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A nondegenerate perturbation theory is studied using the adiabatic-theorem formalism. A new

factorization of the adiabatic time-evolutiori operator analogous to that obtained by Morita in his
derivation of the linked-cluster theorem is given by carrying out a series of intermediate representa-
tions. This leads to a new expansion for the perturbed eigenvectors

~
a) and energies E which are

analytically expressed with respect to two matrix series P '"' and E'"'. The nth term of each series
(P '"' and E'"') includes perturbational contributions of power p, p &n. An explicit recurrence,
P '"'= V(P " ", E'" "), E'"'=E(P '" ", E'" ") is derived and allows us to calculate these ma-
trices to an arbitrary iteration order (n). This is a central feature of our approach since the eigenvec-
tors and eigenvalues can be generated, to this arbitrary order, by a simple numerical program.

I. INTRODUCTION

Perturbation theory is a theoretical physicist's most
powerful tool. ' However, the derivation of an explicit
expansion of the wave function and eigenvalues in the per-
turbation is a complicated problem. This difficulty is ap-
parent when the we11-known Rayleigh-Schrodinger series
for the nondegenerate case is considered.

An explicit expression for the wave function and for the
energy in a power series of the perturbation was first ob-
tained by Goldstone. An elegant derivation of the Gold-
stone formula from the Brillouin-Wigner expansion can
be found in the work of Brandow. The Goldstone solu-
tion which concerns a system of interacting fermions uses
time-dependent perturbation theory in the interaction rep-
resentation. Introducing the time-dependent perturbation
V(t) =exp(iHpt) Vexp( —iHpt)exp(yt), the corresponding
evolution operator

Uy ——g„( i)"—
&&I, , V(t, ) V(t&) V (t„)dt & dt„,

and analyzing the products of time-ordered operators
which comprise the operator Uz by the same algebra as is
used in proving Wick's theorem, Goldstone showed that
the limit

Uy@p
lim
y p (4p~ Uy ~4p)

exists and has an explicit expression with respect to the
linked Feynman graphs (with C&p being the nondegenerate
ground state of Hp). Finally, it was proved that the per-
turbed eigenfunction can be written

4p ——g V @p,
1

(2)
0 0

where I. represents the sum over the linked graphs and
the energy shift

see(e v ' v el,
L

where gz means summation over all connected graphs
leading from @0 to 40, that is, with no external lines.

Following Brueckner's suggestions, Huby' obtained
tractable calculation rules for the two series (2) and (3).
Nevertheless, these rules include nontrivial linear com-
binations of matrix elements whose complexity increases
dramatically with the perturbation order. Thus it is im-
possible to use a numerical treatment to generate these
series up to a high order of perturbation.

This method of investigation, through a power expan-
sion of the U operator and the linked-cluster theorem is
not the only possible solution. In the one-dimensional
(and thus nondegenerate) case, a high-order perturbation
treatment of the Rayleigh-Schrodinger (RS) series making
use of general hypervirial theorems has been proposed by
Killinbeck. " This formulation has the great advantage
that it does not involve the calculation of perturbed wave
functions and some applications concerning the hydrogen
atom and the perturbed harmonic oscillator have been suc-
cessful. ' Unfortunately it seems very difficult to general-
ize this approach to the degenerate case.

In this work a third method is presented. A new fac-
torization of the term Uy ~

@p) in the adiabatic limit
y~o+ is derived, namely [cf. Eq. (i)]

by using a series of intermediate representations of the
adiabatic evolution operator. The basic hypotheses are
presented. in Sec. II in a formulation which does not use
second quantization and thus not the exclusion principle.
(As in the works of Klein' and Shavitt and Redmon' at-
tention is focused on the formal aspects and the many-
body application is ignored. ) The explicit calculation of
the factorization is presented in Sec. III. This leads to a
new, nonperturbative expansion of the two factors Uz
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and & @p
I U& I

4 p). Iterative rules for the building up of
these two terms from the matrices Hp and V are given.
Section IV puts forward a simple application concerning
the case of a linearly perturbed harmonic oscillator.

