= ga„k(t)y„(r, )e

"" 'ek({r,I)e
n, k

(2.5)
(p) (t)

Hpdn en 4n~ t+k =ek pk ~

where {rzj stands for a set of the coordinates of the target
electrons, and eg' and ek" the eigenenergies of electronic
states labeled n and k, respectively. The subscripts (p)
and (t) refer to "projectile" and "target, " and a„k(t) is the
expansion coefficient. Continuous states as well as
discrete ones are denoted by n and k, symbolically.

Using (2.3)—(2.5), we get the following equation:

~~= X(—z~&k Z&/r&k)+ ~ g 1/lr2k r2j I

k k(~j)

V.~«)= —Z2/IR+ril —QZi/IR r2j I—
1/

I
r& —r,j+R I,

J

x exp[i(e„k e„k )t ja„k (t—),

with

(n;k
I V;„,(t) In';k')

(2.6)

where Hp, H„and V;„,(t) represe'nt the Hamiltonian for
the electron in the projectile, that for electrons in the tar-
get atom, and the interaction Hamiltonian between two-
electron systems, respectively. And b.~ (a=1,2k) denotes
the Laplacian operator with respect to r, where r2k
represents the position vector of the kth electron on nu-
cleus 2 (the target nucleus). The time dependence of
V;„,(t) is introduced through the position vector R=R(t).
The wave function for the electron is governed by the
time-dependent Schrodinger equation as follows:

(p) (t)
&nk=&n +&k

(2.7)

Then the differential equation (2.6) is equivalent to

(2.8)

in order to eliminate the matrix element
(n;k

I V~„,(t) I
n;k ) in (2.6), the transformation is made

a„k(t)=A„k(t)exp —f dt'(n;k
I V;„,(t') In;k)

BA„k(t) g exp, i f dt'(n;k
I V;„,(t') I

n;k)
at P kg I 00n,

x {&n;k
I

V t(t) I
n "k'&exp['(elk e 'k')tl —&" «k

I Vi~r(t) I
n; &k5„„5 kkj

x«p ~ f «"&n'k'I V;.t(t") In';k'». k(t» (2.9)
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where 5,J denotes the Kronecker delta. The above equation can be rewritten as

BA„k(t)
i + g (n;k

~

V(t)
~
n';k')A„k(t),

kr
7

with

V(t) =exp[iy(t) j[V;„,(t)—V;„,d(t) jexp[ —iy(t) j,
where the matrix elements of the operators y(t) and V;„,d(t) are given as follows:

( n;k ( y(t) (
n', k') = f dt'(n;k

( V;„,(t')
~

n;k ) +e„kt 5„„5kk,

(2.10)

(2.11)

(2.12)
&n k

I Vio~, d«) In'k'&=&n k
I

V «) In k&5.n5kk .

In (2.11), V(t) has vanishing diagonal matrix element (n;k
~

V(t)
~
n;k). The differential equation (2.10) is straigh'tfor-

wardly converted into the following integral equation:

A„k(t)=5„p5kp —i g f dt'(n;k
~

V(t')
~

n', k')A„k(t') . (2.13)
n';k'

The probability of transition from the initial state
~
0;0) to the final state

~

n;k ) can be obtained as a function of the
impact parameter such that

~.k(»=
I ~.k(~) I'=

I
A.k(~) I' ~

Using the iteration in (2.13), the transition amplitude A„k( oo ) is written as

(2.14)

A„k(oo)=5„p5kp l f —dtj(n;k
~
V(ti) ~0;0)

+( i) g—f dt& f dt2(n;k
~
V(ti) )

n', k')(n', k'
( V(t2)

~
0;0)

n', k'

t) t2
+( i) g—g f dti f dt2 f dt3(n;k

~
V(ti)

~

n', k')(n', k'
~

V(tz)
~

n",k")
n', k' n",k"

X (n",k"
~

V(t )
~
0;0)+ (2.15)

The right-hand side of the above equation is expressed as (n;k
~

W( oo, —oo )
~
0;0), where the operator W( oo, —oo ) is

W( oo, —oo )=E—l f dt V(t)+( i) f —dti f dt2 V(ti ) V(tq)

+(—0 f dt, f dt2 f dt3V(ti)V(tp)V(t3)+

=E i f dtV—(t)+( i) l2!f —dt) f dt2~[ V(ti) V(t2) j

+[( i) /3!j—f dt, f dt2 f td, M[V(t, )V(t, )V(t, ) j+
~'

=Mexp —i t V t (2.16)

since the (n;k j
's (or

~

n:k )'s) form a complete set. In (2.16), M is the chronological ordering operator and E the unit
operator.

