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Using Demkov's variational principle, the probability for electronic excitation is evaluated with

the help of optimized basis states, which allow for a continuous transition from an atomic to a

molecular description. The inclusion of cosliding translational factors provides an extension to
transfer processes. Calculations are performed for radiative electron capture (REC) of a target E
electron in the collision systems ' O~ ' C and 3 S—+ Ne. It is shown that even for fast collisions,

an atomic description is only applicable in the RFC peak region, while molecular effects have to be

included in the tails.

I. INTRODUCTION

For years there has been an unexplained discrepancy be-
tween theory and experiment concerning the spectra of
photons which are emitted in energetic ion-atom col-
lisions. A prominent peak near U /2, where U is the col-
lision velocity, has been readily identified as arising from
the radiative capture of target electrons by the projec-
tile, ' and the peak intensity as well as the shape of the
spectrum in the peak region could satisfactorily be ex-
plained within the impulse approximation. However,
for frequencies well above the peak, the experimental in-
tensity was found to be much higher than predicted by the
impulse approximation. ' ' Background effects such as
secondary-electron bremsstrahlung or radiative ionization
could only partly account for the missing intensity.

It has been argued by Betz that, as in slow collisions,
the high-energy photons may result from molecular-
orbital (MO) radiation because a large momentum
transfer is required. For slow collisions, two different
models are used for the description of the radiative-
electron-capture (REC) peak and the tails, respectively,
the atomic one for the peak and the molecular one for the
tails. As peak and tails originate from the same radiative
process, it should be more appropriate to use only one
model for both. This can readily be done by means of a
variational calculation where atomic and molecular prop-
erties are incorporated into the wave functions, and which
in addition is not restricted to small collision velocities.

The model described below follows the ideas of Steven-
son The estimate of a physical observable within a
given order of perturbation theory can be improved by in-

troducing auxiliary parameters into the theory, which are
calculated from the principle of "minimal sensitivity" by
minimizing the dependence of the observable on these pa-
rameters. For one interested in the transition probability,
as in the present case, Demkov" has provided a profound
basis for these ideas through a variational principle: The
transition amplitude (and thus the probability) for an arbi-
trary inelastic process is stationary with respect to varia-
tions of the wave functions appearing in. the transition
amplitude. When auxiliary parameters are contained in
the wave functions, they are thus determined from the ex-

tremum of the transition probability.
In the nonadiabatic sliding model„' one parameter is

introduced into the Hamiltonian which determines the
portion of the perturbing projectile field that is not incor-
porated into the wave functions. By varying the portion
from one to zero, the wave functions consequently change
from atomic to molecular ones. This property led to a
successful application of the sliding model to the calcula-
tion of 5-electron spectra in medium-energy collisions. '

The model presented in this work is an extension of the
sliding model to transfer reactions. In Sec. II it is formu-
lated for radiative electron capture. The photon distribu-
tion for REC is evaluated within a simplified model
description in Sec. III. Numerical results for REC from
' C by

' 0 impact, and from Ne by S impact are given
in Sec. IV. A short conclusion follows (Sec. V). Atomic
units (a.u. ) (fi=m =e = 1) are used unless otherwise indi-
cated.

II. THE SLIDING-CENTER MODEL
FOR ELECTRON CAPTURE

We shall' concentrate on collision systems where the
projectile charge Zz is sufficiently larger than the target
charge ZT such that in a molecular description, the lowest
electronic levels are well separated, . in order to avoid
strong coupling. We also want to restrict ourselves to the
capture of a single target electron, and neglect the pres-
ence of the spectator electrons. The standard formula for
the transition amplitude is given by

—i f d((Pi(() (( II i ()';+'(()), (2.()—
where the electronic functions P,'+ ' and ff describe
asymptotically an electron bound to the target (at
t~ —Oo) and to the projectile (at t~+ oo), respectively.
As long as the wave functions are exact scattering solu-
tions to the three-particle problem formula (2.1) is exact.
If, on the other hand, trial functions are inserted into
(2.1), af; is stationary with respect to variations of the
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wave functions" and can thus be used as a starting point
for variational calculations.