II. ADIABATIC- THEOREM FORMALISM
FOR NONDEGENERATE PROBLEMS

Let H be the Hermitian Hamiltonian of an isolated sys-
tem. H is split into a zeroth-order Hamiltonian and a
perturbation:

H =Hp+ V.
It is supposed that Hp and H both have a discrete spec-

trum. In adiabatic perturbation theory the interaction V
is switched on by adding a factor exp(yt):

This application of Wick's theorem to the eigenvalue and
eigenvector problem is known as the linked-cluster
theorem. A simple derivation of this theorem and its ex-
tension to the degenerate case has been proposed by Mori-
ta. In Ref. 20 it is shown that U(t, —oo )

I
ao) has the

following form:

oo) Iao&=U(t oo) Iao& &aoI U(t oo) Iao& .

(9)

The first factor on the right-hand side (rhs) represents
the sum of all possible products of connected diagrams
which are open to the future at time t. This term is regu-
lar in the adiabatic limit (i.e., its power expansion does not
introduce any singularity proportional to 1/y") and veri-
fies the condition

V(t)= lim Vexp(yt), —oo &t &0 .
y~p+

The nondegenerate unperturbed state is denoted by
I
ap) and the corresponding unperturbed energy by Eo.

According to the adiabatic theorem the zeroth-order
eigenket evolves adiabatically into the perturbed eigenket
of energy E~, namely' ' (the convention iii= 1 is adopt-
ed)

0
lim exp i f—Hpdt U(0, —oo )Pp

y~p+ 00

lim U(t, —oo) Iap), =0.
y 0+ Bt

Moreover, Morita showed that

U(0, —oo)
I a),

and

E.=&a, IHU(0, — ) Ia, ),

(10)

(1 la)

(1 lb)

p=P lim exp i f —Hpdt U(0, —oo),
y —+0+ 00

(6a)

Po=
I
ao& &ao

I
(6b)

and where U(0, —oo ) represents the time-evolution opera-
tor defined by the equation

BU(ty oo )
V( )U (6c)

with
f

V(t)=exp i f Hodt' V(t)exp i f Hpd—t'

(6d)

The resolution of the stationary eigenvalue problem in
the adiabatic-theorem formalism is then focused on the
expression

U(0, —oo)
I ap) =exp f [E (t) E(t)]dt

I
a), —

are the eigenvector (normalized so that &ap
I
a) =1) and

the corresponding eigenvalue. These results which were
derived by Morita for Hp quadratic in the electron opera-
tor have been generalized by Bulaevski ' for arbitrary Hp
and V.

The main feature of Feynman-diagram expansions
relevant to Eqs. (11) is that the expansions are power
series in the perturbation V. Unfortunately, there is not
'an explicit recurrence between two successive perturbation
orders and it seems difficult to generate these series with a
recursive numerical program.

The aim of this work is to show that it is nevertheless
possible to derive a factorization similar to Eq. (9) in
which each factor, calculated in an iterative procedure, is
expressible with respect to two matrix series. P and E; the
nth-order terms 1 '"' and E'"' include contributions of
power p (n &p & oo) in the perturbation and are generated
by a recursive program from P (n —1) and E'"

To do this no particular form is given to the Hamiltoni-
an H. It is only assumed that H is Hermitian and that it
can be expanded on the basis of Hp eigenkets:

where E~(t =0) and
I a) are the required eigenvalue and

eigenvector.
An explicit calculation of

I
a) and E can then be

made from Eq. (7) by using Wick's theorem to express the
Feynman' diagrams and Dyson's expansion' of U,

U(0 —oo ) = g U(p
n=0

( —)" f dt, dt„T[V(t, ) V(t„)] .
n! 00

H(t)= XE I to & &to
I + 2 Q &to

I
V(»

I jo &14& &jo I

(12)

The operator Iip)&jp I
which includes the transition

ip —+jp obeys the following commutation rule:

[Iio&&joI Iko&&4I]= Iio&&4I&,;k —Iko&&jo I&r,;

As previously noted this expression does not guarantee the
preservation of antisymmetry and many-body applications
would require further expansions.
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III. THEORY

The aim of the calculations presented in this section is
to factor the term U(0, —co)

I
ao) as in Eq. (9). This fac-

torization is obtained by making a series of intermediate
representations. The two following basic points concern
the choice of this series.

(i) In Eq. (9), the term U(0, —ao)
I
a), is relevant to

the diagrams open to the future at time 0 and which con-
nect l(zo& to

I jo& j~(z T"e oPerators
I jo&&~pl w»ch

produce these transitions can be extracted in the
intermediate-representation formalism by making repre-
sentations with respect to

g ( &jo I
V

I
(zo & )

I
J'o & & (zo

I
.

