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By the Hellmann-Feynman theorem, the density n (r) of many electrons in the presence of exter-
nal potential U(r) obeys the relationships d r n(r)Vv(r)=0 and d r n(r)r)&VU(r)=0. By the
virial theorem, the interacting kinetic and electron-electron repulsion expectation values obey

2T[n]+ V„[n]= —f d r n (r)r V[6T/5n(r)+5V„/5n (r)). The exchange energy functional

E„[n] and potential v„{[n];r)=—6E„/6n(r) must satisfy E„[n]+fd'r n(r)r V v([n];r)=0, while

the correlation energy and potential must satisfy E,[n]+f d'r n (r)r Vv, ([n];r) &0. Somewhat

counterintuitively, it is not true that T[nr]=y2T[n] and V„[nr]=@V„[n],where nr(r)—:y'n(yr)
is a scaled density with scale factor y&1. In fact, it is impossible to partition the exact Hohenberg-
Kohn functional into a piece that scales as y and a piece that scales as y, even if complete freedom
with the partitioning is allowed. Instead there are universal scaling inequalities. For instance,
T[nr]+ V„[nr] &y2T[n]+y V„[n] and T[nr]+y V„[nr] &y2(T[n]+ V„[n]), and consequent
inequalities involving E,[n] All the. above virial and scaling requisites are universal in that they are
independent of external potential and they must hold for arbitrary proper n. In addition, for the
ground-state energy (E) and n of any atom or molecule at its equilibrium nuclear configuration,
there is. the inequality E & —T, [n], where T, is the noninteracting kinetic energy. In the closed-
shell tight-binding limit, the correlation potential obeys d r n(r)r Vv, ( n;r)=0, and so cannot
be a monotonic function of r for an atom in this - limit. Further,
(5/By)E, [nr]

~ r ~

——E,[n]+T,[n]= —fd r n(r)r Vv, ([n];r), which implies that the exact E,
should be fairly insensitive to scaling. With the help of the ionization-potential theorem, it is argued
that the exact v, ([n];r) in an atom often has a positive part. Common approximations to the corre-
lation potential are examined for their effects upon the highest occupied Kohn-Sham orbital energy
and the density moment (r ), and these effects are found to be related. Further improvements
needed in the approximate correlation potentials are relatively large, but not nearly so large as those
recently suggested for the atoms Ne, Ar, Kr, and Xe: The discrepancy between theoretical values of
(r ) from Hartree-Fock or configuration-interaction calculations, and experimental values from
measured diamagnetic susceptibilities, is tentatively resolved in favor of theory.

I. INTRODUCTION AND SUMMARY

An important simplification of the many-particle
ground-state problem is proffered by density-functional
theory, ' in which the basic variational object is the den-
sity n(r) instead of the many-particle wave function. In
the Kohn-Sham version of density-functional theory, an
exact-in-principle self-consistent-field formalism often ap-
plied to electronic systems, the only approximation re-
quired in practice is the functional dependence E„,[n] of
the exchange-correlation energy upon the density. To find
accurate forms of E„[n] constitutes an active area of
research. Accordingly, in this work we will derive condi-
tions upon E„,[n] and n(r) within the exact density-
functional theory from the Hellmann-Feynman and viri-
al theorems. Then we will apply some of these relation-
ships, and others, to argue for the nonmonotonic and pos-

f d r n(r)V (vr)=0,

f d r n(r)rXVv(r)=0, (2)

where v(r) is the external potential acting on the particles.
Equations (1) and (2), which correspond, respectively, to
the static-equilibrium conditions of "no net external
force" and "no net external torque" on the density, seem
rather obvious, although we have not encountered them in
the literature. They are also quite general: From their
derivation, it will be clear that Eqs. (1) and (2) apply for

itive behavior of the exact correlation potential in an
atom. (Of course, there have already been many appli-
cations of the Hellman-Feynman and virial theorems to
density-functional theory, such as Refs. 7—19.)

In Sec. II we apply the Hellmann-Feynman theorem to
show that
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any choice of particle statistics or interparticle interac-
tions and for any stationary-state density n(r) (not just
the ground state). Equations (1) and (2) are useful con-
straints upon any attempt to model the density n(r), given
the external potential v(r). Such attempts arise in the
analysis of x-ray diffraction data and also in the con-
struction of trial densities for use in the Hohenberg-
Kohn' variational principle.