Up to this point the theory is straightforward. It is, however, difficult to obtain any results without further approxi-
mations. Therefore, first we drop the chronological ordering operator in (2.16). Even at this stage it is still difficult to
evaluate all of the matrix elements of the operator V(t) Second, in. evaluating the summation over intermediate states on
the right-hand side of (2.15) or (2.16), we specifically include only such matrix elements (i

~
V(t)

~ j ) for which either the
bra or the ket vectors (i.e., (i

~

or
~
j)) is the ground state (i.e., (0;0~ and

~
0;0)) and the other ket or bra is arbitrary.

As we will see later, these approximations do not break the unitarity of the operator W( oo, —oo ) and consequently keep
the total probability unity. Actually, under these conditions, the following expression for A„k( oo ) (

~
n;k )~

~
0;0) ) is

obtained:
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A„k( )= —' f dt, (n;k
I
v(t, )

I
0;0}

+[( i) /3 ]f f f dt&dt&dt3 2 (tt k
I
«ti)

I

o'»&0 o
I
v(t»

I

n' k'&&tt' k'
I

v(t3)
I
o »

kIn,

+[( i—)'/5!]f f f f f dt, dt, dt3dtgdt5 g g (n;k I v(t, ) Io;o)(o;oI v(t, ) In', k')
n', k' n",k"

X (n';O'
I V(t3)

I
0;0)(0;0

I
V(t~)

I
n",k")

x( ";k"
I

V(t, ) Io;0)+.

i f— dt, (n;k
I

V(t&)
I
0;0)(1—p, /3!+p, /5!+ )

i f—dt, (n;k
I V(t))

I 0;0)p, '
sin(p, ' ), (2.17)

where

oo 2

p, = Q p„g (b), p„k (b)= f dt (n', k'
I

V(t)
I
0;0)

' k' 00n,

In (2.17) there are no matrix elements for even-order terms of V(t). The reason is the following: if it were possible, they
would have to include the factor such as (0;0 I

V(t)
I
0;0) under the approximations considered. However, they cannot

contribute since V(t) has vanishing diagonal matrix elements.
On the other hand, the survival amplitude of the initial state, Moo( ao ), is estimated as follows:

Boo(oo)=1+[(—i)2/2!] g f f dt, dt2(0;OI V(t&)
I
n';k')(n';k

I V(t2)
I
0;0)

I kt 00

+[(—)'/4!] g & f f f f" dt «dt dt &0;oI v(t )I ';k'&& ';k'I v(t ) Io;0&
n', k' n", k"

x(0;0
I
v(t, )

I

n";k") (n";k"
I
v(t, )

I
o;o)+

= 1 —p~ /2! +p~ /4! + '

=cos(p,'") . (2.19)

~,k (b) = [p„k(b)/p, ]sin'(p, '~'),

~00(b)=cos (p,
'~

) .
(2.20)

The total probability to find the electron in any
I
n;k)

states is obtained by summing over n and k, and conse-
quently the following can be proved:

n, k
(n0 or k0)

W«(b)+%00(b) =sin (p,
' )+cos (p,

'
)

(2.21)

In the case of dao( co ), the matrix elements for odd-order
terms of V(t) cannot be incorporated into (2.19). Finally,
we can get the transition probability to the

I
n;k )

(& I 0;0) ) state and the survival probability of the
I
0;0)

state in the forms

This shows conservation of probability, and we can see
that the approximations adopted in the model here
presented do not destroy the unitarity.

