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Closed-form expressions for the Dirac-Coulomb radial r' integrals
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A novel procedure is devised in order to obtain closed-form expressions of the Dirac-Coulomb ra-
dial r' integrals in terms of the Dirac energy a= Il+Z a /[v+(k —Z a )'/2]

I
'/, where

v=n —
~

k ~, aud of the Dirac quantum number k=( —1)i+'+'/ (j+T~). In this procedure, well

adapted for symbolic computation, the fundamental array of the r' radial integrals is obtained from
the r' ' array.

I. INTRODUCTION 0 =cr I 0

Recently, ' space-curvature-induced modifications of
the hydrogenic spectra have been investigated in the
framework of a "curved Dirac model, " and it has been
shown how analytical expressions of these space-curvature
modifications can be obtained in terms of the usual flat-
space Dirac-Coulomb radial r integrals. This investiga-
tion implied the computation of many Dirac r' integrals,
with t )0 and high values of t. If, within a nonrelativis-
tic framework, closed-form expressions of the hydrogenic
radial r' integrals are available for any value of t, this is
not the case within the Dirac framework. For special
cases analytical expressions of the Dirac-Coulomb radial
r' integrals have been already given: these closed-form
expressions have been obtained either using the factoriza-
tion method and algebraic manipulations or both the fac-
torization method and group-theoretical considerations,
or also using the relativistic virial theorem. In the
present paper the determination of closed-form expres-
sions of the Dirac-Coulomb r integrals is reinvestigated.
Preliminarily, it is shown how the procedure outlined in
Ref. 3 can be simplified in order to avoid the computation
of off-diagonal hydrogenlike intermediate integrals (Sec.
II). Nevertheless, as the values of t increase, the calcula-
tion tends to be rather cumbersome. For that reason a
novel recursive procedure is proposed leading to analytical
expressions of Dirac-Coulomb r integrals, with t &0 in
terms of the Dirac energy

I 1+Z2a2/[v +(I 2 Z2a2)1/2]2I —I/2

where U =0, 1,2, . . . and of the Dirac quantum number
k =( —1)J+ +'/ (j+—, ) (Sec. III).

II. THE DIRAC-COULOMB EQUATION

cr 0 0 —I
I and o. ,o.z,o, are the 2&2 unit and Pauli matrices,
respectively. The solution of Ecj. (1) can be obtained in
spherical coordinates when setting

1 P.k(r) 9'ii
PUkm ig (r) (2)

In order that g,k (r, 8,$) be normalized, the P„k(r) and
Q„k(r) functions must satisfy the integral condition

f, (PU'k+Qu'k)«=1. (4)

The P,k and Q,k functions are solutions of the coupled
equations'

T

d k Zcx+—P.k = — (1+&)c + Q.kd/" I"

d k Zcx
Q,k ——— (1—s)c — P,k,

T

where each 9'~J. spinor is a simultaneous eigenfunction
of 1, tr, j, and j, with eigenvalues l (I + 1), 3, j(j + 1),
and m, respectively; j=1+—,o. is the total angular
momentum of the electron; I =1+1 as j= I+ —,'. The fol-
lowing properties of the O'IJ and O'I. spinor hold:

(1+cr 1)S'ij ——[j(j+1)—l(l +1)+—„]9'i)
= —kIjm

(3)

( 1+o"1)PT ——k O'7), —(o"r) 9'ij ——9'I)
1

I

The Dirac hydrogenic functions are solutions of the
Dirac-Coulomb equation

[c(a.p)+/3moc (ET V)]$=0, — —
where V = —Ze /r is the Coulomb potential, ET
=moc +E,k is the total relativistic energy of the elec-
tron, a and P are the usual 4 X4 Dirac matrices

where E =Er /moc; a = 1/c is the fine-structure constant.
U =0, 1,2, . . . is the Dirac radial quantum number, i.e.,

1
U =n —J-

Owing to the bispinorial form (2) of p„k~, the deter-
mination of the matrix elements usually needed in Dirac
atomic calculations involves the computation of the fol-
lowing basic hydrogenic radial integrals:
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III. EXPRESSION OF THE DIRAC r'
INTEGRALS IN TERMS OF GENERALIZED