In Sec. III we apply the virial theorem to generalize, to
arbitrary coupling constant and external potential, the re-
sult of Averill and Painter' for Coulomb potentials. We
also modify slightly their original result to now give for
any proper trial density n(r), independent of external po-
tential,

E„,[n]+ f d r n(r)r. Vv„,([n];r)= —T, [n] &0. (3)

We have added the inequality in Eq. (3) and noted that
T, [n]= T„,[n], where

T, [n]=T[n] —T, [n] &0 . (4)

Here v„,( [n]; r )=5E„,/6n ( r ) is the exchange-correlation
potential of the exact Kohn-Sham theory, and T[n] and
T, [n] are the kinetic energies of density n (r) for interact-
ing and noninteracting electrons, respectively, so that by
definition of density-functional correlation energy, T, [n]
is the correlation contribution to the kinetic energy. Also
by definition of the density-functional exchange energy,
the exchange contribution to the kinetic energy, T [n], is
always zero. We further find that for the exchange energy
functional E„[n],

E„[n]+f d r n(r)r. Vv„([n];r)=0. (5)

Subtraction of Eq. (5) from Eq. (3) yields

E,[n]+ fd r 'n(r)r V v([ ]n;r) = —T, [n] &0 . (6)

It is important to note that Eqs. (3)—(6) apply even when
n is not the ground-state density for the actual external
potential of interest.

The unique features of Eqs. (3)—(6), and the other virial
and scaling conditions to be derived, stem from the fact
that the conditions apply to the exact universal function-
als and that the conditions themselves are universal —that
is, they are independent of external potentials, as stated
above. Hence, we may use the relations to test the univer-
sal funetionals with arbitrary n(r). We do not, have to
know for what external potential is our trial n(r) a
ground-state density or an optimum density within a
given model.

In Sec. IV, we discuss the local density approximation
and compare the correlation contributions to T[n] and
E„,[n] for the electron gas of uniform density.

The correlation potential v, ([n];r) predicted for an
atom by the local density approximation is always nega-
tive and increases monotonically with distance from the
nucleus. However, recently Smith et al. , Almbladh and
Pedroza, and Laufer and Krieger6 have constructed the
exact correlation potential in a few-electron atom. They
find that v, ([n];r) is nonmonotonic and positive at large
distance from the nucleus. In Sec. V, we explain the non-
monotonic behavior by showing that, to leading order (e )

in the electronic charge e,

f d r n (r)r Vv, ([n];r)=0 . (7)

where em„ is the exact Kohn-Sham energy eigenvalue for
the highest occupied orbital, and I is the first ionization
potential. We compare e „within the exchange-only ap-
proximation to measured values of I and fi—nd that the
former is more negative than the latter for many atoms.
From this, we conclude that the expectation value of the
exact correlation potential v, ([n];r) over the highest occu-
pied orbital is often positive.

Recently, Englert and Schwinger, and independently
Cole and Toigo, have observed that the density moment
(r ) for Ne, Ar, Kr, and Xe, calculated within the
Hartree-Fock or related density-functional approxima-
tions, is about 10% too large in comparison with values
deduced from measured diamagnetic susceptibilities.
Along with Vosko and Wilk, we disbelieve that the exact
correlation potential can have such a huge effect upon
(r ), when approximate correlation potentials have only a
small effect. Using alternative "exact" values for (r )
from configuration-interaction calculations, we find that
the effect of the exact correlation potential upon (r ) is
indeed small and can be related simply to its effect upon

Ks
~max

Szasz, Berrios-Pagan, and McGinn analyzed in detail
the scaling properties of the various kinetic and electron-
electron repulsion functionals within the Thomas-Fermi
and extended Thomas-Fermi models. What are the scal-
ing properties, though, for the exact interacting kinetic
functional T[n] and the exact electron repulsion func-
tional V„[n]. Well, as shown in Sec. VI, it is not true in
the exact liimit that T[n&]=y T[n] and

«V[ &n]= yV«[n], where nr(r)=y n(yr) and y&1 is a
scale factor. In contrast, the equalities hold in Thomas-
Fermi and in various familiar extended Thomas-Fermi
approximations for T[n] and V„[n] In fac.t, we shall
prove that it is impossible to partition the exact
Hohenberg-Kohn universal functional, Q[n], into two
parts that scale as y and y.

Finally, in Sec. VII the inequalities of Sec. VI are ex-
ploited to derive necessary scaling requisites for E,[n],
E„[n], and T, [n] For instance. , we shall obtain strict
correlation inequalities for y&1 such as Eqs. (106), (109),
and (112). We also show that the local density approxima-
tion, with common choices for its electron-gas
correlation-energy input, obeys these inequalities.