The electronic Hamiltonian H consists of the kinetic
energy T, the projectile and target Coulomb fields, and
the radiation field HR. In the nonadiabatic sliding model,
it is split into an unperturbed part Ho from which the
bound electronic states are derived, and a perturbation V
by means of a parameter A. which later will be determined
variationally. As rearrangement collisions are considered,
the decomposition of H is taken to be different in the en-
trance and exit channel:

U= exp i—Idt ,
' (R—+x;—xg)

Xexp[ —i(R+x; —xy) r']exp[i(R+x; —x~).p],
(2.3)

where p is the conjugate momentum to r, supplies the
correct time-dependent translational factors.

When the Schrodinger operator is transformed to the
system X', it becomes

Hp. ——T— ZT ArZp

[r—R—x;[

Zp
Vy ———(1—A. )

/r —R—x;/

(2.2a) U H —i- U=~
Bt
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FIG. 1. Coordinates for the three-body system consisting of
projectile (P), target (T},and electron (e). r and r' denote the lo-
cation of the initial and final wave function, respectively, at a
given internuclear separation R.

R(t) denotes the internuclear motion and the other
coordinates are defined in Fig. 1. The initial state g; is
chosen as the eigenstate to Ho;, while the final state P~ is
the eigenstate to Ho~. According to the choice of A, , they
are preferentially atomic or molecular states.

The operator U in (2.1) describes the transformation
from the "initial" rest frame of the electron (denoted by
X) which is characterized by the location of gI+', i.e., cen-
tered a distance x; off the target, to the "final" rest frame
(X'), defined through the location of g~, being a distance

xy away from the projectile (cf. Fig 1). No. te that both
reference frames are sliding, because x; and x~ are al-
lowed to depend on time. The frame transformation,
given by'

CA~= ~ u~,

where the first expression (2.4a) is the transition operator
for Coulomb capture, while (2.4b) is the transition opera-
tor for radiative capture in the dipole approximation. The
equation Ho~/~ E~fy has——been used, u„ is the polariza-
tion direction of the photon with frequency co, and MT is
the target mass and M the total mass of projectile and tar-
get nuclei. Recoil effects (i.e., acceleration terms) have
been neglected, which is a reasonable approximation if the
restriction to small-angle scattering is made.

For the scattering state gI+', an approximation has to
be chosen which is of higher order in the perturbation Vy
to allow for a correct description of charge transfer. To
this aim, we adopt a formulation in analogy to the
strong-potential Born theory' '

g,'+'(t) =g; (t)+ fdt'G&(t, t') V&(t')g; (t'), (2.5)

where the Green's function is given by
G~(t, t') = [i dldt —T Vy(t)+iE] '5—(t t'). It should-
be noted, however, that (2.5) agrees only in the case of
A, =O with the strict definition of the strong-potential
Born theory as a first-order expansion in the (weak) target
field, while the projectile field is kept to all orders. In the
molecular limit (A.= 1), on the other hand, where charge
transfer has to be treated on the same footing as direct ex-
citation, for which a first-order theory is sufficient, Vy =0
and (2.5) leads indeed to the first Born approximation.
Thus (2.5) provides the correct limiting cases, and more-
over a smooth transition from a first-order to a higher-
order theory as A, decreases.