KEPLER MATRIX ELEMENTS

Solutions of the coupled Eqs. (5) are obtainable in
closed form (see, for instance, Refs. 3 and 6—9). Follow-
ing the Infeld-Hull factorization procedure, one gets

1/2
c.kP..=~ (y~+yi) +1
y

1/2
ck—(rz —ri)
y

e,k
Q.k=~ (rz —ri) +1

y

1/2

1/2

—(yz+ y& ) —1 Rfak

y
where

r, = lk+z~ I'"
r,= lk —z I'"
y =sgn(k)y ~yq,

Z Q1+
(~+ Ir I

)'

—1/2

P'P+ ' r' r,
00

g, =—f (P'Q +Q'P)r'dr,
a

()
A, = f (P'P —Q'Q)r'dr,

00

W, =—f (P'Q Q'P—)r'dr,
a

where the shortened notation P'=P, k (r), P =P„k(r), . . .
is used unless otherwise stated.

and A =(e/8
I y I

)'~ . P„k and Q„k are the large and
small radial components, respectively. The Rs (r) func-
tions are the generalized Kepler functions that are solu-
tions of the Infeld-Hull type F (class I) factorizable equa-
tion,

d2 M(M+1) 2q
r2 + + S S (8)

where q =Ze, A,s ——c (e —1)=—Z e /(S+1) . Analyti-
cal expressions of the Rs functions in terms of the quan-
tum numbers are known'

Rs (r) =NsMr +'exp[ qr/(S—+1)]L„+[2qr/(S+1)]

(9)

where L„+'( ) is a generalized Laguerre polynomial
of degree U =S+1—M, S and M are both positive (but
not necessarily integer) numbers, NsM is a normalization
constant. Let us note that, when setting M =l, S =n —1

(n =1,2, . . . ) and q =Z, the expression (9) identifies with
the Schrodinger hydrogenic radial functions.

The Rf and Rj ' functions occurring in expression (7)
involve the same values of q and S, i.e., q =Ze and
S =u+.

I y I

—1, and the values M =y and M =y —1,
respectively. Since for negative values of k, y is negative,
an extended definition of the Rj and Rg ' is re-
quired. Noting that the Kepler wave equation (8) depends
on M via the product M(M+.1) and using ladder opera-
tor considerations; it is found that the followin~
correspondence holds: Rs

—
I ~ I R l r l

—
and g —

1

Let us now consider the determination of the integrals
(6) for the special cases v'=U with k'=k or k'= —k.
Both cases correspond to the same values of

I y I, S, and
e, i.e., I

y'
I
=

I y I, S'=S, and e'=e. From Eq. (7), one
gets the following expressions in terms of the diagonal
(S'=S) Kepler matrix elements &Sy

I
r'I Sy'), hereafter

noted &ylly'):
' 1/2

, «rlly &+ &r —lllr —1&)+ (&ylly& —&r —illy —1&)+
2y' 2y y . y'

1/2

, (&ylly&+&r —lllr —»)— «ylly& —&r —lily —»)—
2y' 2y y y'

E:k
(&yllr &

—&y —lily —»)+-,' e(&r llr &+ &y —lily —»),
2y

L,(k'=k) =0,

I,(k'= —k) =s&ylly —1),
(10)

J,(k'= —k) =
2Q

ck —1y'

1/2

(&r lly &
—&y —lllr —1&»

J,(k'= —k) =
2y

L,(k'= —k) =-
2y

~2k 2

. y'

2k 2

y'

1/2
~2k 2

«yllr &+ &y —Illy —»)+
' 1/2

(&rllr &+ &y —lily —»)—Zac. k

y
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TABLE I. Expressions of the ( u'= U) Dirac radial r' integrals.

k'=k

Ip

Jo

1 3Z'a'6
2Z ]. —g

Z a (1+4@ } k (1+2m, )+3ck —1

2(1 —c ) 2(1 —s )

k(c, —1)
Za

2 (1—2ck)
T

1/2

—1
y c'k

Za

3Za f
2(1 —c )

Z a(1+4' ) a(1—k )

2(] ~2)2 2(1 ~2)

1

2Z
Z a [3E—k(1+28 )]