J
(j+a)

(ii) The complexity of the expansion of the eigenvalue
and eigenvector in the RS series comes partly from the
fact that this series involves the unperturbed eigenvalues
exclusively. This can be overcome in the representation
formalism by making representations with respect to the
projection operators

I jp ) (jo I
.

The series of representation will now be set out in de-
tail. Its choice is based partly on the suggestions given
previously in points (i) and (ii) and partly on intuition.

A. First interaction representation

A first interaction representation is made with respect
to the diagonal part. To the partitioning

H(t) = V', + V,",'

V~'Po= g (V~'),
I jo&&(zol

J
(j~a)

[where V~~' represents the residual Hamiltonian after the
(p —l)th transformation] and then an interaction repre-
sentation with respect to the diagonal terms

V'I'= g(VI'~gg I jo&&jo I

which have been generated by the first operation of the
pth transformation. This leads finally to the expansion

U(H)Pp ——lim U(Vd ')U(VodPp)U(Vd )X ' ' '

X U(V" 'P, )U(VI ')U(V"')P, .

(15)
It must be noted that each factor U( V~~'Pp) is nonunitary
since the operator V,'~z'I'o is non-Hermitian. Nevertheless,
the whole product, equal to U(H(t)), is unitary. The de-
tailed calculations are set out in Appendixes A and B.
They lead to an explicit expression for each factor in Eq.
(15) and give a recurrent relationship between the matrix
series Vd" and V,'d. These results can be summarized as
follows.

The operator V,'d "can be expressed in the form

V~ (t)= g g Vqk (t)
I j())(k() I

(16a)
j k

(j&k)

with

lim V'"+"(t)Jk
corresponds the expansion

U(H)P() ——U( Vd ') U( V,'d')P()

With

Po=
I

(zo& &(zo
I

(14a)

(14b)

jk exp j —
k=~'"+"(t)exp (y("+" y("+"dt—

(E(n +1) E(n +1)

)dt's

J

(16b)
and with

V~'(t)= g g VJ(t)exp f (E; + V;; —EJ —V~q)dt'
J

(j +i)

&& lio&&jol (14c)

(The subscripts d and od, respectively, indicate the diago-
nal and the off-diagonal parts. It must be noted that Vd

'

incorporates Hp. For the sake of clarity the two limits
t = —oo and t =0 do not need to be written in each U
factor. ) This first operation is the standard intermediate
representation often introduced in the adiabatic approach.

B. Continuation with series of similar transformations

The calculation is then continued using an infinite
series of similar transformations. Each one is composed
of two successive operations. For instance, the pth
transformation is composed as follows. First an interac-
tion representation with respect to the non-Hermitian
term is made:

V(n+1)(t) E(n+2) E(n +1) ~ (~(n +2) ~(n +1)
)JJ (17b)

The various matrix elements 7 Jk, EJ, and PJ are all
real functions of time. They can be separated into two
groups according to their behavior in the adiabatic limit
y —+0+ A first group is constituted by the functions
P (t) and E(t) which become bound, adiabatically vary-
ing functions in the limit y~0+. A second group is con-
stituted by the functions 5P"(t) and (t)(t) which converge
to zero at this limit. Moreover, they converge to zero suf-
ficiently rapidly so that for any arbitrary complex func-
tion 13(t) whose modulus is bounded on the real axis
—Oo & t (0 the following integrals converge:

t
lim f X(t')P(t')dt', &=M or (I() . (1g)

y ~O+ —ce

The matrices 7, E, and (() appearing in Eq. (16b) will be
given later in Eqs. (21) and (22).

The operator Vd"+" has the expansion

V'"'"(t)= g I jo&&jo I Vgj~"'(t) (17a)
J

with
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(It must be noted that the functions dP /dt and dE/dt
belong to this second group of functions. ) Each group of
equations is generated by recurrence equations. The intro-
duction of the notations

~(n+1) ~(n)+ ~ ~y (n)z(n) + p (n)gZ(")
Qa 'Ya ~ aj ja aj ja

J

for j&a, (22c)

~(n)(.)
Ja E(n) E(n)j a

gy (n)
gZ(n) Ja

Ja E(n) E(n)j a

y (n)(y(n) y(n))

E(n) E(n)j a

d
(n)

dt ~(n) E(n) E(n) E(n)j a J' a

(19)

(20)

Z,'."'gm'.",' for j~k, k~a,

l
(l~a)

~zja ~al la Zja ~~al la

—Zja Kal 5Zla

(22d)

(22e)

leads to, for the first group,

E' '(l)=E'+ &jo (
V(t) ~jo& ~j'k(t) =

&jo I
V(t)

I
ko&

(21a)

This second group of recurrence equations includes as an
unknown the solutions E'"' and W(") from the first group
of equations.