For the transformation of g,'+ to the system X', it is
convenient to transform first to the projectile rest frame
X~ because in this system, the (reduced) projectile field Vy
becomes time independent, such that the right-hand side
of (2.5) can be easily evaluated. If a complete set of plane
waves

~ q(rz ) ) is introduced and the techniques of Ref. 17
applied, one obtains after a subsequent frame transforma-
tion X&~X'
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Ug;+'= —fdt'f dtoof dqe ' e ' '"''(p;(q+R+x;)
2%

Xexp i—fdtxt/2 e ~ 1+ . Vt ~ q) r

coo —T —Pf +l 6'

(2.6)
4

E(q, t)= —,
' fdt(R+x;)'+ fdtE; —(q+.R+x;) (R+x;),

where E; is the energy of the initial state and y; its Fourier transform. The last bracket applied on
~
q) defines an off-

shell wave function gq with energy coo. In the following, we shall neglect off-shell effects and replace Itiq„by a
Coulomb wave Pq. This impulse approximation gives results which for Coulomb capture are accurate within a factor of
2 for high collision velocities and are much better for radiative capture. For slower collisions, on the other hand, the ef-
fect of both potentials is already built into the initial- and final-state wave functions, such that the omission of the extra
potential dependence in the (intermediate) off-shell function should not play an important role. Then, (2.6) reduces to a
single q integral, such that the transition amplitude (2.1) in the case of REC becomes

dr dq ((r(r') 'i(.r—v', .—i„xr~i R r' r '
d (r rr()QO C M f

t

Xp;( q+R+x)e ' exp i fdtI(E/ E;)——,'[x~+—(R+x;) jI+i(R+x;) (R+x;) (2.7)

The first term in (2.7) vanishes because at t r oo, the
phase exp[ —iE(q, t)] of UP,'+'(t) oscillates very rapidly.
In the limiting case of A, =l where Uf,'+' is just the
transformed initial state, this term vanishes because at
taboo, the bound states Iii; and pt- are localized an infi-
nite distance apart. Thus the transition probability fol-
lows &om the second term alone.

charge Zf and the. location xf.
The initial state P; is also approximated by a one-center

function. In order to allow for its 2' sr character, a linear
combination between a 1s and 2p, m =0 molecular hybrid
state and an atomic 1s state is chosen

~3/2Zi Z;r 1 — Z;rl2-g;(r)= k y, e '+ p, e ' Z, r.R
V7r

Z 3/2

(1—A, )e
1r

(3.la)

An exact evaluation of the transition amplitude is rath-
er complicated, because the wave functions which appear
in (2.7) are localized at three different origins. As we are
primarily interested in a qualitative description of the MO
influence in the photon spectra, we shall resort to a sim-
plified model problem where, however, the important
physical aspects are retained.

I.et us restrict ourselves to capture from the target X
shell into the projectile E shell, a process which gives the
dominant contribution to the tails of the REC spectrum.
Then the two-center wave functions gt and g; correlate
asymptotically to the projectile and target 1s states,
respectively. If Z& &Zz &2ZT, which we shall assume in
the following, g; tends to the 2p state in the limit of unit-
ed atoms. Otherwise, higher p states will be involved,
which makes the calculation more cumbersome.

In order to avoid the handling of two-center functions,
we approximate Iji; and I)'it also by means of a variational
calculation. The ground-state ( iso.) wave function Pt is,
in the same way as for direct excitation, ' obtained from
the minimization of the expectation value of Hof calcu-
lated with a 1 s-like trial function
=ZJ lr exp( —Zt r'), with respect to the effective

The coefficients y, and (MI of the hybrid state are deter-
mined from the normalization condition (P;

~ g; ) =1 to-
gether with the requirement that, for i(, =1, P; has to be
orthogonal to the ground state,

Z ' Z —Z 2(e
i ale ' +(I/4~2)(Mie ' Z;r R) =0 . (3.1b)

In accordance with the usual definition of the MO states,
the quantization axis has been chosen along the internu-
clear coordinate R. The state P; is defined such that
when A, varies from 1 to 0, 1'; changes from a molecular
state to an atomic one, while the condition of orthogonali-
ty to the ground state is more and more relaxed. There
are two free parameters contained in this function, the
charge Z; as well as the location x;.