The approximation of dropping the u operator means
that the limited sections of the time integral of the
transition-matrix elements are extended over from —oo to
oo. Namely, the time-ordered multiple integral is re-
placed by the product of single integrals over independent
time variables. It may not be easy to estimate quantita-
tively the extent to which the dropping of the ~ operator
is valid, since the operator 8'( ~, —oo ) is composed of in-
finite power series of V(t). However, as will be seen later,
the formula (2.20) with (2.18) is equivalent to the first-
order perturbation. treatment if p, &(1. Moreover, the
present formulation actually ensures the conservation of
probability. The expression (2.20) with (2.18), therefore,
improves the first-order treatment, including the FBA.

The matrix elements (n;k
I
7'(t)

I
n;k ) and

(n!k
I V;„,(t) I

n;k) in (2.12) indicate the distortion and
the energy-level shift of the

I
n;k) state, respectively.

The explicit form of (n;k
I

V,„,(t) I
n;k ) is given as
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(n k
I

v' (t) In k) v$ (R)+v2k(R)+vk(R)

Vi.«)= —f«iZ2 I W. «i)
I

'/
I
R+r|

I

(2.22)
vzk(R) fd Ir2jz1 I

+k( I rej )
I

' 2 1/
I
R—rag I

V„k(R)=f fdr&d Ir2j

with

=fdr, P*„(r))V(R+rl)

&& po(r, )exp(i E'yot ), (2.23)

(2.24)

V{R~r|)=(0 —Zr/~R+r&~++1/~R+r& —rrr
~ Dl.

J

x Iq, (I,j) I'/IR+, —„I,
where V&„(R) [V2k(R)] denotes the energy-level shift of
the electronic state n [k] of a projectile [of a target atom]
due to the field of a target nucleus [of a projectile nucleus]
at the position R, and V„k(R) does the electron-electron
interaction between n and k states. These energy-level-
shift terms become significant as the impact velocity de-
creases. Actually the so-called Landau-Zener method,
which corresponds to the stationary-phase method applied
to the energy-level crossing, is a powerful tool to estimate
the excitation cross sections in the low-impact-velocity
cases v ~&uo. Since we concentrate ourselves on the velo-
city range u) uo, the energy-level-shift terms can all be
neglected.

For the electron-loss process, the ionization probability
in (2.20) includes two contributions: one is from the elas-
tic part ( k =0), which means that the target atom
remains in the ground state (i.e., I

0;0) ) in the ejection of
the electron from the projectile, and the other is from the
inelastic part (k&0), for which the target atom is excited
as well as the projectile. From a rough estimate using
(2.18) on the basis of the first-order theory, ' the inelastic
contribution to the loss cross section is proportional to
Z2, while the elastic one is proportional to Z(. Therefore
except for small-Z2 atoms, we may neglect the inelastic
contribution in comparison with the elastic one. This
treatment is also applied to the estimation of the excita-
tion cross section using (2.20). Hereafter only the elastic
part is taken into account. Then we are led to the follow-
ing:

(n;k
I

V(t) I0;0) —(n;0
I V;„,(t) I

0;0)e P(xi'„y)

3

X(x)= g a;exp( —P;x), (2.25)

a TF =0.8853Z2 1/3

where the parameters are given as Ia~, az, a3j= I0.10,0.55,0.35j and II3„P2,P3j = I6.0, 1.2, 0.3j, and
a TF and X(x) are the Thomas-Fermi (TF) screening length
and the screening function, respectively. From Poisson's
equation, the spatial electron distribution p(r) in a target
atom 1s obtained as

p( r) = —(1/4n )b, V(r) (2.26)

on the assumption that p(r) is spherically symmetric. Ap-
plying the Fourier transform to p(r), the form factor is
found to be of the form

3

foo(e) =Z~ g ~ /[1+(aTFe/P )'] (2.27)

which is a scalar function of q ( =
I q I

). The initial and
final wave functions for the projectile-ionization process
have the following form:

po(r) =(ma ~) ' exp( r/a, ), a& =Zl '—
P„(r)=(2m) exp(ia r),

(2.28)

where a plane wave is used for simplification of further
calculations.