II. DENSITY-POTENTIAL RELATIONSHIPS
FROM THE HELLMANN-FEYNMAN THEOREM

Given a Hamiltonian H~ depending upon a parameter
consider the eigenvalue problem H ~%~——E~%~,

Thus, v, ([n];r) cannot be a monotonic function of r in
strongly bound closed-shell atoms for which an expansion
of v, in powers of e is rapidly convergent.

In addition, we argue for the positive part of the corre-
lation potential by an appeal to the ionization potential
theo/ em

KS
&max= —I ~
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(%z
~
%~) =1. The Hellmann-Feynman theorem asserts

that

(9)

In this section we deal with a Hamiltonian of the form

unless prevented by certain unusual situations described
Engllsch and Engllsch, it has been shown that

turns out to be an eigenstate of a Hamiltonian of the
form 3

H& ——T+A, V„+V&,

with

H=T+ V„+ g vg(r;), (10)
(16)

for 2V identical particles of any statistics, with any choice
for the kinetic energy T and interparticle interaction V„
and any local external potential v~(r). Then

6
lA,

E~= f d r n~(r) v~(r) .

First, let v~(r) = v(r+Au) = v(r)+Au Vv(r)+
where u is any unit vector. By the homogeneity of space,
dE~/d k, =0, so Eq. (11) implies Eq. (1). Next, let
v~(r)=v(r+ArXu)=v(r)+A(xXu) Vv(r)+. . . By
the isotropy of space, dE~/dk=0, so Eq. (11)becomes

f d rn(r)(rXu) Vv(r)=0. (12)

From the identity (aXb) c= —b (aXc), we derive Eq. (2)
from Eq. (12).

If n(r) is the ground-state density for external potential
v(r), then Eqs. (1) and (2) are clearly differential forms
for the minimum principle

N

V~= g v~(r;),

where A, is a coupling constant. ' ' '" Hence we have

(19)

where E~ does not have to be the ground-level energy of

The coupling constant A, is equal to unity for real elec-
trons and is equal to zero for noninteracting electrons.
Following the adiabatic connection orientation' ' be-
tween interacting and noninieracting systems, our trial
n(r) is held constant' ' while the interaction is turned
off: (n(r))~=n(r) (independent of A,), where we have
denoted the expectation value of operator 0 by

f d r n(r)v(r)= min f d r n(r)v~(r) ~, (13)

where each v~(r) in Eq. (13) results from a translation or
rotation of v(r). By the Hohenberg-Kohn' theorems, the
required minimum is absolute and unique.

For electroriic systems, the external potential v(r) may,
but need not, arise from Coulomb attraction of the elec-
trons toward nuclei. Recent interest has focused on the
extent to which the electron density in a molecule is just a
function of the bare nuclear potential. We observe that
this choice, n(r)=F(v(r)), naturally satisfies Eqs. (1) and
lg)

III. THE EXCHANGE-CORRELATION
FUNCTIONAL AND THE VIRIAL THEOREM

The work of Sham suggests that the virial theorem is
obeyed in exact exchange-only density-functional theory
and shows that the virial theorem is obeyed in the local
density approximation to this exchange-only theory.
(Sham also noted that the result applies to Xa theory. )

However, the exact correlation energy functional E, [n]
contains a kinetic contribution. This fact complicates the
virial conditions which are to be derived for E„,[n] in this
section.

The Hohenberg-Kohn universal functional Qq[n] is de-
fined within an extended domain via the constrained-
search formulation ' as follows:

Q~[~]=&'P~
I
(&+~V-)

I
'P~&,

where +~=ql~[n] is that antisymmetric ¹lectron func-
tion which yields n(r) and minimizes ((T+A, V„)). The
minimum always exists as shown by Lieb. ' Therefore,

When no subscript is shown it shall be meant that k= 1.
The potential U = U

&
might or might not turn out to be

our actual external potential of interest. In any case, for
each value of A, the corresponding energy is

E~=(H&)&——(T)&+A, ( V„)~+ f d r n(r)v~(r),

or, in terms of density-functional notation,

F~ ——f d r n(r)v~(r)+Q~[n]

= f d r n(r)v~(r)+T~[n]+A, V„~[n) .

Next, from Eq. (22)

p, ~=5E~/5n(r) =v~(r)+5Q&/5n(r),

(21)

(22)

(23)

Then subtract Eq. (24) from Eq. (22) to obtain

Eg =pgÃ —f d r n(r)5Qg/5n(r)+Qx[n], (25)

which interestingly gives the energy of a given n without
explicit use of the external potential with which n is asso-
ciated; knowledge of p~ is required, though. ~ In any

where p~ is the chemical potential; it is the negative of
the ionization energy ' or the negative of the electron af-
finity ' depending upon the direction in which the func-
tional derivatives are taken. Also, in taking 5Q~/5n(r),
we have implicitly employed the definition of Q[n] for
fractional electron number. '

Multiply Eq. (23) by n(r) and integrate:

Xp~= f d3r n(r)v~(r)+ f d r n(r)5Q~/5n(r) . (24)
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case, for our present purposes let us now operate on Eq.
(23) with J d r n(r)r. V. This gives

f d rn(r)r Vu~(r)= —J d rn(r)r V.[5Q~/5n(r)] .

