
PHYSICAL REVIEW A VOLUME 32, NUMBER 4 OCTOBER 1985

Channel-coupling array analysis of electron correlation in H3+
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The three-center, two-electron molecular ion H3+ has been studied using the channel-coupling ar-
ray theory of n-particle scattering. The aim has been to determine how well the simplest approxi-
mations to the theory can handle electron correlation in a well-studied, three-center system. Two
sets of approximate calculations of the ground-state energy of H3+ are described. In the first, a
channel-truncation approximation was used to yield a set of three coupled equations involving the
three H2+H+ channels. The channel-component wave functions were then approximated by hydro-
genic 1s states; both the energy and equilibrium separation were poor. For the second set, a tech-
nique was developed in which the H2 cluster in each of the preceding H2+H channels was subpar-
titioned into an H + H subchannel. The use of hydrogenic 1s states for the H + H subchannel
components yielded much more accurate results: E(R=1.67ao)= —1.307 a.u. , compared to a
valence-bond calculation with 1s states E(R = 1.66ao) = —1.298 a.u. As in previous calculations of
this type, the results were obtained with relative computational ease.

I. INTRODUCTION

In this paper we study the effect of electron-electron
correlation in the three-center molecular ion H3+ using
the channel-coupling array theory approach to molecular
structure and very simple approximations to the wave-
function components of this theory. We show that within
this type of approach, the treatment of correlation can be
dramatically improved by using the channel-coupling ar-
ray method to subpartition the (two-electron) H2 subsys-
tem that appears in the partitions of the full H3+ system.
The background underlying this study and the motivation
for undertaking it are described in the remainder of this
section.

The channel-coupling array (CCA) theory represents
one framework for imposing the boundary conditions
needed to ensure a unique solution to the Schrodinger
equation describing n-particle collisions, n ~2. This is
accomplished by means of a set of coupled equations for
wave-function components; the components asymptotical-
ly yield matrix elements describing transitions among con-
tinuum states. These same coupled equations may also be
solved for the bound states of the n-particle system, and a
number of such calculations have been carried out for
some two-center molecules containing one or two elec-
trons '

Most of the bound state CCA calculations have been
approximate. Now that we understand how to obtain
physically well-behaved ungerade energy curves, ' ' most
of these CCA calculations may be characterized as having
yielded approximate energy curves that are much more
accurate than might have been expected given the crudity
of the approximated channel components. Indeed, for the
case of ground states, use of uncorrelated, two-electron,
approximate wave-function components has led to ap-
proximate energies which include substantial amounts of
the correlation energy. More generally, most of the CCA
results can be contrasted with their Schrodinger counter-

parts as follows. Let f; denote the approximation to the
exact component g; for channel i Th. e approximate
Schrodinger solution 4 is related to the approximate com-
ponents g; via %=gP;, where i is summed over the
relevant channel labels. Then, if the components P; are
formed from one or a few low-lying states corresponding
to a separated atom picture, the resulting CCA molecular
energy is generally much more accurate than is the energy
obtained by using %=gg; in a Rayleigh-Ritz variational
calculation. ' ' ' (Also, the computational effort re-
quired to determine the CCA energy curve is generally
much less than required in a variational calculation. ) As
noted, an exception to this situation had been the unphysi-
cal nature of the CCA energy curves for the ungerade
states of H2+ and H2, but these have been recently elim-
inated through imposition of boundary conditions that
had not been previously applied.

Let us recall some of these computations. In the crud-
est approximations, the component g; was simply an un-
correlated product of states for each of the systems form-
ing the separated atom picture. For example, H2+ was
represented by components describing a noninteracting H
and H+ pair, ' while H2 (in the channel-truncation ap-
proximation) was represented by components describing a
noninteracting pair of H atoms. In both of these exam-
ples only one-electron states were used to form the ap-
proximate channel components. This was no longer possi-
ble in the case of HeH+, for which the inclusion of the
channel He+ H+ was found to be essential. The com-
ponent for the He cluster in this channel was approximat-
ed by a simple (correlated) Eckart wave function;" the re-
sulting CCA dissociation energy. was quite accurate even
though no excited He states were included in the calcula-
tion.

While this latter result suggests that correlation within
a cluster can be successfully treated in a CCA approach, a
more stringent test will be to determine how well the
method describes correlation in a three-center, two-
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electron cluster. With this goal in mind, we chose to
study H3+. In the channel-truncation approximation,
only the H2+H+ channels are retained, and the effect of
electron correlation in the H2 cluster can be studied
directly.

