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Effects of P-violating and CP-violating weak interactions in the heavy atoms Rb, Cs, Au, and Tl
are calculated in a variety of potential models, including the relativistic Hartree-Fock model. Exci-
tation energies and hyperfine constants are also calculated using these models and compared with
experiment as a control. Values determined for the P-violating electric dipole matrix elements for
Cs(6s&&2 —+7s&~2) and Tl(6p&&2~7p~q2) are in agreement with other similar calculations. The spread
in values of the P- and CP-violating electric dipole matrix elements among the various models is
found to be about 20%. A program is outlined for reducing this spread by systematically extending
the present calculations to higher orders in the electron-electron interaction.

I. INTRODUCTION

This paper is the first in a planned series of papers de-
voted to a systematic investigation of the effects of P
violating and CP-violating weak interactions in heavy
atoms. We will be concerned with two effects, each of
which has to do with electric dipole matrix elements. The
first effect is the induction of a nonvanishing off-diagonal
electric dipole matrix element between two atomic states
of the same parity caused by the exchange of a Zo boson
between atomic electrons and the nucleus. The second is
the induction of an enhanced atomic electric dipole mo-
ment caused by an intrinsic electron electric dipole mo-
ment.

The exchange of Zo bosons, which leads to P violation
in the atom, is described by the Weinberg-Salam theory. '

It leads to phenomena such as circular dichroism and op-
tical rotation which have been used to detect I' violation
in Cs,2 4 Tl 5'6 Bj, and Pb. The present investigation is
concerned only with atoms having a single valence elec-
tron so we will not be treating the interesting cases of Bi
and Pb. While experimental determinations were at the
15% or worse level, relatively crude theoretical estimates
sufficed to establish the existence of P violation. Howev-
er, given the present possibility of an order of magnitude
improvement in the measurements, it now becomes im-
perative to see if atomic theory can be improved, so that a
quantitative test of the Weinberg-Salam theory at very
low energies comparable in accuracy to that achieved in
high-energy tests can be made.

An intrinsic electron electric dipole moment d, leads to
CP violation in atoms and induces an atomic electric di-
pole moment. Measurements of this atomic dipole mo-
ment place limits on the intrinsic electric dipole moment
of the electron. The present experimental limit on d„de-
rived from measurements of the linear Stark effect in
heavy atoms, ' is d, (2)& 10 e cm. Given the possibil-
ity for improving the measurements of atomic dipole mo-
inents by several orders of magnitude, " it should be possi-
ble to improve the present limit significantly, and ideally
to detect and measure d, . This in turn would have impor-
tant consequences particularly for supersymmetric gauge

theories, where predictions' presently range from
d, =10 to 10 e cm.

The purpose of the present paper is to lay groundwork
for a systematic study of these two effects. The main dif-
ficulty encountered is not with the weak interactions,
which can be treated in lowest-order perturbation theory,
but with the electron-electron Coulomb interaction in the
atom. This latter problem can be treated systematically in
perturbation theory by breaking the full many-electron
Hamiltonian into a part in which each electron moves in a
central potential V(r), and a perturbation consisting of
the difference between the actual electron-electron
Coulomb repulsion and the central potential. An atomic
shell structure emerges already in the lowest approxima-
tion, from which one can readily construct a lowest-order
atomic wave function useful for many practical calcula-
tions. In the present paper we are concerned with applica-
tions of this lowest-order approximation to P and CP
violation. There is of course an infinite degree of flexibili-
ty in the choice of V(r). A common choice is the
Hartree-Pock potential, which has particular advantages
in perturbation theory calculations, since higher-order
terms become relatively simple. The corresponding draw-
back is that physical parameters such as excitation ener-
gies and hyperfine constants, calculated in lowest order
with Hartree-Fock wave functions, do not compare as
favorably with experiment as those calculated using a
carefully chosen model potential. In the present study we
consider in addition to the Hartree-Pock model three such
parametric potentials, the Tietz potential, ' the Green po-
tential, ' and the Norcross potential, ' all of which have
been applied previously to studies of I' violation. It is our
position that the use of several potentials is essential in a
systematic study in order to gauge the reliability of the
corresponding calculations. Calculations in the frame-
work of one model may be more sensitive to higher-order
effects than another, and may thus be misleading. How-
ever, if all evaluations of a quantity in different models
give answers to within 10% of one another, then we could
define that 10% to be a theoretical error estimate. In the
present calculations the actual spread is found to be closer
to 20%. What we hope is, that as we proceed to higher
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orders, the spread in values will be reduced to l%%uo. If this
hope is realized we would be in a position to give theoreti-
cal predictions comparable in accuracy to the level expect-
ed from the next generation of experiments.