(26)

Next, for each value of A, , the virial theorem asserts that

For A. =O, (36) reduces to

(37)

(T)g —(T)u ——f d rn(r)r V[ug(r) —uo(r)]

2&T&0= f d rn(r)r. Vuo(r) .

Now subtract (37) from (36), and solve for (T)~—(T)o..

—A, U[n] —A.E„",[n ] . (38)
2(T)~ g——r; V;(A, V„+V~)

i=1

= —A, (V„)~+f d rn(r)r Vu. &(r) . (27)

Further, partition Q~[n] and set A, = l. Obtain

2T[n]+ f d r n(r)r V[5T/5n(r))

= —V„[n]—f d r n(r)r V[5V, /5n(r)], (29)

which is a generalization, to arbitrary n, of Eq. (23) of
Bartolotti and Parr. ' Equations (28) and (29) are the first
known relations to connect the purely kinetic piece of
Q [n] with the purely electron-electron repulsion piece of
Q[n] for arbitrary n Thes. e relationships should help to
improve the existing direct T [n] and V„[n] functionals.

Most practical calculations at present are performed
within Kohn-Sham theory. Within this theory the exact
exchange-correlation functional E„,[n] may be implicitly
defined by the equation

Ex ——&T&o+ f d rn(r)ux(r)+AU[n]+RE„, [n],
where

(30)

Finally, add Eqs. (26) and (27) to obtain our initial univer-
sal virial relation:

(28)

Within the exact Kohn-Sham theory, the effective po-
tential for noninteracting electrons is

uo(r)=uq(r)+Re J d r'n(r')
~

r —r'
~

+A, 5E„,/5n(r), (39)

so Eqs. (38) and (39) yield our major result of Eq. (3):

—AE„,[n] —f d r n(r)r. V[A, 5E„, /5n(r)]

=(T)g—(T)u)0. (40)

+ rnrr E„, nr, ' 41

which defines the density functional for (V«)~. In the
noninteracting (A, =O) limit, E„,[n] reduces to the ex-
change energy E„[n],so (41) becomes

( V«)0 ——U[n]+2E„[n]+ f d r n(r)r V[5E„/5n(r)) .

Note that v~ has dropped out so that only the universal
functionals remain. Also, in Eq. (40) the classical
Coulomb contributions have canceled out, leading to the
equality on the left, while the kinetic inequality on the
right has been derived in earlier work. ' '

As a first consequence of Eq. (40), Eq. (35) can be
rewritten as

( V«)g ——U[n]+2E„,[n]

2

U[n]= f d r f d r'n(r)n(r')
~

r —r'
2 Moreover, by Eq. (33)

(42)

is the classical Coulomb repulsion. In other words,

E„",[n] =E„[n]+E,[n]

with

E„[n]=. (4'0
~
V„~ %0) —U[n] (33)

( V«)u ——U[n]+E„[n] . (43)

Equate (42) and (43) to derive Eq. (5). Further, Eq. (40)
becomes

—AE, [n]—f d r n(r)r V[A, 5E, /5n(r)]

(44)

Substitution of (35) into (27) yields the equation

2(T)~=f d r n(r)r Vu~(r) —AU[n]

AE~, [n]+(T)—g —(T)0. (36)

(34)

Note that, by definition, E„ is independent of 1,.
Let us now follow the path of Averill and Painter. '

Equate Eqs. (21) and (30). We find

A( V«)q ——AU[n]+LE„,[n] ((T)~—(T)0) . (35—) V„[n]= U[n]+E„,[n]+E,[n]

+ J d r n(r)r Vu, ([n];r) . (46)

Good configuration-interaction wave-function calcula-
tions and computer programs are presently available for
the determination of V«[n] for small- to medium-sized

With the help of Eq. (5), we can write Eq. (41) more
transparently as

( V„)g=U[n]+E„,[n]+E, [n]

+ f d r n(r)r. V[5E, /5n(r)] (45)

or, with A, =1,
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atoms and molecules. The V„[n] so determined may
now, via Eq. (46), be used to test the validity of an ap-
proximate E [n] and E, [n].