Using the above wave functions and integrating the
square of the absolute value of the transition-matrix ele-
ment over the wave vector K of the ejected electron, the
quantity p;(b), i.e., p„o(b) in (2.18) for ionization process,
is expressed in the form

In the above, V(R+r&) denotes the average potential of
the tar et atom in the ground state at the position R+rl,
and c„'yo the energy difference between n and 0 states of
the projectile. From (2.23) and (2.24), we easily recognize
that the electron loss and excitation processes contributed
from the elastic part are closely related with the average
potential field of a target atom. These processes may
therefore be called potential ionization and potential exci-
tation, respectively.

Here we adopt as V in (2.24) the Moliere potential in
the form

V(r) = (Zz —lr )X(r la TF ),

p;(b) =(2 /n. a', u~)

ce g2 g2 1/2~f fd~y~yd" && 2 h f d&ytiyJ (tiyb)(tiy+ti') [Z2 foo(
m=0

[A/(A' —a')' '

+m/(A —8 ))

(2.29)
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where

q =(q~+q, )'~, q, = —(e„'~' —eI')/u,
(p) 1 2 2 ( ) & —2e'„=T(Icy+/c, ), e'I = —Tu I

g =g t +q +ay+(q —a ) B=2qyxy

(2.30)

In (2.29), h = 1 for m =0 and It =2 for m a positive integer, and J (q„b) is the Bessel function of the mth order.
The subscripts z and y denote the direction of motion of the projectile and the direction peG endlcular to the z direction,
respectively.

On the other hand, the quantity p„o(b), the probability of exciting the electron to the excited state n from the ground
state 0 in the first-order theory, is calculated in the parabolic coordinates as follows:

p„o(b)=(2/u)'g f dq, q, Jo(qyb)(qy'+q. )-'&n
~
exp(tq r) I0)[z,—foe( —q)] (2.31)

with

(n
~

exp(iq. r)
~
0) =2 n Q[nQ —i(n~ n2—)][(n —1)+n g i2n—g] '

&&[(n —1)+n Q +i2nQ] ' /[(n+1) +n Q ]", (2.32)

where

Q=q/Zt, q=(q,'+q.')' ', q, = —(e„'~'—eg')/u, e'I'= —(1/2)at /n (n =2,3,4, . . . ) . (2.33)

In the above equations [(2.31)—(2.33)], n is the principal
quantum number connected with the other quantum num-
ber n ~ and n2 through the relation n ~+n2+ 1 =n
(n&, n2 ——0, 1,2, . . . , n —1). Therefore, g in (2.31) means
the summation over an integer n t (or n2) from 0 to n —1.
Since n =1 is a label for the ground state, n &2 are as-
signed to the excited states.

Rewriting p„k(b) in (2.18) and (2.20), the electron-loss
and excitation probabilities as a function of impact pa-
rameter b are given as

50

40

q (u, ')
10 5 QQ

I I I I

'IO

~;(b) =[p;(b)/p, (b)]»n'[p, (b)'"],
~.o(» =[p.o(»/pt(»]»n'[pi(b)'"1,

with

n

p, (b)=p;(b)+ g p„&(b),

(2.34)

(2.35)

CF'

C)
O

V

30 20
I%

C3'
O
JD

where n, is an appropriate cut-off integer for simplifica-
tion of the numerical evaluation. The electron-loss and
excitation cross sections are given as

cr), 2~f db b H;——(b),
(2.36)

o0=2mf. db b~. o(b) .

For relatively large impact parameters, the inequality
p, (b) «1 is satisfied. Then Eqs. (2.34) and (2.35) reduce
the first-order theory:

20

I I I s I t S t I I I t t I0
0 5 „10 15

q (oo")

40

H((b)=p;(b), H„o(b)=p„o(b) . (2.37)

Generally this condition is also satisfied over all impact
parameters at impact velocities much higher than the or-
bital velocity of the ejected electron. Inserting (2.37) into

FIG. 2. The atomic form factors foo(q) for C, Ne, Al, Ar, Ti,
Cza, Kr, and Xe atoms derived from the Moliere electron distri-
bution ( ) and from the Hartree-Fock wave functions (Ref.
13, —-). Arrows indicate the scale of the vertical and the hor-
izontal axes.
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P;{b)