~'.n+"=~'™—Z'n'g~(™ for J+aj ja aj
+ =& n + ~ y (n)Z( ) for j&aa = a ~ aj ja

J

l
(l+a)

for j~a .

(21b)

(21d)

(2le)

C. Propagation of operators U( Vd"')

A last operation consists of propagating in Eq. (15) all
the operators U(Vd"') from the left to the right of the
series of operators Eq.uation (16) reveals that all the
operators which compose V,'d'Po commute. This is also
the case for the operators constituting Vd"' [cf. Eq. (17)].
Consequently, the two corresponding evolution operators
have the simple expressions

y,")=0, Sm("=0
~(n+I) ~(n) —~Z(n) ~(n) —Z(n)gy (n)
Y'l Y'l la al la al

(22a)

for j&a, (22b)

Equations (21) constitute for matrix series E'"' and 7 '"' a
closed group of recurrence equations. The second group
1S

U(0, —oo,' V~'Po) =exp g ~ jp ) (a()
~

—f Vj~"'dt

J
(j+a)

0
U(0, —oo, Vd"')=exP g ~ jo)(jo ~

—. f V~"'dt
J

The propagating of the operators U( Vd"') can be done
gradually as explained in Appendix C. This leads to the
final formula

11II1 U(0, —oo,'H(t))P() ——lim exp g ~
k() & &ap

~@~0+ n~00 k i Ek (t =0)—Ea"(t =0)
(k&a)

0
+exp g ~

kp)(kp
~ f

k

iEi"' lt)'k"' dt —U(Vw+—)Po . (23)

It will be supposed that the process converges in the
sense that the matrix elements (kp

~

V d+
~
ao), k&a

converge to zero as n —+ 00 so that
lim„U( V~+" )Pp ——1. This implies that the series Ek"
and gt —~k /(E)I —E' ') which are power series in the
perturbation converge. Without developing this point
any further it will be simply assumed that the perturba-
tion is sufficiently weak to be in the convergence interval
of these series noting, nevertheless, that in some special
cases the convergence radius can be equal to zero.

It is now possible to compare Eq. (23) with the factori-
zation of Morita [Eq. (9)]. A rapid calculation made on

Eq. (23) leads to

(ao~ U(0, —~)lao&
~' () ()=exp

~
ap) (ap

~

lim f ( iE "' P'" )dt- —
n~ co

(24)

Moreover, the first term on the rhs of Eq. (23), equal to

1+ X
k l

(k~a)
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verifies the condition (d!dt) F ~ ——0 and can be expanded,
through the expansion of the series F and E, as a power
series in the perturbation (this is clearly not the case for
the second factor because the integrals f Ek"'dt
diverge) T. hus the factorization written in (23) can be as-
similated to the factorization in (9); both have the same
definitions. Moreover, using Eq. (7) the following is ob-
tained for the eigenket normalized to unity:

p

~

a&=exp f y("—'dt

y (l) (())
x ~~,)+ g ~k, )

(k~a)

(25)
It is evident from Eqs. (25), (21), and (22) that the

greatest difficulty comes from the. series (t~" because this
series gives the functions 5Z which introduce time deriva-
tives [Eq. (20)j. However, this series is not needed since
all the components of vector

~
a) are proportional to the

factor exp [ f —P' "'dt I . Finally, Eq. (25) can be
rewritten

with

N
A()v) ~ y (n)~(E(n) E(n) ) D —ija ~ ja j a

n=1

for j&a (26b)

(N)
Aaa =D

where

2
1/2

[ ~(n)y(E(n) E(n) )j
j n=1

(j+a)

(26c)

so that the group of equations (22) does not need to be in-
tegrated.

Equations (21) and (26) constitute the central result of
. this work.

D. Directions for use

~
a) = lim g A,f'' ~ j,&,N~ (x)

(26a) The eigenvector to which we shall pay attention is [cf.
Eqs. (26)j

/a)=
P k" (0)

E
(k&a)

~("(0)
E(l)(0) E(l) ( )

, 1+
(j~a)

—1/2

(27a)

The corresponding eigenvalue is

E~= lim E~"(0) .l~ oo
(27b)

Ho=—
2 + —,

'
ky and V=Ay .