IV. THE LOCAL-DENSITY APPROXIMATION
AND THE VIRIAL THEOREM

Pc tc

TABLE I. Ceperley-Alder correlation energy e, and correla-
tion potential p, for a uniform electron gas, as parametrized in
Ref. 39, and the correlation contribution t, of Eq. (53) to the ki-
netic energy per electron. r, is the density parameter of Eq.
(54). (Atomic units. )

The popular local-density approximation (LDA) for
the exchange-correlation energy is

[n) = f d 3r n (r)E„,(n (r) ), (47)

where e„,(n) is the exchange-correlation energy per parti-
cle of a uniform electron gas of density n Th.e corre-
sponding exchange-correlation potential is

0.01
0.1

1

2
4
6

10
100

—0.191
—0.121
—0.060
—0.045
—0.032
—0.026
—0.019
—0.003

—0.202
—0.131
—0.067
—0.052
—0.038
—0.031
—0.023
—0.004

0.161
0.092
0.038
0.025
0.015
0.011
0.007
0.001

u„, ([n];r)=p„,(n(r)),

p„,(n)= [ne„,(n)] .
dn

(48)

(49)

f d r n(r)[4e, (n(r)) —3p, (n(r))],

while the right-hand side of (6) becomes

—f d r n(r)t, (n(r)),

(51)

(52)

where t, (n) is the correlation contribution to the kinetic
energy per particle in a uniform electron gas of density n

By equating (51) and (52), we find that

t, (n) =3@,(n) 4e, (n), — (53)

a result derived earlier by Williams and von Barth. ' The
corresponding relationship for exchange is 0=3p„(n)

4e„(n) B—y running .this argument in reverse, one can
show' that the LDA obeys Eqs. (5) and (6) even for den-
sities that are not slowly varying over space.

Table I shows e„p„and t, as functions of the density
parameter r„where (in atomic units)

n =(4rrr, /3) (54)

In this table, t, and p, were computed from a parametriz-
ation of the Ceperley-Alder numerical results for
e, (n). The ratio t, l( —e, ), which is roughly 0.5 in the
metallic range 2(r, &6, tends to 1 in the high-density
limit and to 0 in the low-density limit, a result which can
also be derived analytically.

The LDA is valid in the limit of slowly varying density
n(r)

Equations (3)—(6) are valid in particular for all slowly
varying densities n (r). We now repeat the work of
Averill and Painter, ' but in slightly greater detail. Con-
sider the equality in Eq. (6) applied to such a slowly vary-
ing density, and observe that

drnrrVp, nr
= f d rI(r V)[n(r)p, , (n(r))] p, ( —(nr))r Vn(r)]

= f d (r V)In(r)[p, (n(r)) —e, (n(r))]I

= —3 drnr p, nr —e, nr (50)

where the last step involves integration by parts. Thus the
left-hand side of (6) becomes

V. NONMONOTONIC AND POSITIVE BEHAVIOR
OF THE CORRELATION POTENTIAL

IN AN ATOM: DIAMAGNETIC SUSCEPTIBILITY

In an atom the electron density n (r) is a monotonic '"
function of the distance r from the nucleus, and hence the
LDA correlation potential p, (n(r)) is an everywhere-
negative, monotonically increasing function of r Recent. -

ly, however, there have been several constructions of
the exact correlation potential u, ([n];r) in a few-electron
atom such as He, I.i, or Be. These constructions all start
with the "exact" electron density n(r) for the atom and
infer therefrom the exact Kohn-Sham potential needed to
produce this density in a system of noninteracting elec-
trons. The exact correlation potential so constructed is
not monotonic and in fact is often positive at large values
of r.

We will now show that the correlation potential cannot
be monotonic in a tightly bound closed-shell atom. To
this end, differentiate Eq. (30) with respect to A, , and
evaluate the left-hand side with the help of the
Hellmann-Feynman theorem (9):

( V„)g+ f d'rn(r) u~(r)

dE, [n]= f d r n(r) u~(r)+U[n]+E„, [n]+A,

(55)

dE, [n) =E, [n]+ f d r n(r)r. V
5n r

(56)

In a tightly bound closed-shell atom, where the correlation
energy can be computed to leading order in perturbation
theory, we expect to find E, [n] proportional to A, , and in
this situation Eq. (7) follows from Eq. (56). Combination
of Eq. (7) with Eq. (6) then yields

T, [n]= —E, [n] . (57)

For ( V„)~ in Eq. (55), substitute the right-hand side of
Eq. (45), and find
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Atom

H
He
Li+
Be+

—E,[n]

0.75
1.12
1.16
1.19

T, [n]

0.8
1.0
1.1
1.1

TABLE II. Approximate validity of Eq. (57). Relationship
between E—, [n] and T,[n]=T[n]—T, [n] for two-electron
atoms. Data obtained from Table II in Ref. 5. (Units are ev. )

Finally, employment of Eq. (35) with Eq. (62) gives Eq.
(57) with Eq. (7).