In order to avoid an extended variational calculation,
we have taken a predetermined value for x; in our model.
Fol' vely sIIlall i(,, sllcll that AZp «ZT and Q; ls apploxl-
mately a target 1s state, x; can be determined as in the
case of the ground state through minimizing the expecta-
tion value of Ho;. In this limiting case, x; is well

described' by an analytical function of the internuclear
distance
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Zp 6—xg =h;= c~, [1—e '( —,'y'+y+1)],
R XZp+ZT

(3.2)
ZT

y =2ZTR
P+ T

where y is proportional to R and determined from the
correct asymptotic behavior h;~3AZP/(4ZTR ) for
R ~ ao. Our approximation consists in applying formula

(3.2) for any value of A, . We have only changed the con-
stant cI„ from its original value 1 to c~ =A,

+(1—A, )ZT/ZP in order to account for a linear depen-
dence of x; on A, for small A, even when AZp &ZT, which
induces a faster approach to the atomic case than cI„——1.
For Zp ——ZT or A, =1, c~ is unchanged.

The effective charge Z; is obtained from a variational
calculation by minimizing the expectation value of Ho;,
BE;/BZ; =0, with

Z2
E;=(g;

~
HoI

~ pI ) = (1+3y2) ZT[—y2Mo(h;, Z;) y2i4—2MI(hI, ZI)+p2M2(hl, Z;)]
8

—AZP[yzMo(1 hI —ZI) +y2IL42MI( I—hI, Z;)+pzM2(l —h;, Z;)],

Mo(h;, Z;)=Z; ——e P 1+—1

p P
p=Z;hgR (3.3)

4V 2 64 3pg2 8 32 64

M (hZ )=Z; —+, ep — + —p+1 12 p 3 11 7 12 12

p p 8 4 4 p p p

where x; = —h;R has been inserted, while y2 and p2 are
the s-wave and p-wave coefficients of gI~, viz. , IL42

——MIMI,

y2 ——Ay~+1 —A, , which also depend on Z;. The resulting
effective charge has the correct limiting values, as it tends
to ZT+A, ZP for R~O, and to ZT for R~oo. Corre-
spondingly, the energy E; of the initial state is
—[1+3(1—A, ) ](ZT+kZP) /8 for R =0 and —ZT/2 for
R —+ ao. For R =0, the energy thus varies from
—(ZP+ZT) /8 for A, = 1 to —ZT/2 for A, =O. Figure 2
shows E;(R) and Ef(R) for the system ' O~' C for vari-
ous choices of A, . For the molecular case A, =1, we have
also estimated the iso and 2pIT energies from a linear
combination of atomic orbitals calculation including the
1s and 2p, m =0 projectile states and the 1s target state.
A comparison reveals that the R dependence is rather
similar in both calculations, but that the united-atom lim-
iting values are only correctly reproduced by the varia-
tional calculation.

The intermediate continuum state gq(r' —xf ) which
also enters into (2.7), is an eigenfunction to a Coulomb
field with effective charge (1—A, )ZP, localized on the pro-
jectile. It is the product of a hypergeometric function IFI
and a phase exp[iq. (r' —xf)]. In order to avoid a three-
center calculation, we retain the correct origin only in the
phase, but neglect the shift xf between X& and X' in the
remainder of gq. This has no influence on the translation-
al factors, and also preserves the correct limiting cases
A, =O and A, =1 (for A, =O, xf ——0, while for A, =l, IFI ——1).

For the evaluation of the transition matrix element we
define the basic integral
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FIG. 2. Correlation diagram for the 1so and 2po. states of
the system ' 0+' C as a function of the interriuclear separation
R, with different choices of k (solid curves). Also shown is the
result of a three-state close-coupling calculation (dashed curves)
which should be compared with the sliding result for A, = 1.
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Fq(Z~, x~)=const(P&lr') —e gq(r')}r'

—Zyf
=fdr', e ~ e'~', F,(ig, l, i(qr' q—r'))

. P

4~ x / —(q +EZi' )

Zf~+ (xf +q) Zf + (Xf+q)
g=(1 —A, )Zp/q . (3.4)