Z2
2

1Q2

P, {b)
Z16

101

10

P 0(b)

22

10

-10

P10(b)

z2'

1Q 102
10 1Q

10
10

10
0

1

0.5
t I

1.9 1.5
b (a.u. )

I

2.0
104

2.5
0.5 1.0 1.5

b {a,u. )
2.0 2.5

10

P){b)

Z22

10

Pt{b)

Z1,5
2

10

10

10

0.5 1.0 1.5
b (a.u. )

2.0

FICi. 3. The quantities p;(b), p&o(b), and p, (b) as functions of the impact parameter b in the case of a He ion incident on He, Be,
N, Si, Fe, Zr, and Xe atoms at v =2vp. The arrows indicate the scale of the vertical axis.
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(2.36), we obtain the cross sections based on the first-order
theory, corresponding to the FBA.

1.0
He ~Ar

I

V=2V
&{b)

III. NUMERICAL RESULTS AND DISCUSSIONS J (b) ————
10

0.5

0
0 0.5 2.0 2.51.0 1.5

b (a.u. )

FIG. 4. Electron-loss and the excitation probabilities, H;(b)
and H~o(b), as a function of the impact parameter b for a He+
ion colliding with an Ar target at v =2vo.

loss cross sections for a He ion colliding with He, Nz,
Ar, and Kr atoms are shown. In the case of the N2 target,
the molecular effect is ignored so that the cross section is
obtained by multiplying that for a N atom by a factor of
2. From these figures, good agreements with the experi-
mental data' ' are obtained over a wide impact-energy
region for He, Nz, and Ar targets, while for Kr atoms,
theory yields quantitatively significant differences in the
energy range of E ( 1 MeV. As will be seen later, the cal-
culated loss cross sections show a slowly increasing ten-
dency with increasing Z2 number. The experimental
data, however, give smaller cross sections for Kr
(Z2 ——36) atoms than for Ar (Zz ——18) atoms at the ener-
gies E &1 MeV. This discrepancy cannot be understood
reasonably for the moment. It should be noted that for a
He target atom the form factor derived from the MED
will be underestimated so that the calculated loss cross
section will be overestimated a bit. Following from the
numerical estimation, o~«, -E in the energy range of
30 &E & 150 keV for He, N2, Ar, and Kr atoms, where no
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He+ = He
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FIG. 5. Energy dependence of the electron-loss cross section
for a He+ ion colliding with He target: the present theory
{ ) and the experiments {D,Ref. 14; 0, Ref. 15; , Ref. 16;
~, Ref. 17). —-—is FBA results by Dmitriev (Ref. 16).

First the atomic form factor fee(q), which appears in
(2.27), is illustrated in Fig. 2 for C, Ne, Al, Ar, Ti, Ga,
Kr, and Xe target atoms. As is easily seen, the form fac-
tors derived from the Moliere electron distribution (MED)
in (2.25) are very close to those from the numerical
tables' of the Hartree-Fock wave functions. In the latter
case the spatial electron distribution is spherically aver-
aged in our calculation. Figure 2 indicates that the MED
is fully useful and sufficient to describe the form factors
for neutral atoms in spite of its simple analytical form.

In Figs. 3(a)—3(c), the quantities p;(b), p~o(b) [hereafter
the subscript 1 in p~o(b) and o ~o denotes the first excited
state (n =2)j, and p, (b) are drawn as functions of the im-
pact parameter b for a He+ ion colliding with He, Be, N,
Si, Fe, Zr, and Xe target atoms at the impact velocity
u =2ua. Each of them falls off nearly exponentially with
respect to b except for small impact parameters. For
large Z2 numbers, p;(b) behaves not as -Z2 but as2

-Z2, and both p~o(b) and p, (b) do as -ZJ ~. This
feature is due to the fact that the target electrons screen
the electric field of the target nucleus. It is clearly seen
that p;(b) and p~o(b), and consequently p, (b), exceed uni-
ty in a small impact-parameter region for large-Z2 atoms.
This directly reveals that the first-order theory breaks
down there, while in our approximation there is no break-
down. We set n, =10, which is enough to estimate the
summation over n in (2.35), judging from the usual n
rule, such as