ii V&

II. LOWEST-ORDER CALCULATION

To lowest order in the electron-electron interaction,
each electron moves independently in a central potential
V(r). The orbital u, (r) of an electron with quantum
numbers described collectively by the symbol a satisfies a
one-electron Dirac equation,

[ho+h„+V(r)]u, (r)=e, u, (r) .
Hw

H„

Hw

Hw

Hw

il y
I

The quantity ho is the part of the Dirac Hamiltonian giv-
ing the electron kinetic energy and its interaction with the
nucleus, while h„ is the part describing the weak interac-
tions. We consider two forms for h~:

r

GF
Q~y5p„„,(r) for P violation

h~=
8

d~
2i y4y~p for CP violation,

(2)

where the second right-hand side follows from Ref. 16.
The quantity GF is the Fermi coupling constant and Q~
is the so-called weak charge, Q~=(1 —4sin 8~)Z —N,
where Z is the nuclear charge, X the neutron number, and
8@ is the Weinberg angle. In Eq. (2) we designate the
normalized nuclear charge density by p„„,(r). The quanti-
ties y4 and y& are Dirac matrices, and p is the electron
momentum. Because of the presence of h~ in Eq. (1), the
orbitals u, (r) will have mixed parity. We decompose
u, (r) into a part u, (r) independent of h~, and a second
part w, (r), linear in h„, which has parity opposite to
u, (r) but the same angular momentum. For each orbital
u, (r) we then have

FIG. I. The graphs in the first row show the terms in pertur-
bation theory corresponding to VHF of Eq. (3b'). Those on the
second and third rows define the dressed vertex occurring in the
first row.

[hu+ VHF(u„r) e, ]w, (r)—
= —h u, (r) —VHF(u„w„r)u, (r) . (3b')

These coupled equations replace Eq. (3b) when the
Hartree-Fock potential is used. Equations (3b') are re-
ferred to as the parity-nonconserving-Hartree-Fock
(PNC-HF) equations. ' It is found that corrections to di-
pole moments of about 30%%uo arise from the term VHF.
The corrections included in VHF are illustrated diagram-
matically in Fig. 1.

principle-violating contributions from the valence orbital
precisely account for excitations of core orbitals into the
unoccupied valence state.

(2) When the Hartree-Fock model is used, Eq. (3b)
should be modified to account for the fact that perturba-
tions of the core orbitals induce a first-order correction
VHF, to the Hartree-Fock potential, viz. ,

[ho+ V(r) —e, ]u, (r) =0,.
[ha+ V(r) e, ]w, (r) =——h u, (r) .

(3a)

(3b)

III. LOWEST-ORDER RESULTS

In the present studies we employ four potential models
as follows:

D =&wq
I
ez

I ui)+ &u2
I

e
I
wi) . (4)

In the case of CP violation we are interested in the cor-
responding diagonal matrix element. Several comments
are in order concerning the preceding equations.

(1) It may appear that, when solving Eq. (3b) for the
perturbed valence orbital m„core contributions should be
excluded'because of the Pauli principle. Orthogonaliza-
tion of the perturbed valence orbital to the core orbitals is
in fact unnecessary and incorrect, since exclusion

Equation (3a) is solved to give the lowest-order orbitals
u„and Eq. (3b) is then solved to give the small perturba-
tions induced by the weak interactions. In calculating
atomic dipole matrix elements, contributions from the
core orbitals vanish because of spherical symmetry and
only those contributions from the valence electron remain.
For the case of P violation we are interested in off-
diagonal matrix elements of the electric dipole operator ez
between two valence states, say 1 and 2,

P(x) = 1/[1+ (m. /8)2~'x]z,

where x =rZ'~ /p, with p= —,
' (3n./4) ~ =0.8853. . . .