Then, with —i V, exp( Z/—r) =iZ~r exp( —Z~r), the transition operator can be written by means of partial derivatives of
I'q, such that the transition amplitude becomes, with the definition R+I;= —qo,

r 2
a/; = i f—dt Iq(t) —AZ'"'exp i f dr [(E/ —EI )—2 (xy+ qo)] . exp[ —iqo'(R+ x) )1 )

C L

I (i) = Z~ fdqe N~e '
q); (q —qo) iZ/— . +i x/—

vr 8xy

dR I'q (Zy, xg ),
cEZy

(3.5)

N =(2m) e " I (1—ig) .q

From the function (3.la), the Fourier transform &p; is easi-

ly calculated:

v2 3rp d 1

8Zi Z +p

Zi 0 0 1—LP2 R'
2m dp dZ; p2+Z~/4

(3.6)

For the evaluation of the integral over the momentum
transfer q in (3.5) which is complicated through the pres-
ence of NqFz, we introduce a peaking approximation.
Making use of the fact that the presence of the Fourier
transform q);(q —qo) selects momentum values strongly
localized around qo, we replace q in the q-dependent part
of I'q and in Xq by qo. This peaking approximation is ir-
relevant in the case of A,~1 because then g =0, but it is
most restrictive in the other limiting case, A, ~O
(ri~Z~/q). However, it is known that for fast collisions,
the peaked impulse approximation is a very good approxi-
mation for capture to the K shell of a heavy projectile. '23

From the transition amplitude, the differential cross
section for photon emission into the solid angle dA is ob-

tained through an integration over impact parameter b
and a summation over the polarization direction v,

(3.7)

where a factor of 2 has been included because of the two
EC electrons to be captured. The dependence of ay; on b

enters through the choice of the internuclear trajectory
R(t) which is taken as a Rutherford hyperbola. Details of
the evaluation of (3.7) are given in the Appendix.

Before formula (3.7) or its explicit form (A6) can be
used to extract results, the auxiliary parameter A. has to be
determined, i.e., the "best" wave functions have to be

found A. ccording to Demkov's theory, this can be done
by requiring that the transition probability be stationary
with respect to variations in A, . This leads to a (real) "adi-
abaticity" parameter A, which depends on the collision
velocity but not explicitly on time such that the global
nonadiabaticity can be extracted. However, from the re-
quirement that

~ a/;
~

be an extremum, A, will depend on
impact parameter, and this dependence is much stronger
than in the case of direct excitation. As the present REC
experiments do not differentiate with respect to b, it
seems more appropriate to choose a k which takes the
whole collision dynamics globally into account. Thus we
determine k from the prescription

T

d 0.

GM 8Q
=0. (3.8)

%'hile in the case of direct excitation and Coulomb cap-
ture the optimized value of A, is determined from the bal-
ance of a potential part and the time derivative in the
transition operator, things are different for radiative cap-
ture. Here, the balance has to be provided by the transi-
tion matrix element on one hand, and by the energy phase
through its strong co dependence on the other hand. In
the REC peak region, the cross section is large, because
the energy phase is small at approximately zero momen-
tum transfer (q= —v). This requires iL~O because, oth-

erwise, (R+x; —x/) /2 ~&U /2, making the energy phase
large and damping the integral. However, for frequencies
well above or below the peak, a large momentum transfer
to the electron is required. In that case, a high value of A,

is favorable, as molecular functions with a bigger effective
charge can provide higher-momentum components,
enhancing the transition matrix element. From this ar-
gumentation it follows immediately that the cross section
has a maximum at the optimized value of A, .
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oscillating phase, the relative velocity together with the
energies E; and Ef have to be chosen to be strongly time
dependent. Together with a matrix element which pro-
vides enhanced high-momentum components through an
increased central charge, it follows that a molecular influ-
ence leads to a higher cross section. On the other hand, if
the molecular admixture (i.e., A,) is chosen too large, the
energy phase will for co »co~,k increase again because the
contribution from the relative velocity gradually dimin-
ishes, implying a reduction of the cross section. This
competition might explain the steep rise from the atomic
description to a molecularlike description on the high-
energy side. On the low-energy side, the phase will de-
crease when the relative velocity decreases. Thus the on-
set of the molecular influence occurs at frequencies which
are much closer to co~,~ than on the high-energy side, and
A, is much higher for the same