From all the above arguments, it is expected that
( V„)~ will be closely linear in A, when n(r) is compact.
In any case, ( V„)~ is always monotonically decreasing
with increasing k. To show this, designate k ~ 1,' and ob-
tain by the variational theorem

and

(q, IH, Ie, )&(q, IH, Iq, ) (63)

Since the density n(r) is everywhere positive, the exact
correlation potential U, ([n];r) in a tightly bound closed-
shell atom, which satisfies Eq. (7), cannot be a monotonic
function of r. More generally, when the correlation con-
tributions are expanded in powers of e, the leading or e
pieces will satisfy Eqs. (7) and (57).

Table II reveals that Eq. 57 applies well when n is a
ground-state density for a two-electron atom. More gen-
erally, if n is the ground-state density for any atom, then

(H)= —T[n] . (58)

(H & (—T, [n]

because T, [n] &O. Now, if the true ground-state density
n(r) were identical to the self-consistent density no(r)
predicted for the system by the exact exchange-only
Kohn-Sham formalism, ' then the right-hand side of
Eq. (59) would vanish because 4'o[no] obeys

(To[no] IH I To[no]) = —(Co[no] T
I
To[no]). Equa-

tion (57) would thereby follow. Consequently, the extent
to which E,[n]+T„[n]=—f d r nr VU, in Eq..(6) devi-

ates from zero is a measure of the effect of correlation
upon the density of the system. In many atoms,

( 4o[n] I
T

I
qlo[n] ) may be slightly greater than

( q o[no ] I
T

I

To[no�]

) (by about
I
E,

I
l6), making

E,[n] + T, [n] slightly negative (or f d3r nr VU, slightly
positive).

The remarks of the preceding paragraph apply as well
in molecules, solids, the electron gas, etc., if the self-

repulsion of the positive background is included in H and
the equilibrium background configuration is attained.

As shown earlier, Eqs. (57) and (7) are exact when

( V„)~ is linear in A, from A, =O to A, = l. To see this in
integrated form, start with' '

E„[n]+E,[n]= f dA, ( V„)~—U[n] . (61)

When ( V„)~ is linear in A, , the trapezoid rule for integra-
tion applies and Eq. (61) becomes

E„[n]+E,[n] = —,
' ( ™V„)+ —,

' ( V„)o—U[n] . (62)

Equation (58) may be rearranged to read

E,[n]+ T, [n]

= —&'Po[n] IH I
q'o[n]& —&+o[n]

I

T +o[nj&

(where %'~[n] was defined following Eq. (14)} or con-
strued as3o

(64)

On the left-hand side of Eq. (63), set H~ =H~
+ (A, —A, ')V„+ V~ —V~. On the left-hand side of Eq.

(64), set H~ =H~+(A, ' —A, ) V„+ V~ —V~. Then add
Eqs. (63) and (64). The result is

(&—&')(& ™V„& —
& V„& ) (65)

which proves the monotonicity.
Equation (56), which incidentally may be integrated be-

tween two X's, is most intriguing in that it is an equality
involving just the correlation energy functional on both
sides of the equation. Hence, the satisfaction of this equa-
tion and Eqs. (5) and (6), for all n and A, , might provide
nice tests for various E and E, functionals that are
beyond the local-density approximation.

Finally, we argue that in many atoms there is a region
of space in which the correlation potential is positive. We
appeal to the ionization potential -theorem ' of Eq. (8),
which asserts that the exact Kohn-Sham energy eigen-
value e,„ for the highest occupied orbital equals minus
the first ionization potential I of the system. Note well
that, within an exact Kohn-Sham treatment of exchange .

and correlation, there is no "relaxation correction" to Eq.
(8).

Table III shows e,„ for the helium atom, with and
without correlation, in the exact Kohn-Sham theory and
in various approximations. For two-electron systems, the
exchange-only Kohn-Sham theory (KS-X) is identical to
Hartree-Fock theory (HF). (More generally, ' KS-X
constructs the optimum local potential which minimizes

(H) over Slater determinants, while HF constructs the
optimum nonlocal potential. ) Note that for helium the
KS-X eigenvalue e „ is too negative in comparison
with the measured value of —I. Hence, a positive expec-
tation value of the exact correlation potential v, ([n];r),
over the density of the ls orbital, is needed to satisfy Eq.
(8).