Thus the resolution of this perturbation problem simply
implies the calculation of the two matrix series P '"' and
E(n)

Equation (21a) give the first-order terms, E'" and P '",
with respect to the Hamiltonian Hp and to the perturba-
tion V. Equations (21b) and (21c), and (21d) and (21e),
respectively, constitute the recurrence equations:

The introduction of the adiabatically translated vibra-
tional coordinate z =y +A /k leads to

82
+—2kz —b, b=A /2kz'

so that the nonperturbed P„(y) and the corresponding per-
turbed eigenvectors (t, „(y) are related by the equations

E(n+i) E(E(n) y (n))

y ( 1n) +y(E(n) y (n))
P„(y)=P„(z) . (30)

This closed group of equations has been expressed in a nu-
merical program to resolve the simple application present-
ed in Sec. IV.

IV. A SIMPI.E APPLICATION: THE LINEARLY
FORCED HARMONIC OSCILLATOR

The perturbed eigenvalues are

E„=(n+—,
' )(2k)' —b . (31)

The functions P„(y) have well-known expressions on
the Hermite polynomial basis so that the coefficients A„k
of the expansion,

A simple application is the case of a linearly forced
harmonic oscillator. The Hamiltonian of this system is y„= gA„,y'„, n=O, 1,2, . . .

k
(32)

H =Ho+ V,
with

(28)
can be calculated without difficulty using the relationship
A„ l,

——(pk ~ pn ). This leads to a recurrence relation:
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1/2 n
C

exp
2

c2

4

E(&) (p~) 1.5-

1
n, l

n

C
~n —1,0 ~

A=02

1
II@+1

[ ( 1 )]i/P
C7+n —
4

~n —1p
&. 6

—[p(n —1)1'"~. 2,p —i

Aq „——( —1)" ~A„q,

with

c=(2g )'~

'I, 5- 1.251-

04-6
0.50-I,

E(') (r~)/

046K1-
& =0.2

7 9

The perturbational series AJ'~
' [Eq. (26b)] and E' ' [Eq.

(21c)] were calculated using a truncated basis constituted
by the 40 first unperturbed states and compared in Figs.
1—4 with the exact results given in Eqs. (31) and (33).
The case of the ground state (n =0) for the coupling
strengths 2 =0.2, 0.5, and 1 [cf. Eq. (28)] and that of the
first excited state for A =0.2 and 0.5 (it was assumed that
k =0.5) were analyzed. In every case the series converges
to the exact values.

Figures 1 and 2 illustrate the fact that the expansion is
built on nonpower series since the shift of the energy is, in
this case, a quadratic function of the perturbation. Figure
3 shows that more than ten iterations are needed to pro-

'I.25
'l5

duce the convergence in this strong-coupling case. This
figure also reveals the efficiency of the formulation since
it would be very difficult to continue the RS series at this
high order using Huby's rules. The convergence interval
of the series has not been studied in detail. However, it
can be said that in the case of the ground state the radius
of convergence is between 3=1.0 and 2.0 (the series
diverges in this last case) and that in the case of the first

FIG. 2. Same as Fig. 1 for the first excited state. Two values
of the perturbation magnitude are investigated (A =0.2 and 0.5).

025

0.2501-
A=0.5

14- 'l6 18

A(')
n=o, j

90-

95-

'l0 24 26 28 5 10

FIG. 1. Convergence of the perturbed eigenvalue E„' p (in
units of fico) for the ground state of the linearly forced harmonic
oscillator vs the recurrence index I. Three values of the pertur-
bation magnitude (A =0.2, 0.5, and 1.0) are investigated [cf. Eq.
(29)]. The three values E=0.46, 0.25, and —0.5 are the exact
values given by Eq. (31).

FICx. 3. Convergence of the coefficients A„' 'OJ [Eqs. (33)] of
the expansion of the perturbed eigenvector of the ground state
of the linearly forced oscillator on the unperturbed harmonic
basis vs the recurrence index I. The perturbation magnitude
3=1.0 is studied. The arrows associated with a number j
(0&j &5) give the exact values of the coefficients A„p J given
by Eqs. (33).
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.5-

-0.5

A=OS

The first results confirm the adequecy of the theory and
the existence in each case of a finite interval of conver-
gence which is more or less large according to the nature
of the perturbation matrix.