1 —c
3Za 6

0

Kp
P

1 Z a (1+2'. )

2Z 1 —E,

Z a c(3+2'. ) a c{3k +3ck —1)
2(1—c. ) 2(1 —c, )

alp

Za (]+2/ )
Ip

2(1—s )

Z'a'~(3+ 2~')
2(1—c ) 2(1 —c )

2k
t+1

As it has been shown previously, ' since the Rs functions
are solutions of a (type F) factorizable equation, the fol-
lowing relation holds for Kepler matrix elements of any
derivable function f(r), and still holds for negative values
of y when introducing the above extended definition of
the Kepler function:

and Lo, which are reported in Table I.
Finally, it is noteworthy that the use of Eqs. (10) and

(1 1) allows the determination of analytical expressions of
the r'integrals (10), for any value of t since the recurrence
formula" relating the hydrogenic integrals (nl

~

r'~ nl)
can be used in order to determine recursively any diagonal
Kepler matrix element. In terms of c, and k, one gets

1 ck —1
CX y

(Sy ~f ~Sy —1) (t+1)(1—") . g

=(Sy —li r

Zc -2d, fi"'
+—„ f iSy —1).

2 dr

2t+1(
i

g ii )
ZE

t[(2y+1) t l(
i

t —
2~ ) (12)

4Z2 2
'V

Hence the use of this expression for the off-diagonal
(Sy

~

r'~ Sy —1) matrix elements allows the computation
of the Dirac integrals (10) only in terms of diagonal
Kepler matrix elements (Sy

~

r'~ Sy) and
(Sy —1~ r'~ Sy —1), which are easily obtainable when
substituting S+1=Zas(1 —s) '~ for n and y for l
into the well-known expressions of the (nl

~

r'~ nl) hy-
drogenic integrals.

Particularly let us consider the determination of the in-
tegrals Io, Jo Xo, and Lo. Setting f(r) = 1, (y

~
y) = 1,

(y~1/r ~y)=Zs/(S+1) =(1—s)/Zsa in Eq. (11)
and keeping in mind that y =k —Z o, one gets

1/2
y ck

ZcxE, y

Then, using Eq. (10), after some algebraic manipulations,
one obtains the expressions of the integrals Ip Jo Ko,

Nevertheless, as the values of t increase, despite the pro-
posed simplifications avoiding the computation of the
off-diagonal Kepler matrix elements (y

~

r'~ y —1) and
the easy use of Eq. (12), the overall determination of
analytical expressions of the Dirac r' integrals becomes
rather intricated and cumbersome. As wi11 be shown
hereafter, a direct procedure, merely using the properties
of the coupled radial Dirac equations (5), leads to a much
more efficient recursive determination of these r' Dirac
integ rais.

IV. RECURSIVE DETERMINATION
OF THE DIRAC r' INTEGRALS

Combining together Eq. (5) for P =P„k, Q =Q„k with
their companions for P'=P„k and Q'=Q„k, one can
write
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k' k(P'P +Q'Q)+ (P'P —Q'Q)
dr r

I

= ——(P'Q+ Q'P)+ (P'Q —Q'P),a a
k' k(P'P —Q'Q)+ (P'P+ Q'Q)

dr r

(P'P +—Q'Q)a

+ (E—'+e+2Za /r)(P'P —Q'Q),

(P'Q Q'P—)+ (P'Q+ Q'P)
k' —k

dr r

= ——(e' —e)(P'P+Q'Q) .
a

Multiplying both sides of Eq. (13) by r', one gets, after in-
tegrating by parts and taking into account the vanishing
conditions at the bounds of the Dirac radial functions

tW, , —2g, —(k'+k)A, t+(e' —s)W, =0,
(k'+ k)W, , +(e'+ s)g, +2Za'g, , —tm, ,=0,

/~,—ta'g, , —(E'+s)m,
(14)

—2Za A, , +(k' —k)a W, )
——0,

(E' —e)W, +(k' —k)a g, ,—ta W, , =O.
Let us now focus our attention on the previous special
cases v'='v, k'=+k. Hereafter, the shortened notation
I,=W, (v'=v), . . . will be used.