( (n
~
exp(iq r)

~
0) I

.-n for large n In.
summation over m in (2.29), only the contribution from
m =0 is evaluated since it is dominant. In a first-order
theory, p„k(b) in (2.18) is regarded as the transition proba-
bility as a function of impact parameter, whether or not is
exceeds unity. Then the velocity dependence of the
electron-loss and excitation cross sections is described as
-u for u »u„where u, is the ion velocity at which
the cross section amounts to be a maximum for a given
target material. This velocity dependence is consistent
with the characteristic of the corresponding cross section
in the FBA. It is found that in Figs. 3(a)—3(c), each of
the curves of p~(b), p&z(b), and p, (b) tend to converge
into a common curve, respectively, for large Z2. Even at
other impact velocities, the feature of both the exponential
decrease with b and the Z2 dependences of p;(b), @~a(b),
and p, (b) will not be so different from those at u =2uo.

From the above three quantities, the electron-loss and
excitation probabilities, i.e., H;(b) and H&o(b), are ob-
tained from (2.34). In Fig 4, H;(.b) and %~0(b) are
drawn for a He+ ion incident on Ar atoms at u =2uz. As
is naturally expected from (2.34), both probabilities have
the same phase of oscillation although their amplitudes
are different from each other. The quantity p~o(b) falls
off more rapidly than p;(b) with increasing b so that the
envelope function of %~0(b), i e , p&o(b)/. p.,(b), decreases
with b and conversely that of H;(b), i.e., p;(b)/p, (b), in-
creases with b.

In Figs. 5—8, the energy dependences of the electron-
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FIG. 8. Same as in Fig. 6 except for Kr target: the experi-
ments (Q, Ref. 14; , Ref. 16).
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remarkable differences in the energy dependence of cr&,M
can be found for any Zz material. On the other hand, in
the range of 4 &E & 10 MeV, the material dependence ap-
pears in the power index of energy such that o~„,-E
for He, -E 0 for Nz, -E for Ar, and -E
for Kr target As f.ar as the He target is concerned, the

I I I I I I I

FIG. 6. Same as in Fig. S except for Nq target: the present
theory ( ) and the experiments (E, Ref. 14; 0, Ref. 16; 0,
Ref. 18). ———,Bohr formula (1.1).

He Z2

I I I I I I

10-
o)-

FBA yields the same E ' energy dependence. Following
Bohr, o»» is proportional to E regardless of Z2 for
u yZ&uo in the free-collision approximation. Then his re-
sult is, as a whole, close to ours for heavy target atoms.
However, our calculations present a weak Zz dependence
in the power index of energy, where the absolute value of
the power becomes small with increasing Z2 number.
This recommends a weaker Z2 dependence of the loss
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FKx. 7. Same as in Fig. 6 except for Ar target: the experi-
ments (4, Ref. 14; 0, Ref. 16; g, Ref. 17; 0, Ref. 18).

FIG. 9. Electron-loss cross section for a He+ ion with respect
to Z2 at U =2Up 3.16vo, and 6uo. Solid lines and the dashed
lines denote the present results and Bohr's, respectively. —-—
show the asymptotic behaviors.
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cross sections than the Bohr formula. It is worthwhile to
compare the velocity U, predicted by this theory with that
by the first-order theory. Based on the first-order theory
or the FBA, U, is nearly equal to Z~uo (=2uo for a He+
ion) for the electron-loss process, while our theory indi-
cates that U, is approximately twice as large as 2vo. This
noticeable difference is distinguished experimentally, ' '
supporting our prediction. As far as the excitation cross
section o10 is concerned, it tends to be proportional to
E ' for He target at the impact energies ranging from
10 to 10 eV. However, for large-Zz materials, the abso-
lute value p ( &0) of the power of energy, where we as-
sume 0.I0-E ~, becomes smaller than unity and, for ex-
ample, is reduced to 0.5 for the Xe (Z2 ——54) target. As
we have already seen, there 'exists a remarkable contrast
between our theory and the first-order theory including
the FBA in the energy dependences of the cross section
o.