~

co —co~„k
~

.
In the atomic picture, the phase is given by

I' (t) =(e—ez„k)t =(tu —e&„k)&/u for a straight-line tra-
jectory. From this one expects an approximate scaling
behavior of the cross section with (co —co~„k)/u if the in-
fluence of the phase dominates the matrix element. This
is indeed verified in Fig. 3 where the calculation is per-
formed for a velocity which is roughly equal to the
united-atom IC-shell velocity Zz+ZT, and for a velocity
twice as large. When the scaling is used, the difference in
A, for these two velocities is not very large. For the system
' 0+' C, which is more symmetric (Z~/ZT ——1.3) than
the system S+ Ne ( Zz/Zz ——1.6), the molecular
behavior is more pronounced, which shows itself in an
earlier onset of the increase of I, in units of the scaled fre-
quency.

As a given phase selects a certain value of momentum
transfer and thus the corresponding Fourier component of
the electronic wave function, the approximate scaling
should also hold for the shape of the REC peak. This is
displayed in Fig. 4 where the differential cross section for
K-K capture is shown for the system ' 0—+' C as a func-

IV. NUMERICAL RESULTS

We have performed calculations for the two collision
systems ' O~' C and S—+ Ne at two different veloci-
ties. We have only considered the purely hydrogenic case
and neglected all screening effects.

The results for the parameter A, as a function of photon
energy are shown in Fig. 3. Around the value of the REC
peak (to~,k u /——2+E; Ef)—, the maximum determined
by (3.8) is found at A, =O. When to increases, A, begins to
rise rather suddenly, indicating the importance of molecu-
lar effects. At some value of co, however, the maximum
of the differential cross section flattens out and eventually
disappears. Then A, can no longer be determined from
(3.8). This happens around A,=O.5.

In order to elucidate these rather unexpected findings,
our simplified model has to be reexamined. Let us recall
that two important assumptions enter into that model, the
prescription of the location x;(R) of the initial state, and
the choice of the p admixture in f; In ord. er to test the
stability of the model, we have changed these assump-
tions. For example, we have dropped the prefactor c~ in
the definition (3.2) of x;, and in another run have taken x;
to be proportional to xf with a proportionality constant
Zz/ZT. On the other hand, we have defined the p ad-
mixture with a space-fixed quantization axis along v.
This would account for the predictions that due to the
coupling between the 2p, m =0 and the 2p, m =+1 states
in slow collisions, the effective quantization axis remains
fixed in space. When A, is calculated from these different
prescriptions, no qualitative change in its behavior is ob-
served, however. In particular, the steep rise of A, in a
narrow range of co, as well as the disappearance of the
maximum in the differential cross section at some high
value of co is still present. This gives some confidence in
that the results from Fig. 3 are not just accidental.

Also, on the low-energy side of co„„k,there is a rise of A,

with increasing difference to~,k
—ai. As for the high-

energy side, this behavior arises from an enhanced
momentum transfer to the electron as soon as the energy
phase F(t) deviates from zero: In order to avoid a rapidly
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FIG. 4. Doubly differential cross section for photon emission
at 8=90' in the system ' 0+' C as a function of the scaled
photon frequency. Calculations are performed for the collision
velocities u =15 and 30 a.u. Solid curves are the results from
the sliding-center model, dashed curves are calculated with the
impulse approximation (i.e., X=O; separated atom).