This formulation which uses a recursive numerical cal-
culation is particularly efficient in the strong-coupling sit-
uations when a high perturbation order is required. In re-
lation to Killinbeck's treatment the construction of the
perturbation matrix on the zeroth-order representation is
required, but it can be generalized to the degenerate case
without introducing any fundamental difficulties.
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FIG. 4. Same as Fig. 3 for the first excited state and for a
perturbation magnitude A =0.5.

excited state the radius is between A =0.5 and 1.

V. CONCLUSION

The simple application made in Sec. IV reveals that the
explicit expansions in the perturbation derived in this
work converge to the exact values for the wave function
and for energy under conditions of sufficiently weak per-
turbation amplitudes. As expected the convergence is
rapid for the weakest values of the perturbation and be-
comes slower and slower when approaching the conver-
gence radius of the series. This finite radius of conver-
gence comes from the natural finite interval of conver-
gence of the series E' ' [Eq. (21c}]and A' ' [Eq. (26b)]
and from the assumption that at each order of the re-
currence the perturbed eigenvalue E'"' does not cross any
of the other eigenvalues EJ"'.

A large range of applications are currently under study
concerning various vibrational and rotational systems.
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APPENDIX A

The three appendixes set out the calculations for Eqs.
(14)—(23). Appendix A shows more specifically the first
operation in the pth nonunitary transformation, i.e., the
interaction representation with respect to V,'d'Po., Appen-
dix 8 the second operation, i.e., the interaction representa-
tion with respect to VI', and, finally, Appendix C
presents the permutations of the operators which propa-
gate in Eq. (15) the operators U( V~d"') to the right of this
operator series.

Consider Eq. (15) and more particularly the term
U(Vg~') which is the last term on the rhs. A particular
form is assumed for the Hamiltonian V~~' and the calcula-
tions of Appendixes A and 8 confirm this hypothesis by
showing that A,'~q+", obtained from V~~' using the pth
transformation, has a similar expression.

Thus it is assumed that V~~'(t) can be written

V~'(t)= g g 1
jo&(ko I(V"d'}jk

j k
(j&k)

g g ~
jo)(ko

~

(F g'+i5Wg')exp f (pf~' PP +~&, ~Ek )dt-'
j k

(j+k)

(Al)

where P Jk, 5P ~k, PJ, and EJ are finite real-time func-
tions. It is simultaneously supposed that these functions
obey the following conditions.

(1) In the adiabatic limit y —+0+, the functions F g'
and E~~' become bound, adiabatically varying functions.

(2) In the adiabatic limit the derivatives dP Jf, '/dt and
dE~~'/dt and the functions 57 g' and PJ~' converge to
zero sufficiently rapidly that for any arbitrary complex
function p(t) whose modulus is bound on the real axis
—oo & t &0 the integrals

lim f X(t')p(t')dt', X(t)=d P /dt, dE/dt, 5P,Q

converge.
(3) The frequencies co~~~'(t)=E~~'(t) E'~'(t), j&a do-

not vanish at the limit y —+0+ for any value of t between
—oo and 0.

It must be noted first that these conditions are con-
sistent with the first-order result [Eq. (14b}] with the
correspondence
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~jk'(t) = &j o I
V

I
ko & exp()'t» (&~I~&')lk =0

EJ' "(t)=EJ + &jo ~

V
~ jo &exp(yt ), /1k'(t) =0

where Pjk designates Pz Pk-.
The first operation in the pth nonunitary transforma-

tion is the interaction representation with respect to

V;„,(t) =exp[A (t)]B(t)exp[ —A (t)] .

Using the well-known expansion

exp(A)8 exp( —A) =8+ [A,B]+—[A [A 8]]+1

(A5)

(A6)

J
(j&a}

(A3) and the commutation rules expressed by Eq. (13), the fol-
lowing is obtained:

The corresponding evolution operator has the rigorous ex-
pression

[A»1= g 1jo&&aol —i g(V~')ii(W"')t

U;.,(t)

=exp —p I jo&&ao
~ f (V,d')J dt'

J
(j&a)

By noting

WJ'~~'(t) = f (V,'~g')v dt'

and

A(t)= Q ~
jo&&ao~ [iWJ'~'(t)],

~
J

(j~a)

8(')= 2 2 1
jo&&ko I

[V'"(t)],v
j k

(j+k) (k&a)

the calculations lead to

(A4a)

(A4b)

+ 2 2 1Jo&&ko I
[t(W"')la(V~')ak]

j k
(j&a) {k+a)

[A, [A,B]]
=2 X I jo&&aol (W'v')J g (Vo'~d') t(W'v')t

J 1
(j&a) (1&a)

[A, [A, [A,B]]]=0 .