Table III also shows the results of several approxima-
tions of increasing sophistication: the local-density ap-
proximation, the self-interaction correction (SIC) to the
LDA, and the combination of exact exchange with the
Langreth-Mehl" approximation for correlation. All of
these Approximations incorrectly produce negative expec-
tation values of the approximated correlation potential.

For many other neutral atoms of the Periodic Table,
the exchange-only eigenvalue ' . e~,„ is again too nega-
tive in comparison with the measured value of —I, as
shown in Table IV.
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/

TABLE III. Highest occupied Kohn-Sham orbital energy
e,„ for the helium atom, in some common approximations and
in the exact theory. X, exchange only; XC, exchange and corre-
lation; LDA, local-density approximation; SIC, self-interaction
correction to LDA; LMC, Langreth-Mehl approximation
(f=0.15) for correlation. (Atomic units. }

Scheme

LDA

SIC

Exact X+ LMC
Exact

'Reference 48.
—I from Ref. 47.

XC
X

XC
XC

XC

KS
~max

—0.517
—0.570
—0.918
—0.948
—0.96'
—0.918
—0.904"

so that

e e IN=2 e IN=1 e IN=2 (67)

emax I N =2+ &KS—X+b Ee (68)

XKs ~ and AE, show some tendency to cancel, but the
cancellation is imperfect and the sum XKs+x + bEe is al-

TABLE IV. Highest occupied orbital energy e „for neutral
atoms. HF, Hartree-Fock (Ref. 49); KS-X, Kohn-Sham
exchange-only (Ref. 44). —I is minus the measured first ioniza-
tion potential from Ref. 47. (Atomic units. ) The asterisk indi-
cates those atoms for which em» & —I.
Atom

+He
Li
Be

gB

+N
gQ
gF

+Ne
Na
Mg
Al
Si

+p

+Cl
+Ar

HF
~max

—0.918
—0.196
—0.309
—0.310
—0.433
—0.568
—0.632
—0.730
—0.850
—0.182
—0.253
—0.210
—0.297
—0.392
—0.437
—0.506
—0.591

KS—X
&max

—0.918
—0.196
—0.308
—0.310
—0.431
—0.563
—0.629
—0.725
—0.846
—0.182
—0.252
—0.209
—0.296
—0.387
—0.437
—0.500
—0.585

—0.904
—0.198
—0.343
—0.305
—0.414
—0.534
—0.500
—0.640
—0.793
—0.189
—0.281
—0.220
—0.300
—0.385
—0.381
—0.477
—0.579

The same result is found for positive ions, as indicated
for the two-electron isoelectronic series in Table V. In
this table we have defined the Kohn-Sham exchange-only
relaxation correction

KS—X~KS—X EKS—X I N=. 2 EKS—X I
N= 1 ~max I N=2

and the correlation energy difference

2

6mc
(71)

Cole and Toigo have independently observed the same
—10% discrepancy in Ne ((r. )HF ——9.37, (r ),„,=8.51).
Equation (71) is a direct consequence of the Hellmann-
Feynman theorem and seems unimpeachable.

The large discrepancy between Hartree-Pock and "mea-
sured" values for (r ) for a number of atoms was dis-
cussed earlier by Vosko and Wilk. In the case of the Ne
atom, they quote a best theoretical value of (r ) =9.45
from a configuration-interaction calculation (150 config-
urations) which was specifically designed to uncover the
correlation effects upon the density. We are thus left with
two Uery different candidates for the "exact" value of
(r ) in Ne. Like Vosko and Wilk, we choose to believe
the theoretical value.

The discrepancy between theoretical and experimental
values of (r ) in the noble-gas atoms demands at least an
attempt at resolution. Table VI compares the relativistic
Hartree-Fock values of Desclaux to the measured values
of Barter, Meisenheimer, and Stevenson, "the last very
important work regarding the infrequent measurements of
gas susceptibilities. " The theoretical values for Ne, Ar,
Kr, and Xe are all 6.5% larger than the measured values
and fall outside the quoted experimental error bars. How-
ever, the measured value for Ar was not found directly; it
was constructed as an average of older measurements and

TABLE V. Kohn-Sham exchange-only relaxation correction
X~s x of Eq. (66), and the correlation energy difference AE, of
Eq. (67), for two-electron ions of nuclear charge Z. This table
has been constructed from Hartree-Fock data of Ref. 49 and
from the 1/Z expansion for the total energy of Ref. 50. (Atom-
ic units. )