FICx. 3. A, as a function of the scaled photon frequency
(co —co~ k)/u for K-K transfer in ' 0+"C collisions. Photon
emission angle is 5=90. Solid curves are calculated for a col-
lision velocity of 15 a.u. , dashed curves for u =30 a.u.
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FIG. 5. Doubly differential cross section for photon emission
at 5=90' in the system S+ Ne as a function of photon ener-

gy co. Calculations are performed for the collision velocities
U =20 and 40 a.u. Solid curves are the results from the sliding-
center model, dashed curves are calculated with the impulse ap-
proximation.

V. CONCLUSION

tion of the scaled frequency. At the high-energy side, the
slope for the two chosen velocities is nearly identical, both
for the atomic theory (where it is known that the peak
width increases linearly with U) and for the present slid-
ing theory. This is no longer true for the low-energy
wing, where the increasing importance of the matrix ele-
ment makes the scaling (which is based on the behavior of
the phase alone) invalid. It is evident both from Fig. 4
and from Fig. 5, which displays the results for the

S+ Ne collision system, that the REC cross section at-
tains much larger values in the tails of the spectrum when
the calculations are performed within the sliding model
instead of within a purely atomic theory.

the two parts of the transition operator, the Coulomb field
and the time derivative, a high collision velocity requires
an atomic description, while the molecular influence be-
comes gradually larger when v decreases. For radiative
capture, on the other hand, it is the transition matrix ele-
ment of the radiation field and the frequency-dependent
energy phase which have to be equilibrated. %'hen the
photon distribution is considered, the molecular effects in-
crease only marginally when the velocity is lowered.
Rather, for the high-frequency wing (beyond the REC
peak) the intensity scales with (co —co~„k)/U. Around the
REC peak, an atomic description has to be used, while on
both wings the molecular effects become increasingly im-
portant the larger ~co —co~„I, ~, even for very fast col-
lisions. These molecular effects give rise to an enhance-
ment of the cross section in accordance with the experi-
mental findings.

A quantitative comparison with experiment is not yet
possible at this stage. To this aim, transitions from higher
target shells, which provide the dominant contribution to
the peak region, have to be included. Further, the lack of
a stationary point in our model for the cross section at
frequencies exceeding a certain high value excludes a com-
parison with the complete experimental tail region.

These difficulties might be overcome by choosing a
more realistic approximation for the initial state, i.e., a
two-center function, and perhaps also by allowing for a
superposition of the degenerate p states with different m
quantum numbers. However, this would involve a great
numerical effort and lies outside the scope of the present
paper.
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We have formulated a theory for electron capture
which includes the freedom of choice between atomic and
molecular basis states. An optimization procedure is in-
troduced where it is required that the transition probabili-
ty becomes stationary with respect to variations of the
wave functions. For Coulomb capture, where this re-
quirement is achieved by means of the balance between

APPENDIX

In this appendix the differential cross section for pho-
ton emission is explicitly evaluated.

After the application of the peaking approximation, the
integrand Iq(t) of the transition amplitude (3.5) can be
written in the following way [with gp=(1 —X)Zp/gp]:

3fTIq(t) =4~nZf Nq iZf . —+ ixf i R-
M dZf

. 2
—l 7/p

Xf (gp+tZf )

Zf + (xf +qp)
S(Zf xf)

(Al)

iq (xf-R-x;) T 1S(Zf xf)= dqe 'p;(q —qp)
Zf + (xf +q)

—iqp (xf —R—x,. )=8 d
77 dZi

Z; J(Z;,xf+qp)

~5/2~i d d is (xf —R—x, ) ~—i@2 R. [e ' J(Z /2, xf+qp s)]
2w dZ; ds
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where the transformation p=q —qo has been introduced,
and the explicit form of y; (p), (3.6), has been inserted.
The auxiliary function J(Z, d) is defined by

—ip.b,. 1 1J(Z, d)= dpe f'
2Zf+(p+d)' Z'+p'