Thus only the three terms contribute to the expansion
(A6) so that the final result is

U(0, —oo, Vo'~d')

=exP i Q (
—jo & &ao

~
[W(t =0)]J

J
(j&a)

X U (0, —co,' V;„,)
%'1th

I jo&&ko I
[(V"d')~a +i(W"')v (V"d') k]

j k
(k+a}

+ g ~

J'o&&ao
l

—i &(Vod )jl(W )la+(W )iud(Vod )ot(W"')lu
J 1 I

(A7)

This last expression gives a diagonal part, denoted VI' in
Eq. (1S),

VI'= g ]J.&&j. [] (W"'),.(V.".')., ]
J

(j~a)

+
I
ao&&ao

I

—t & (Vo'a')ot(W"')t. (AS)
I

(1&a)
1

which is used to build up the second operation of the pth
transformation:

U(0, —co, V;„,)= U(0, —oo, VI') U(0, —co, V,'~d ") .

(A9)

APPENDIX B

(B1)

The interaction representation with respect to Vg'' [cf.
Eq. (A9)] is presented. The evolution operator associated
with Vip' has the rigorous expression

U(t, —oo,' VI') =exp i f Vg'dt'—
where [Eq. (AS)]

(j~a)

+
I
ao&&ao (

I
(l&a)
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One difficulty is due to the presence of the divergent in-
tegral f V'g'dt' .Thus it is necessary to retain in the
expansion of VI' the terms which are finite at the adia-
batic limit and those which converge to zero and whose
time integral is finite. The two factors ( V,'»d') i and
( W(»))J~ which appear in the expression of Vg' are stud-
ied.

(i) The matrix element ( V~~')~J is given by Eq. (Al). A thus

= &~0 I
V lio &exp(yt) (82).

rapid analysis of Eq. (A7) reveals that the successive inter-
mediate representations have not affected the functions
P '»J) + i (5F"(»)) J, so that

(V'»')., =&a.
~
V~J, &exp yr+ (y(») y'&)+—iE(»' iE(»))dr

(ii) The equations (Al) and (A4b) lead to

[W'»'(t)] = f (&'» +i5&'» )exp f (P'» P+—iE EE)—dt'" dt' .

This integral can be calculated using the two functions

U(t) = ( Ff~~'+i 57 '»') exp (P'»' P'»')dt' —li (E'»' E»')—
and

(83)

(84)

(E(») E(») ) (E(») E(») )d I

The recurrent procedure of integration by parts leads to

(W(»')J~ ——(I()+I)+ . +I~)exp i f (EJ»' E~~')dt' +R—„+(
with

Ip 7,'»'(t), ——

[X,'»'(r)]h'(E ''JE' '), —
dt

(85)

(X'»')
i (E(») E(») )j a

1 1

(E(») E(») )
~ (E(») E(») )

'
j a & j a '

R~+)= I~+] t) exP i «JP —E~~

with

X'»'(r) =(~g''+ 5~'»') (p'»' p"')dt' I (E,'—" E"') . —

In light of the hypothesis inade in Appendix A relative
to the matrices P '»', 5P"(»', E'»', and P'»' it is possible to
select the terms of W which are finite at the adiabatic
limit and those which vanish and whose time integral is
finite. This leads to (5Z'»'),.=

y (p)
Z.

y()
ja =

«(p) «(p)
J A

«(p) «(p) «(p) «(p)j a j a

y (p)

«p) «(p) .
j a j a

(86b)

(86c)

where

+O(y ), (86a)

)&exp (P'»' P' '+iE' ' iE—' ')dt'—
In this expansion limr 0+ZJ»' is finite,

lim„o(5Z'»'). =1imr 0+[0(y )]=0. Moreover, for any
arbitrary complex function P(t) whose modulus is bound
in the real axis (—ao, 0], the integral f [(5Z'»')J+]d&'
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converges to a finite complex value and the integral

f [0(y )pJdt' converges to zero
Finally, Eqs. (A7), (A9), (81), (83), and (86) lead to