Modifications of the Tietz potential were employed by
Neuffer and Commins' to study P violation in Cs and Tl.
We follow these authors and employ, as a first model, a
modified Tietz potential of the form

V(r) = ——1+ e
a (Z —1)

(1+tr)'
(5)

A. Tietz potential

To give a simple analytical approximation to the
Fermi-Thomas model of the atom, Tietz' introduced the
potential

V(r) = (aZ/r)P(x)—
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TABLE I. Comparison of theoretical excitation spectra from the potential models employed in this
work and measured values. Energies are given in a.u.

State'

5s

Sp
6s

6p
7$

Tietz

0.154 14
0.095 57
0.093 98
0.061 40
0.045 05
0.044 56
0.033 45

Green

0.15348
0.096 15
0.094 80
0.062 15
0.045 70
0.045 26
0.033 82

Norcross

Rubidium
0.15345
0.096 31
0.094 94
0.061 97
0.045 56
0.045 12
0.033 72

Expt.

0.153 S1
0.096 19
0.095 11
0.061 77
0.045 45
0.045 10
0.033 62

HF

0.13929
0.090 82
0.089 99
0.058 70
0.043 89
0.043 60
0.03244

6s
6p
6p
7$
7p
7p
8s

6s
)fc

6p
7s
7p
7p
8s

0.143 43
0.092 47
0.088.92
0.058 27
0.043 79
0.042 70
0.032 13

0.337 36
0.174 87
0.15096
0.090 SO

0.062 25
0.058 05
0.043 78

0.143 09
0.092 23
0.089 15
0.059 01
0.044 24
0.043 23
0.032 51

0.33925
0.16604
0.141 73
0.087 56
0.060 39
0.056 29
0.042 94

Cesium

Gold

0.143 01
0.092 50'
0.089 28
0.058 83
0.044 10
0.043 07
0.032 40

0.342 22
0.16791
0.144 29
0.090 29
0.06209
0.057 80
0.043 82

0.143 10
0.092 17
0.089 64
0.058,65
0.043 93
0.043 10
0.032 30

0.33904
0.168 82
0.15143
0.09079
0.065 51
0.062 34
0.04405

0.127 37
0.085 62
0.083 79
0.055 19
0.04202
0.041 37
0.030 95

0.274 61
0.13379
0.121 62
0.083 22
0.05644
0.053 35
0.041 58

6p
7$
7p
7p
8s
8p

0.224 18
0.185 43
0.101 67
0.069 02
0.063 73
0.047 25
0.03605

0.224 32
0.184 84
0.097 68
0.066 41
0.061 67
0.04600
0.035 05

Thallium
0.225 26
0.18796
0.102 81
0.069 38
0.064 33
0.047 69
0.036 17

0.22446
0.188 96
0.103 82
0.068 82
0.064 26
0.047 92
0.035 98

0.19968
0.16693
0.096 18
0.065 05
0.060 86
0.045 75
0.034 62

'5p =Sp&i2, Sp =Sp3/2 etc.
bC. E. Moore, Ref. 19.

where t and y are parameters adjusted to fit the low-lying
spectra of the atoms under consideration. The values of t
and y used in the present study are

Atom

The excitation energies predicted by solving the Dirac
equation in' the Tietz potential are compared with experi-
mental energies' in Table I. The comparison with experi-
mental hyperfine integrals is given in Table II.

Rb
Cs
Au
Tl

1.9530
2.0453
2.6660
2.5937

0.2700
0.2445
0.2503
0.2579

B. Green potential

A somewhat more sophisticated potential model was in-
troduced by Green et al. ' to reproduce Hartree-Fock

TABLE II. Ground-state hyperfine integrals: 2 dr g /r, where g and are large and small com-

ponents of the radial two-component Dirac orbital for the valence electron.

State

Rb Ss
Cs 6s
Au- 6s
Tl 6p

Tietz

0.1162
0.1870
1.4813

—0.3772

Green

0.1131
0.1872
1.606

—0.3749

Norcross

0.1114
0.1824
1.6254

—0.3653

Expt.