Although there is no experimental data available on the
ground state of H3+, many theoretical values for the ener-

gy of the equilibrium configuration are available'
against which the CCA results could be compared. These
are listed in Table I. The aim of the present investigation
has been to determine the accuracy of the approximate
CCA energy curve obtained using the simplest Ansatz for
H3+. This is consistent with the aim and philosophy of
previous CCA calculations. These latter have shown that,
within the CCA framework, the use of very simple
Ansatze for the ground-state wave-function components
for H2+, H2, and HeH+ can produce sufficiently accurate
energy curves that a physical picture of the structure or of
the chemical bond emerges. ' ' We initiated the current
study of H3+ anticipating that our calculations would
yield a similar conclusion.

There are two other features that characterize the
current study. One is the relative ease in performing the
CCA computations as compared to the variational ones:
as we note at the end of Sec. III, the number of integrals
evaluated in the CCA calculation was about 2 orders of
magnitude less than were evaluated by Christofferson. '

The second point is more fundamental: we present a
method for treating electron correlation in this system
that does not employ correlated, two-electron channel

/

TABLE I. Theoretical values for the energy of the equilibri-

um configuration. Acronym definitions are as follows: VB,
valence bond; NO, natural orbitals; GTO, Gaussian-type orbi-
tals; STO, Slater-type orbitals; CI, configuration interaction;
MO, molecular orbitals; FGTO, floating GTO; GL, Gaussian
lobes; SCF, self-consistent field.

components; this method of subpartitioning is described
in Sec. III.

channel a: ( 1,2, c,b ) +a,
channel b: (1,2,a, c)+b,
channel c: (1,2,a,b)+c .

(2.1)

The channel Hamiltonian H consists of the kinetic ener-

gy of the electrons plus all interactions internal to the
clusters of channel u. For ~=a, the channel Hamiltonian
Hg 1S

II. CCA EQUATIONS FOR H3+

In the CCA theory the particles of the system are
grouped into clusters, where a cluster can consist either of
a bound system of particles or of a single particle. Each
partitioning of the system into clusters is denoted a chan-
nel, which corresponds to a separated atom picture of the
system. In order to obtain unique solutions to the CCA
equations in the case of scattering, it is sufficient to in-
clude only the two-cluster channels. By means of ana-
lytic continuation to negative energies, a similar result is
inferred to hold in the bound-state case. ' This has been
verified for H2+ by Ford and Levin.

H3+ can be partitioned into nine two-cluster channels,
three of the type H2+H+ and six of the type Hz++H.
In a truncated-channel approximation, the channels whose
asymptotic states require the minimum dissociation ener-

gy are retained. The ground-state energy of the hydrogen
molecule is —1.174 a.u. compared to —1.103 a.u. for the
combination of the hydrogen molecular ion and hydrogen
atom. Therefore, the present calculation employs only the
three Hz+ H+ channels.

If the three protons are labeled a, b, and c, and the two
electrons I and 2, then the three retained channels are
denoted

Ref. Method
Energy
{a.u. )

R
(ap)

H, =Ho —1/r„—1/rb 2 1/r, z
—1/rb ~—+ 1/Rb, + 1/r ~2,

(2.2)

16

14
15
16
13

17

16
18

21
19
20

calculations for H3+
—1.2924

—1.2979

—1.3066

calculations for H3+
—1.2988
—1.2863
—1.2999
—1.3326

—1.3405

—1.3376
—1.3405

—1.3359
—1.3434
—1.3439

Comparison of simple
VB STO 1s

(cov.)

VB STO 1s
(cov. and ionic)
CCA STO 1s
(current work)

Comparison of extensive
SCF MO GTO
SCF MO STO

SCF MO FGTO
CI MO STO

(12 configurations)
CI STO

(100 configurations)
CI MO FGTO

CI GL
(48 configurations)

NO GL
Correlated Gaussian

Random walk

1.66

1.66

1.67

1.62
1.6229
1.6405
1.6575

1.650

1.6504
1.6406

1.66
1.650
1.650

where Ho is the kinetic-energy operator and, e.g. , rb~ is
the distance between proton b and electron 1. Similarly,
the channel interaction V' contains all of the intercluster
interactions in channel a:

V'= —1/r, ) —1/r, 2+ 1/R„+ 1/R, b . (2.3)

Analogous relations hold for a =b and a =c.
For any given channel, the sum of the channel Hamil-

tonian and channel interaction is the Schrodinger Hamil-
tonian; the Schrodinger wave function 4 is equal to the
sum of the two-cluster channel components g„:

H=H +V fora11~, (2.4).