U(0, —oo, V,'Pd')

=exp i—g I jo&&aoI [Wjp'(t=o)J
J

(j&a)

lim U(0, —oo,' VI')
y~0+

=exp g ljo&&jo I f ( —NJP+"+&JP'

iZ(P+" +tZ'P))dtJ J

x U(o, —;vt") U(o, —;v.'p+") (87a) (87c)

with

lim 8'J'p'(0)
y —+0+

—i 7+jPo'(0)

EJ(p)(0) -E(p)(0)

0f (y(p) y(p)+ E(p) iE(p) )dt

and with

(87b)

where

E(p+ ) E(p) z(p) y (p)

E(p+1) E(p) ~ ~(p+1) E(p)a a = ~ j j
J

(j+a)
y(p+ 1 ) y(p) (gz(p) ) y (p)

y(p+) ) y(p) y (y(p+) ) y(p))J
J

(j+a)

The residual Hamiltonian V,'d+" is expressed as

I jo&&ko I
[(v'd')Jk+i(lv"')I (v"d') kJ

j k
(j+k) (k&a)

f (E( ) E(p) ~(p+ )+~(p))dt+ (y(p+ ) y(p) y(g+ )~y(g))dt

r

+ y Ij, &&~,
I y —i(v'p, '), (w'p'), .+(w'p'), .(V.",').,(~"'),.

J I
(j+a)

(E(P+1) E(P) E(P+ i) +E(P) )dt+ (y(P+1) y(P) ~(P+ 1)+~(P))dt
J j a a J J a a

In this expression the adiabatic limit is taken and the
terms which contribute to the next nonunitary transfor-
mation are retained, i.e., the finite terms and terms which
converge to zero and whose time integral is finite. The fi-
nal result of this operation is summarized in Eqs.
(18)—(22). A detailed investigation of Eq. (88) reveals
that it complies with Eq. (Al).

APPENDIX C

U(Vd ')U(V', d'P()) =U( Y'")U(vd ) (C lb)

with

YIt) = U (t, —oo', Vd ) Vod (t)PoU(t, —oo', Vd ); (Clc)

second commutation,

U( V' '
) U( V' '

)U( V' 'P ) = U ( Y( ') U ( V' '
) U ( V" '

)

(Cld)

Consider now Eq. (15). On the rhs of this equation the
operators U( Vd') can be propagated from the left to the
right of this series of operators. This can be done for in-
stance using the following particular commutation
scheme:

with

Y'"(t)= U '(t, —~;Vd" ) U '(t, ~; Vd') )—
X V d (t)P() U(t —oo

'
VI) )U(t, —oo,' Vd )

(Cle)
U(FS) = U( Vd ') U( V,'d'P() ) U( Vd" ) . U( Vg ")U( V,'pd');

(C1a)

first commutation,

etc. For the sake of clarity the two time limits, 0 and
—oo in the U factors, have been eliminated in Eqs. (Cla),
(Clb), and (C 1d).

An explicit expression of the operator U(Vd(i) ) is given
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by Eq. (B7c). All the operators I Vd', l =1,2, . . . I com-
mute so that after the (I —l)th commutation the follow-
ing sequence of operators is obtained:

I —1 0
U g vI'' =exp & ljo&&jol f

p=1 l I

/ —1

U{v(0))U( v(1)). . . U( v(l —&)
) U y vg()

p=1

with

(C2)

The following sequence is obtained:

I —1

w=U g vI'' u(v.",'r, )U(v,'")
p=1

with [cf. Eq. (B7)]

m(" t —0
U{V~~o) =exp g I jo & &ao

I (t) (t) exp f p&" p"—'+tEJ'" tE'—"
Et' '(t =0)—E'"(t =0)

(jQa)

This product is transformed after the 1th commutation into

O' =exp g I
ko ) (ao

k E„' (t =0)—E' )(t =0)
(k~a)

Finally, using the fact that all the operators

I
U g v~g'

p=1 '

(C4)

I ko) (ao I

k
(k&a)

—~ka(I)
(I) (I) p l 1 y y ~ ~ ~

E —E

commute, the following can be obtained from Eq. (Cl):
r

lim U(0, —oo,'FI(t)) =. exp g I ko) {ao
I

y o+ k i i Ek'(t =0) E' '(t=0)—
(k~a)

0
xexp g Iko)(ko

I f
k

( tE,'&' yg'd—t U(V—.'&') . (C5)
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