0.1076
0.1799
1.8287

—0.3730

HF

0.0683
0.1115
1.2644

—0.3092
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eigenvalues and screening functions approximately
throughout the periodic system, viz. ,

V(r) = —A 1+ Z —1

H(e "~" 1)+—1
(6)

where H was related to d by H =d(Z —1)'~ and, where
d was treated as an adjustable parameter. A Green poten-
tial was used by Loving and Sandars to study P viola-
tion in Cs. We employ this type of potential, where we
treat both H and d as adjustable parameters, as our
second model. The values of H and d used here were ad-
justed to the low-lying excitation spectra of the atoms be-
ing considered. We found

Atom

Rb
Cs
Au
Tl

3.481 14
4.469 10
8.143 70

11.2300

0.785 51
0.896 65
1.022 40
1.29049

For Cs our values of H and d are somewhat different
from those chosen by Loving and Sandars.

C. Norcross potential

—(rlrc )(a —6Pao)(1 —e '
) .

2r' (7)

The term VrF(i, , r) is a version of the Thomas-Fermi po-
tential determined according to a prescription set out by
Eissner and Nussbaumer, with A, taken as an adjustable
parameter. The second and third terms in Eq. (7) are
core-polarizability corrections; ad is the dipole polariza-
bility of the core, uq is its quadrupole polarizability, and
pao is a dynamical correction to the quadrupole polariza-
bility. The exponential factors in Eq. (7) are introduced to
give a physically reasonable structure to the potential at
small distances and the corresponding cutoff radius r, is
taken as a second adjustable parameter. The quantities ad
and o,'q are determined from relativistic, coupled Hartree-
Fock calculations while Pao is estimated from the core-
excitation energies. One significant difference between
the potential used in the present work and that originally

The most sophisticated potential used in the present
study is one introduced by Norcross' to study the low-
energy photoionization of Cs. This potential has been
used previously by Bouchiat et aI. ' to study P violation
in Cs. The Norcross potential can be written in the form

CX —( /, )
V&(r)= V~F(k, r) , a—d(1 —e '

)
2r4

used by Norcross is that no adjustable spin-orbit interac-
tion term is used here, since our potential is used in con-
nection with the Dirac equation. A second difference is
that only one r, is used for all l. In our applications we
adjust the two parameters A, and r, to fit the Iow-lying
spectra of the atoms under consideration. Our choices for
the various parameters are given in Table III.

IV. PARITY VIOLATION

Our studies of parity violation are limited to the follow-
ing four special cases:

Atom (transition)

Rb(5s~~2~6s ~~2)
Cs(6s)~2~7s)~2)
Au(6s )g2~7s)~2)
Tl(6p u2 ~77

& n )

A, (A)

4967
5395
1835
2927

In each case the transition under consideration is an
M1 transition with a small E1 admixture induced by the
weak interaction. The cases of Cs and Tl have been stud-
ied extensively in previous works, and the techniques to
evaluate the lowest-order result are well known. The cases
of Rb and Au have not been investigated previously, but
are potentially of experimental interest. We use an expli-

l

D. Relativistic Hartree-Fock potential

The fourth model potential used in the present study is
a so-called V(N —1) Hartree-Fock potential. The relativ-
istic Hartree-Fock equations for the N —1 core electrons
are first solved self-consistently and the Hartree-Fock
equations for the valence electron or excited electron are
subsequently solved in this fixed-core potential. This po-
tential has been employed previously by Martensson-
Pendrill and by Dzuba et al. to examine I' violation in
Cs. Since there are no adjustable parameters in the
Hartree-Fock potential the corresponding excitation spec-
tra which are listed in Table I compare less favorably with
experiment than those from the other three potentials.
However, higher-order corrections to Hartree-Fock ener-
gies and matrix elements are simpler to treat than the cor-
responding corrections in other models. There are no
corrections to the Hartree-Fock excitation spectra in
first-order perturbation theory. In order to obtain excita-
tion spectra which agree with experiment as well as those
given by the other models, second-order perturbation
theory is required. Calculations by Dzuba et al. for Cs
in second-order perturbation theory based on V(N —1)
Hartree-Fock calculations give an excitation spectrum in
excellent agreement with experiment.

TABLE III. Parameters for the Norcross-type potentials used in the present work. The parameters
A. and r, are adjustable, while the remaining parameters are fixed. All parameters are given in a.u.