(2.5)

In the present case of a 9&9~3&&3 truncation, the sum
over u includes only the three H2+ H+ channels retained
in the channel-truncation approximation. These three
components obey the 3 X 3 CCA matrix equation
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H —E
0

. Va 0

pe

H, —E
Pb ——0. (2.6)

Z = l.O

Z = I. I

f.=~.b.A

Wa =+abcfc

(2.8)

Hence, if Eq. (2.6) is multiplied from the left by a row
vector which satisfies (2.8), it follows that

&@.I~. IP. &=&lb IHb I@b&=&@.IH. I@.&

&I('.
l

I"
I @b& &Pb I

I"
I @c &=&Pc I

I"
I @a &

Thus, in the channel-truncation approximation, the three
coupled CCA equations (2.6) collapse to a single expres-
sion for the energy:

E&P. I P. & = &P. I
~.

I @.&+ &W. I

I"14 & .

If the components [p„pb, gc] which solve Eq. (2.10)
exactly are replaced by approximate ones [g„gb,f, ] that
obey the symmetry relations (2.8), then an approximate
energy E can be determined from

E&4. 14. &=&IT'. I~.
I P. &+&0. I

I'
I fb& .

In carrying out the computations which employed
(2.11), the equilateral triangle was assumed to be the
equilibrium configuration. Although not confirmed ex-
perimentally the equilibrium configuration has been estab-
lished by previous work on H3+. ' ' Hence, E was as-
sumed to depend on only one length R, where
R =R,b

——Rb, ——R„. Since the goal was to obtain a rela-
tively accurate approximate energy E(R) using crude ap-
proximate wave-function components, the H3+ channel
components used initially were constructed from simple
hydrogenic states, viz. ,

fa =exp( —rbI)exp( rcz)+exp( ——rb2)exp( r, ~) . (2.12)—
Although the resulting energy was only slightly worse
than a valence-bond calculation using j.s states, ' the

On projecting (2.6) to the left onto a row vector
[g„gb,pc], the three coupled equations can be solved for
the (channel-truncated) energy E.

The operators H and V (u=a, b, c) obey the symme-

try relations

b 4 a-~b Pabc~aPabc ~ ~ Pabc ~ Pabe

~c abc~b abc ~ ~ abc ~ Pabc (2.7)

a f c~a Pabe cPabc ~ ~ abc ~ abc ~

where P,b, is the cyclic permutation operator that re-
places a with b, b with c, and c with a. Using the unitar-
ity of the permutation operator, viz. , P,b,P,b, ——1, and
Eqs. (2.6) and (2.7), it can be shown that the ground-state
(singlet, gerade) channel components defined by (2.6) obey
the symmetry relations

O
-0.8

C9

QJ

Ld

-1.2—
I I I I I I I I ] I I I I I I I I

I l.5 2

R (Bohr radii)

FIG. 1. Simplest CCA ground-state energy for H3+.

III. SUBPARTITIONED CCA EQUATIONS FOR H3+

The calculations just summarized show that use of a
channel component which ignores the effect of electron-
electron interaction within the cluster generates a rather
poor energy curve. Constructing channel components
from Hylleraas functions, which depend explicitly on the
interelectronic distance, could lower the energy several
percent. However, the resultant three-center integrals
would greatly complicate the evaluation of E, and the
main attraction of the CCA approach so far has been the
comparative ease with which it produces a relatively accu-
rate energy. In an attempt to avoid increasing the com-
plexity of the channel components, an algorithm was dev-
ised for subpartitioning the H2 clusters into their simpler
constituents, i.e., for applying the CCA procedure to the

equilibrium separation was off by over 30% (see Fig. 1).
In an attempt to improve this result, a scaling factor was
next introduced into the hydrogenic states of (2.12) and
the energy was minimized with respect to this effective
nuclear charge. The energy was lowered by less than 1%,
although the equilibrium separation was improved by
10%. (Since the minmax principle does not apply to the
non-Hermitian CCA equations, ' free parameters in the
channel components must be used with discretion. ) Use of
very simple approximate components in Eq. (2.11) is thus
seen not to yield very accurate results. This is evidently
connected with the use of uncorrelated wave functions to
describe the H2 subsystem in each channel. An obvious
means for attempting to improve these results is to replace

of (2.12) by a wave function which more accurately de-
scribes Hz.