J(zd)=~'" d .'f' ' egg-»2
0 0

2 z ibyi 4' 1 —
byt ~cx

dy e

a=Zfy+d y(l —y)+Z (1—y) )0 . (A4)

bfi =If—R—x. (A2)

Then, the p integration can easily be done by means of
quadratic completion in the exponent plus a linear vari-
able shift. Also, the integration over g can be evaluated,
such that

It can be reduced to a single (numerically fast-converging)
integral with the double-integral representation of an in-
verse product

1 1

f ay+ c (1—y)]'

dy dg ge
—(~y+~(& —3'~lr

0 0

For the calculation of the remaining time integral, we
choose a coordinate system where the variables have sym-
metry properties under time reversal. The x axis is taken
along the internuclear coordinate at the distance of closest
approach, and the z axis perpendicular to it in the col-
lision plane, such that the angle between the collision
velocity v and the z axis is equal to 0/2, where 8 is the
scattering angle. In this coordinate system, the quantities
R, R, R„xf, and x; are even if t is replaced by —t,
while R„R~, xf, and x; change sign. With these proper-
ties, the time integration interval can be reduced to (0, oo).

If the photon is ejected with an angle 5 with respect to
the beam direction v, the two possible polarization direc-
tions u can be chosen as

u~ ——(0, 1,0),

u2 = (u„,O, u, ) = ( —cos5 cos(8/2) —sin& sin(8/2), 0, sin@ cos(9/2) —cosQ sin( g/2) )
(A5)

As the only direction which appears in the integrand Iq(t) arises from the combination of R and its derivative, which
both lie in the (x,z) plane, u& does not give any contribution to the transition amplitu(le.

Collecting all results, the final formula is obtained:

Z3/2Z5/2 ~&0/21 (1 )
f o fx (qo+iZ—)

Zf + (xf +q(j)

X f dy(1 —y) I cos[F(t)+bf;.dy](G&G2+ W& 8'2+COG5+C, G6)

+i sin[F(t)+bf;. dy](G) II/'2+ 8', G2+ Co W~+ C( 8'6) ]

(A6)
F(t)=cot+ fdt(Ef E; ) ——,

' fdt(R+x;——xf)' .

For the numerical evaluation of the time integral, it is convenient to use a pseudolinear coordinate r, which is obtained
from the usual hyperbohc coordinate w through the transformation v =e exp(w) where e= [sin(0/2)]

(A6} the following definitions have been introduced, with d —= (d~, O, d, ) =xf +qo, xf = (x„,O,x, ), and
bf( (b„,O, bz ):——

6) uz—2 go
1

xf (qQ+iZf )

MT R Zf'
iqo . —+ . (iqo Zf ) +-

,
+ M Zf + (xf +qo)

9'oz

eo
+ ~ 0

(~ )1/2
G, =y2v 2e

bf;
3/2 +

o.o clo

r

—by (al) fi—(1 y)p2 e /' ' —bf(.R
&Xi

8 2
—(1—y)p2 e ' iyd. RI3~,

i —bf;(al )

4R
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r

GS bxux

8's b, uz
) ~ ap3/. + ' uz

+
dz

(1—y)—
ux x x M+

Rx

3bf; bf;
5/2 2 3/2+ +

0!p CXp Ap

(A7)
bxux

= —'bf, .l b „
bp

3/2
CX)

uz

ux
(1-y)—

Xz
p)b fi.R

uz

d
(1—y)-

z Xz

b, u, Au
pzd R+p& b yd R i-

xux &zuz

(~o)1/2 —
hfdf

~+) ~ .

CQ =iZfyy2&2e ', Ci =iZf/l2 Ziy( 1

ao=Zfy+d y(1 —y)+Z; (1—y), a& —Zfy+d2y(1 y)+ '
(1

4

bf; 3bf; 3
pl =

3/2 + z + sip, p2= —ly
2

[ a, a( a,
3bfi bfi ~ 5bfi J 5

cx 2' 2' 2D1 AI 1
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