Rb
Cs
Au
Tl

0.99321
1.06252
0.920
0.93985

3.2318
3.5461
2.760
3.2968

9.076
15.81
12.40
24.00

35.41
86.40
0.0

108.0

4.41
7.90
0.0
8.70
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TABLE IV. Parity-violating dipole matrix elements E 1 PV,-in units of ieao(Q„/N)X10 ", and
Stark polarizabilities a and P, in units of a o, 'calculated in various potential models.

Tietz Green Norcross PNC-HF Expt. Others

E 1-PV 0.161
—301

12.9

Rubidiu
0.157

—272
11.3-

5s ~6s
0.153

—273
11.3

A =85 R„„,=5.480 fm
0.141

—285
9.73

E1-PV 1.04

—342
36.7

—330
32.9

—330
33.9

—349
29.3

—263.7(27)"
26.6(4)

Cesium 6s —+7s A =133 R„„,=6.206 fm
1.04 1.02 0.912 0.93(16)'

1.00(8)b
0.880'
0.996'
0.886g

—370.3'
36.8

0.972
1.06'

—257.7
27.3

5.11
—80.1

15.4

Gold 6s ~7s
4.92 5.09

—99.7 —92.0
17.5 16.6

A =197 R„„,=7.019 fm
6.84

—159
20.3

E 1-PV
a

—9.54
385

—309

Thallium 6p*~7p* A =205 R„„,=7.079 fm
—8.49 —9.20 —9.75 —7.2( 1.4)'
372 445 448 232(12)"

—321 —337 —379

—8.73'
385'

—308

—6.83'

'M. A. Bouchiat et ttI , Ref. .4. Here Q = —68.6, P=27ao.
C. E. Wieman et al. (unpublished).

'V. A. Dzuba et al. , Ref. 24.
C. Bouchiat, C. A. Piketty, and D. Pignon, Ref. 20.

'D. V. Neuffer and E. D. Commins, Ref. 18.
B.P. Das, Ph.D. thesis, State University of New York at Albany, 1981.

~A.-M. Martensson-Pendrill (unpublished).
"S.L. Gilbert, R. N. Watts, and C. E. Wieman, Phys. Rev. A 29, 137 (1984).
'P. Drell and E. D. Commins, Phys. Rev. Lett. 53, 968 (1984). Here Q = —112.7, P= 195.
'B. P. Das, J. Andriessen, M. Vajed-Samii, S. N. Ray, and T. P. Das, Phys. Rev. Lett. 49, 32 (1982).
"E.D. Commins (private communication).

citly relativistic formalism, avoid saturation of the matrix
elements by using accurate Green's-function techniques,
and take account of the finite size of the nucleus directly
in the Dirac equation. This finite-size effect is treated as-
suming a uniform charge density, using nuclear radii
given in Johnson and Soff. Use of a Fermi distribution
changed the results by several percent, and will be treated
in the next paper of this series. In each case we calculate
the induced E 1 matrix element given in Eq. (4).

Table IV summarizes our results for each potential. In
quoting experimental values in Table III we have assumed
a value of sin 8~ ——0.215 to calculate the scaling factor
Q~/X. The values in the column labeled PNC-HF in-
clude the corrections arising when the first-order weak
correction to the Hartree-Fock potential shown in Eq.
(3b') are included. The following several comments are in
order concerning the values in'Table IV.

(a) In the PNC-HF case we include the contribution
from VHF in Eq. (3b'). In fact, without these corrections
the value for Cs is El=0 728i &&10. " (Q~/N) eao,
roughly 25% lower than PNC-HF.

(b) In the case of the Tietz potential, we obtain some-
what different results from Neuffer and Commins, ' even
though in the case of Tl the same t and y were used. We

attribute the discrepancy in Tl to our more accurate treat-
ment of the wave functions at small distances: our ex-
ponential grid puts about 30 points inside the nucleus.
Our Stark polarizabilities, which are insensitive to short
distances, are in agreement with Ref. 18. For the Nor-
cross potential in Cs, our results are slightly higher than
Ref. 2, although agreement is not to be expected, since we
did not include the effect of core polarizability on the di-
pole operator. This correction will arise naturally as a
higher-order correction. The same remark applies to the
Stark polarizabilities a and P also listed in Table IV.