Although correlation was introduced straightforwardly
in the two-electron cluster He in the CCA calculation on
HeH+, constructing a component to describe the electron
correlation in a two-center cluster is considerably more
difficult. Furthermore, such a replacement is counter to
the spirit of this study, as noted above. Rather than at-
tempt to improve E(R) simply by altering [g„pb,f, ];
the CCA method was reapplied, this time to Eq. (2.6), as
described in Sec. III.
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channel a 1: [(b, 1)+(c,2)]+a,
channel a 2: [(b,2)+(c,1)j+a .

The operators for subchannel a 1 are

H ]=~Q —I/rb] —1/r p,

V"= —1/rb 2 1/r—, ) + 1/R + 1/r )2,

(3.1)

(3.2)

with corresponding expressions for H, 2 and V' . The ef-
fect of this subpartitioning is that the electron-electron in-
teraction has been removed from the channel Hamiltonian
and incorporated into the external subchannel potential
operator.

In the 9&&9~3&3 truncation, the original channel
operators and components are related to the new subchan-
nel operators and components by

H, =H„+V", i =1,2 (3.3)

individual clusters. While the simplicity of the com-
ponents is retained, there is a concomitant increase in
operator complexity.

The procedure by which the H2 cluster in each of the
original channels is subpartitioned into an H+ H sub-
channel is identical to the CCA (channel-truncated) treat-
ment of the H2 molecule. For example, the H2 cluster
(b, c, 1,2) of channel a is subpartitioned in the following
manner:

(3.4)

Substituting Eqs. (3.3) and (3.4) into (2.4) and (2.5) gives
the Schrodinger Hamiltonian and wave function in terms
of the subchannel operators and components:

H=H;+ V '+ V, u=abc, i =1,2 (3.5)

(3.6)
a l

Although the structure of the subchannel components
can be simpler than that of the channel components, the
equations they obey are more complex, since the original
channel Hamiltonian H, and external channel potential
V' are replaced by 2&&2 matrices:

Va2
a1

H —+ (3.7)

Va Va
~a

Va Va (3.8)

Similarly, the channel component g is replaced by a
column vector whose components are g„~ and g„2. These
new subchannel components are the solution of the 6~6
matrix equation obtained by substituting Eqs. (3.7) and
(3.8) into the 3 && 3 CCA matrix equation (2.6):

Ha1 —E
Va1

0

0
Va

Va 2

Ha 2
—E

0

0
Va

Va

Vb

Vb

Hb1 —E
Vb 1

0

Vb

Vb2

Hb2 —E
0

Vc

Vc

H, 1
—E

Vc 1

0

4.z

fbi
V' gb~

V' 4ci

Pc2

=0. (3.9)

abcga 1 obli 124a I ga2 . (3.11)

It is trivial to show, in analogy to (2.9a) and (2.9b), that

Although the subpartitioning increases the order of the
CCA operator matrix, the symmetry of the new equations
again allows a significant simplification. The ultimate
symmetry of the resulting equations is dependent on the
particular choice of ordering labels in the channels.

The symmetry of the subchannel operators is defined
with the cyclic permutation operator P,b, and the electron
exchange operator P12.

PabcHa1Pabc =Hb1 r 12Ha1P12 Ha2 r

P,b, V"P,b, ——V" ', P (2V"Pu ——V', (3.10)

P b, V P,b,
——V, P12V P12 ——V

and similarly for the other subchannels. These relations
and the unitarity of P,b, and P» can now be used 'to

determine the symmetry of the subchannel components
for the ground state:

&e. IH-
I 0- &=&Opj I ~pl I epJ &

&4. I

V" I@.J &=&@pj I

V" Ifp &

&0.; I v'10p &=&4. I
vPI fpj &

&4. I

V'I @p; &
= &0p; I

V'I ls; &

(3.12)

Replacement of the subcomponents g„; in (3.13) by ap-
proximate ones g;, yields an approximate energy E(R).