A. Recurrence relations for the ( k'= k) r' integrals

For k'=k, the Eqs. (14) reduce to

tI, , —2J, -2kK, , =0,
2kI, i+2eJ, +2Za J, ] —tK, i

——0,
2I, —ta J, &

—2', —2Za K, ~
——0.

(15)

Setting successively t=O in the first and third Eqs. (15)
and t= 1 in the two first Eqs. (15), one gets the following
system of linear equations allowing the determination of
the integrals Jo, J&, Ko, and X, in terms of Io

Jp+ kK i
——0,

cKQ+Za K—& Io ~

J( +kKp ———,Ip,
gJ&+Za JQ pKQ kIQ .

Since Io ——1 (normalization condition), one easily finds the
expressions of the k'=k Dirac radial integral K &, Kp,
Jo, and J~ in terms of s and k, i.e., K

&

——(1—s )/Za,

(—E'+ e+ 2Za /r )(P'Q +Q'P),
a

(13)
k'

(P'Q +Q'P)+ (P'Q —Q'P)
dr r

Ko=s, Jo ——k(sz —1)/Za, and J, = —,'(1—2sk).
It should be noted that the above result Kp =6 together

with the normalization condition Ip
——1 leads, in a

straightforward way to the previous result of Crubellier
and Feneuille obtained by simultaneously using the fac-
torization method and group theoretical [0(2,1)] con-
srderattons, i.e.,

f Q„~dr = —,
' (1—s) . (17)

More recently, the expressions of (Ip+&p), (Io —&0), Jp,
J&, and K

&
have been derived by Goldman and Drake,

by means of the relativistic virial theorem.
From Eqs. (15), after some algebraic manipulations, one

obtains the following relations:

2J, = tI, )
—2kK,

4Z(1 s—')(t +1)I,
=[4Z'a'e —(2k +et)(2sk + t +1)t]I,

+[4Z'a'(t + 1)+t (2sk + t)(2sk + t + 1)]K,

(2 ks+t+ 1)K,=[2k +E(t+1)]I,+2Za J, .

Hence starting from t= 1 and using the particular values
Ip = 1 and Kp =6 these recurrence relations allow the
determination of any ( v'=v, k'=k) integral in terms of s
and k. Particularly, one obtains the closed-form expres-
sions that have been reported in Table I.

At the nonrelativistic limit, i.e., when retaining the
terms up to Z a, introducing the usual radial quantum
number n =v +

~ y ~

and keeping in mind that
k(k+1)=l(l+1), the integrals of Table I reduce to the
closed-form expressions that are given in Table II. As ex-
pected, one recognizes in the expressions of the I, and K,
integrals of this last table the well-known expressions of
the hydrogenic radial (,nl

~

r'~ nl) integrals.
i

B. Recurrence relat'ions for the ( k'= —k)r' integrals

For k'= —k, the Eqs. (14) reduce to

tI, , -2J, =0,
2', +2Za J, i —tK, i ——0,

2I, —a tJ, ] —2', —2Za K, ) —2ka L, ]
——0,

2kJ, )+tL, ) ——0 .

After some algebraic manipulations, one gets the follow-
ing recurrence relations:

4( 1 e)tJ, + )
—4Za~e—(2t + 1)J,

+a'(4k' 4Z'a' t')(t +1—)J, , =0—,

2I, = J+],t+1
2 2IC, = (eJ, +)+Za J, ),t+1

2k J, .t+1
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+
CO

I

+
C)

I

I

+

I

+

V5
hO

~ W

O
cga

A

0
~ t+I

E'
~ ~
~ 0+~(

~ 1H

~ 0+4

Vp

z

r4

CQ

II

I

+

I

+

+

I

+
CO

I

I

+

I

+

+

I

I

+
I

+

+
+

I

+

I

+
C)

+
~jm

I



CLOSED-FORM EXPRESSIONS FOR THE DIRAC-COULOMB. . . 2049

Starting from the value t= 1 and noting that Jo ——0 [see
the first Eq. (19) for t=0], the use of these recurrence re-
lations (20) allows a straightforward determination of any
(k'= —k) integral I„J„K„orL, in terms of-Io. A
closed-form expression of Io has been already obtained
(see Sec. III) and one gets the O'=U, k'= —k Dirac radial
integrals which, as an illustrative example, are reported in
Table I. Their nonrelativistic limits are given in Table II.