ioss and cryo.
Another conspicuous feature is shown in Figs. 9 and 10,

where o&„, and oio with respect to Z2 ranging from 2 to
55 are illustrated at U =2uo (100 keV/amu), 3.16vo (250
keV/amu), and 6uo (900 keV/amu) with the experimental
data'"' at v =3.16Uo. Bohr says o~„,-Zz so that the
log-log plots are on a straight line as is shown in Fig. 9.
In our. case, however, a weaker Z2 dependence than
Bohr's is found in the large-Z2 region such that
OI~~~ Z2 at U =2vo~ Zg at U =3.16vo~ and Z2

0.39 0.33 0. 17

at U =6vo. This result cannot be obtained by only taking
into account the screening effect by the target electrons.
Our result is consistent with the trend of the experimental
data recently obtained by Dmitriev et at. The excitation
cross sect1on o.10 for a He ion, which is estimated from
the envelope curve of H&o(b), displays a noteworthy Z2
dependence as shown in Fig. 10, in which o.10 becomes
constant for Z2 & 20 and it represents a weaker Z2 depen-
dence rather than o~„,. In order to confirm this depen-
dence, a further calculation was performed for 40-MeV
F + ions colliding with He, 'Ne, Ar, and Kr targets. As a
result, the theory yields good agreement with the data ob-
tained by Kawatsura et a/. , in the measurement of the
projectile x-ray production cross sections, as is shown in
Fig. 11. Their experiment indirectly supports our calcula-
tion of crlo for a He ion, even if a different projectile was
used. The only important condition is that it be hydrogen
like. It is noted that the excitation cross sections excited
states higher than the first are negligible in comparison
with o.i~„and o-io, since we have confirmed
cr„o(n &3) n' oIo-at most. If we are allowed to use
the Moliere electron distribution for target atoms with
Z2 &55, the cross sections considered here for electron-
loss and excitation processes are straightforwardly ob-
ta1ned.

In conclusion, the unitarized impact-parameter method
has greatly improved the first-order theory. Our pro-
cedure yields more consistent agreements with the experi-
mental data by evaluating the interaction matrix elements
to infinite order in spite of dropping the M operator. The
electron-loss and excitation probabilities obtained here
reproduce the shape and magnitude of the corresponding
cross sections measured for a He+ ion both over the im-
pact energies ranging from -30 to 10 keV and over the
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, FIG. 10. Electron-loss and the excitation cross sections, o.&„,
and o.

&p, for a He+ ion with respect to Z2.. the present results
( for o.~„, and ———for o.~p) at v =2vp, 3. 16vp, and 6vp
and the experimental results (4, Ref. 14; 0, Ref. 19} at
v =3.16vp.

E

'o 10

O

UJ

F (40Me Y) = Z2

{E XCI TAT{ON )

I

10
I

20
Z2

l

30 40

FIG. 11. Excitation cross section for 40-MeV F + ions with

respect to Z'2. the theory ( } and the experiment by
Kawatsura et al. (Ref. 20}, where they extrapolated $ from the
results of Hopkins et al. (Ref. 21}.
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Zz number from 2 to 55. Our loss cross sections are
found to increase less with respect to Zq for large Z2
numbers than are Bohr's at the impact energies con-
sidered. The ion velocity, at which the loss cross section
becomes a maximum for a given target, is estimated to be
about twice as large as the orbital velocity of the ionized
electron. The cross sections for exciting to the first excit-
ed state from the ground state of a He+ ion are saturated
with increasing Zq number. From the physical point of
view, our procedure developed in this paper is interpreted
as follows: on account of including the intermediate tran-
sitions between orthonormal states to all order terms of
the interaction Hamiltonian, the amplitude of the survival
probability of the initial state is effectively modified be-
fore transition to p,

' sin(p, ' ). In the first-order theory

or the FBA, this amplitude remains unity all over the
time in contrast to our result. Finally it should be stressed
that conclusions arise directly from the derived formula.
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