Because the subchannels of the H2 cluster of H3+ are
identical to the channels that were retained in the original

where ~,P,5 is cyclic in a, b, c and i,j takes on the values 1

and 2. Equations (3.11) and (3.12) reduce the 6X6 set,
Eq. (3.9), to a single equation for the (channel-truncated)
energy:

E(R)& 4., 10., &
= & O. , I

II., I O. , &+ & P. , I

v"
I @., &

+ & @.i I

V'
I Wb 1 &+ & C. i I

V'
I @b2& .

(3.13)
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H2 ground-state calculation, the same simple molecular
orbital (MO) states that produced an accurate H2 ground-
state energy curve in Ref. 3 were chosen for the approxi-
mate subchannel components:

P, &
——exp( rq —

& )exp( —r, 2),

P, 2
——exp( —rbz)exp( —i, ~) .

(3.14)

Note that g„+g,2 yields the approximate channel com-
ponent f, of Eq. (2.12).

The curve generated by Eqs. (3.13) and (3.14) improved
both the energy minimum and equilibrium separation:
E(R =1.92ao)= —1.286 a.u. Although these results are
improvements over the calculations described in Sec. II,
the error in the equilibrium separation is still greater than
15%. While subpartitioning seems to be a move in the
right direction, using the same channel components as
were employed in the H2 molecule calculation is only par-
tially successful. This can be attributed to the presence of
the third proton in H3+, whose distance from each of the
two protons in the H2 cluster is equal to the interproton
separation in the cluster. Even in the CCA approach, this
"spectator" proton should distort the purely hydrogenic
states of the Ansatze of (3.14). To take account of this
third proton, an effective-charge scale factor Z was intro-
duced into the hydrogenic states. Minimizing the energy
with respect to Z results in a more dramatic improvement
in E(R) than observed in the previous calculation without
the subpartitioning of the channels. With the scaling fac-
tor of Z = 1.14, the CCA minimum energy is
E(R = 1.67ao) = —1.307 a.u. (Fig. 2).

A comparison of the CCA results and other calcula-
tions on H3+ is shown in Table I. As in the cases of H2+,
H2, and HeH+, the CCA method has again produced a
better approximate energy than the variational result
when the total approximate wave function is constructed
from simple 1s states. Indeed, configuration-interaction
(CI) calculations using hydrogenic states yield an energy
comparable to the CCA results only when contributions
from 1s, 2s, and 2p were included. The CI calculations
required the evaluation of hundreds of integrals, including
many three-center ones. ' In contrast, the CCA method
involves the evaluation of just five integrals, only one of
which was three-center. Since most multicenter integra-
tions must be performed numerically, the CCA method
offers a considerable savings in computer time and still
yields a reasonable approximate ground-state energy for
H3 . The resulting approximate Schrodinger wave func-
tion is simple and the energy is accurate enough that a
physical picture of H3+ emerges from this analysis: it
behaves like a system of one proton and two hydrogen
atoms whose electrons experience a modified charge.

I I I 1 I I I I 1 I I I I

o ) O

C9
CL
LIJ

-I.2

I t I I I I I I I I I I I I l I l 1 I

I l.5 2 25
R {Bohr rodii)

FICx. 2. Subpartitioned CCA ground-state energy for H3+.

IV. DISCUSSION

The method of subpartitioning the two-electron cluster
in H3+ has been successful in that it led to a simple treat-
ment of electron correlation in the H2 cluster and a rela-
tively accurate energy curve was produced with minimal
computation. However, there may be limitations to the
applicability of this method to other multicenter, mul-
tielectron systems. The subpartitioning of clusters in-
creases the operator complexity considerably. In the
present case, the symmetry of the subchannels allowed a
remarkable reduction in complexity. For larger mole-
cules, subsequent partitioning of subclusters could result
in very large matrices, while a lack of symmetry could
prevent a substantial reduction of the matrix equations.
In such cases, the energy could still be obtained in prac-
tice, although the computer effort required to evaluate the
matrix elements probably would no longer be significantly
less than that required in a standard (CI) calculation.
Another problem may occur with a cluster containing
more electrons than protons, e.g., an H2 cluster. Among
the subpartitionings of such a cluster would be an isolated
electron. Although the CCA method has successfully
handled an isolated electron in the multielectron atom,
the extension to the molecular case is not straightforward.
Therefore, the subpartitioning of negative ionic channels
may not be practical, although this is a matter requiring
investigation. Both of these problems could limit the use
of the subpartition method in larger molecules. Neverthe-
less, a significant step has been taken in using the CCA
approach to understand the ground=state structure of
complex systems.
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