(c) As a check on the reliability of the calculations, two
evaluations were made. The matrix element involves the
action of both the dipole operator and h: either operator
can be used as the driving term in a differential equation
for a perturbed orbital, with the other operator then
sandwiched between this perturbed orbital and the unper-
turbed valence orbital. The methods agreed to six digits.

V. CP VIOLATION

The atomic dipole moment induced by the CP-violating
interaction given in Eq. (2) is proportional to the intrinsic
electric dipole moment d, . The proportionality constant
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TABLE V. Ground-state electric dipole moment enhancement factor, A =D„, /d, calculated using
various potential models.

Atom

Rb
Cs
Au
Tl

Tietz

34.0
158
393

—681

Green

29.7
139
397

—675

Norcross

30.0
144
370

—685

PNC-HF

26.7
127
340

—1910

Other

24'
119'

—700"

'P. G. H. Sandars, Ref. 31 (with shielding).
P. G. H. Sandars and R. M. Sternheimer, Ref. 10.

R which shows the enhancement of this intrinsic moment
in heavy polarizable atoms is given in Table V, where
comparisons are made with previous calculations by San-
dars ' and by Sanders and Sternheimer' based on
Hartree-Fock-Slater wave functions. As in the case of the
P-violating electric dipole matrix element, the Hartree-
Fock model values, omitting VnF, were found to be sub-
stantially smaller than the values from other potential
models, and only the PNC-HF results are given. In the
case of Tl, very large corrections due principally to excita-
tion of the 6s~&2~p~~2 state arising from V~F gave a fac-
tor of 3 increase in the size of the enhancement factor.
This fact indicates that the choice of the Hartree-Fock
ground state for the calculation of CP-violation effects in
Tl may be unsuitable and possibly means that the pertur-
bation theoretic approach will be unsuitable for this atom.

VI. HIGHER-ORDER PERTURBATION THEORY

The results presented in this paper, while numerically
accurate to all digits displayed, cannot be directly com-
pared to experiment as they stand. This is because they
represent only the lowest-order term in the perturbation
Vc, defined in terms of the decomposition of the full
Hamiltonian of the system

r

a=+ a; p;+mP;—

IIo+ ~c

different potentials. If perturbation theory converges,
then successively higher orders should give results that,
while starting from a relatively wide range of potentials,
give answers that cluster closer and closer to a final result
that is to be taken as the correct physical answer. It is, of
course, important to make sure that this method repro-
duces accurately measured atomic properties, such as
valence energies and hyperfine splittings in order to en-
sure that no important classes of diagrams have been left
out. In this way we introduce the idea of a "circle of con-
vergence. " Such a concept refers to a certain range of
models of a heavy atom: regardless of the exact parame-
trization of V(r), there should exist an infinite class of
models that all converge to the true picture of the atom
when sufficiently high orders of perturbations in V& are
taken into account. On the other hand, this leaves open
the possibility that certain models may be outside this ra-
dius of convergence, and that perturbation theory in Vz
does not converge. We consider it possible that the HF
model of Tl may be an example of this. We wish to em-
phasize that this approach has not been tested, since the
vast majority of higher-order calculations are in the HF
framework, due to the simplicity of the perturbation
series. We are presently in the process of setting up first-
and second-order many-body perturbation theory for a
general potential V(r). While many of the higher-order
terms can be treated with standard techniques, graphs
such as those shown in Fig. 2 involve relativistic two-body
Green's functions, which to our knowledge have not been
previously employed in atomic calculations, though the
nonrelativistic case has been treated. We are presently
developing numerical techniques to deal with such terms.

Ho=+[a; p;+mP;+ V(r;)],

Vc ———,g'
/r; —r,

/

V(r;)+
i rl

In the case of a theory like quantum electrodynamics
(QED), all perturbations come in with successively higher
powers of a small parameter, viz. , the fine-structure con-
stant, and thus, barring extremely large coefficients of
higher-order terms, each successive term provides about
100 times more accuracy. Here, however, no such param-
eter exists, and the smallness of higher-order terms is a
sensitive function of the potential chosen to approximate
the net effect of electron-electron interactions. Our way
of approaching the problem of estimating the reliability of
this kind of atomic physics calculation is to use several

FIG. 2. A sample graph involving the relativistic two-body
Green'-. s function.
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