C. Relativistic Zeeman effect

Although this work was originally undertaken for the
purpose of calculating space-curvature-induced modifica-
tions of the hydrogenic spectra, the present results remain
quite useful when dealing with the traditional Dirac
atomic-structure calculations. For instance, let us show
how the relativistic expression of the Lande g factor can
be obtained nicely in terms of E and k.

The relativistic' Lande g factor is defined by the rela-
tion

lea'All. k &=P.g&g.» IH J lp.k

where H is the external uniform magnetic field and
A= ——,'(r&(H), P, is the Bohr magneton No.ting that
cr A= ——,(cr)&r) H and using the following expressions
of the reduced matrix elements involved in Eq. (21)

&-'Vllaxrll-'V &

,' r( —1&—'+' ' (2j+1)' '[j(j+1)]

&jl lil lj & =[j(j+1)(2j+1)]'"
one gets (in a.u. )

=(—1)'+1+' I' Q r dr'(j+1) 0 vk vkr (22)

D. General off-diagonal ( v'~u; k'~k)
Dirac r' integrals

It is noteworthy that the use of the recursive relations
(11) provides the possibility to express the integrals W„
g „~„and W, as linear combinations of W,

&, and W, ~. Indeed, after few algebraic manipula-
tions Eq. (11) can be written in the following form:

Picking up from Table I the expression of J~(k'=k), one
finds the relativistic expression of g in terms of e and k,
i.e.,

g= — . . (1—2Ek) .
k

2j(j+1)
From Table II, after noting that —,

' —k =j (j+ 1)
—l (l + 1)+—,

'
[see Eq. (3)], one obtains

j(j+1)—l(l+1)+ ~ Z2a2k2
g =1+

2j (j +1) 2n'j(j+1)
As expected, the two first terms in Eq. (24) correspond to
the well-known nonrelativistic expression of the Lande g
factor and the last term to the Breit-Margenau correction.

(e' —a)W, = —(k' —k)a g, ~+ta W.
(e'+a)g, = —(k'+k)W, ) —2Za +, )+tM,
(e'+ z)(s' —s)M, = —[2(k' k)+t (8' ——E)]a g, ) —2Z(e' —e)a M, (+.[2t +(k' —k)(e' —s)]a W.
(a'+a)(a' —e)W, = —[2(k'+k)+t(e'+a)]W,

&

—4Za g, , +[2t+(k'+k)(a'+a)]Pi",

(25)

Hence the calculation of any off-diagonal ( v'&U, k'&k) r' integral ultimately amounts to calculate the key integrals Wo,
go Mo and Wo. Since

l

y'
l & l y l

and e.'&a, their determination via the explicit expressions (7) of I „k and Q„k im-
plies the computation of the off-diagonal matrix elements between Kepler functions with S'&S, M'&M, and q'&q, i.e.,
to have at disposal closed-form expressions for the n'&n, l'&l, and Z'&Z hydrogenic r' integrals. If, for Z'=Z, such
expressions are available (see, for instance, Refs. 9, 10, 13, and 14), this is not the case for Z'&Z. Nevertheless, the pro-

' cedure outlined in Ref. 10 still holds for the determination of a closed-form expression of the ( n'&n, l'&l, and Z'&Z)
hydrogenic r' integrals. In terms of a and k, one obtains the following expression of the required Kepler (a'&a) matrix
elements:

where

r

CC,
' "

( —2p, )" " U ( —2p')" l (y+y'+t+u+u'+3)
u I'(2y+ u +2) & u I (2y'+ u'+2) (&+& )r+r'+&+»+» +3 (26)

a2)1/2
CX

C =(—)'(2)'+'"
U!(2Za/p )

This expression holds for y ~ 0 and y'~0; when y or y' are negative, one has first to introduce the correspondence—Ir I ~fr —~ and ~ —Ir I

—~ ger I

As a concluding remark, let us mention that the recursive procedure outlined in the present paper is particularly well
adapted for the use of symbolic computation programs such as REDUcE'~ or MAcSYMA'6. Thus one could obtain com-
pact closed-formed expressions of Dirae-Coulomb radial integrals of any function f (r) that can be expanded in a series
of r'.
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