Z

2
10
18
36

KS—X
&max

—0.918
—43.917

—. 150.917
—625.667

0.056
0.056
0.056
0.056

—0.042
' —0.046
—0.046
—0.046

ways positive. In the large-Z limit for two-electron ions,
the quantity

XKs x +bEe = d r Ue ([n]~r)
n(r)

2

approaches a well-defined positiue limit =0.01 a.u.
Information about the electron density in an atom is

conveniently expressed by the density moments

(r )= f dr n(r)r (70)

It is well known that the Hartree-Fock and related ap-
proxima'tions predict extremely accurate values for (r ' ).
For instance, see the data for ( r ' ) in Ref. 51. However,
Englert and Schwinger have recently observed that
Hartree-Fock values of (r ) are 5% to 13% too large in
the atoms Ar, Kr, and Xe, in comparison with values
determined from measuredjdiamagnetic susceptibilities
X via the equation
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Atom Theory' Expt. b Ratio

TABLE VI. Theoretical (relativistic Hartree-Fock) and ex-

perimental (diamagnetic susceptibility) values for the density
moment (r ) in the rare-gas atoms. (Atomic units. ) Relativis-
tic effects shrink (r2) by about 2% in Xe.

TABLE VII. Density moments (r ) of Eq. (70) for the neon

atom, in some common approximations and in the exact theory.
X, exchange only; XC, exchange and correlation; LDA, local-
density approximation; SIC, self-interaction correction to LDA;
HF, Hartree-Fock; LMC, Langreth-Mehl approximation
(f=0.15) for correlation. (Atomic units. )

He
Ne
Ar
Kr
Xe

'Reference 55.
Reference 56.

2.37
9.36

25.97
39.10
61.20

2.55 +0.10
8.79 +0.18

{24.39)+0.19
36.62 +0.5
57.4 +0.9

0.93 +0.03
1.065 +0.02

(1.065)+0.01
1.068 +0.01
1.066 +0.02

Scheme

LDA

SIC

HF
Exact X+ LMC
Exact

X
XC
X
XC
X
XC
X
XC

30.95
31.00
31.15
31.17

31.11'
31.15'

31.10b

31.11d

10.04
9.85

9.51
9.43

9 37'
9.22'

9.40"
9 45'

was used to calibrate the instrument. It appears that a re-
calibration might vindicate the theoretical calculations for
Ne, Ar, Kr, and Xe.

Table VII shows exact and approximate values for
(r ') and (r ) in the neon atom. The LDA, SIC,39 and
Langreth-Mehl" ' approximations to the correlation po-
tential reduce the calculated value of (r ) by 1% or 2%,
while the exact correlation potential increases (r ) by
about 0.5%.

Vosko and Wilk have displayed the difference be-
tween the exact and Hartree-Pock densities for the atoms
He, Be, Ne, and Mg, as well as the exact and Hartree-
Fock values for (r ). We make the following observation
which relates their results to our results of Table IV for
the exact and Hartree-Pock values of e,„. In the atoms
He or Ne, where the Hartree-Fock value of e „is too
negative in comparison with —I, the Hartree-Fock densi-
ty is too small at large r, as is its value for (r ). In the
atoms Be or Mg, where the Hartree-Fock value of e „is
not negative enough, the Hartree-Fock density is too large
at large r, as is its value for (r ). This relationship might
have been expected, since e „controls the long-range ex-
ponential decay ' ' of the density.

As a final observation in this section, it can be seen
from Table VII that improvements to the LDA reduce
(r ) in an atom. Just the opposite effect was predicted
by Puska, Nieminen, and Manninen, who argued as fol-
lows: Within the LDA, the effective potential decays ex-
ponentially at large r, whereas the exact Kohn-Sham po-
tential decays as —r '. Thus, improving on the LDA
would relax n(r) outwards, making (r .) larger. This in-
teresting argument is almost correct; what it overlooks is
the fact that the LDA effective potential is also in error at
small r, where its error is approximately a positive con-

'Reference 52.
Reference 48.

'Reference 58.
"Reference 51.
'Reference 26.

stant. This "constant" can be regarded either as a self-
interaction error or as a consequence of averaging over
the derivative discontinuity ' of E„,[n].

VI. SCALING PROPERTIES OF V„[n] AND T[n]

As expressed in Sec. III, the Hohenberg-Kohn universal
functional, for A, = 1 in Eq. (14), has been identified as

Q[n]=(%' (T+V„) %'), (72)

H=T+ V„+ g tu(r;), (73)

where w is a local-multiplicative one-body potential. We
have

T[n]=(e
i
T

i
e),

V«[n]=(%'
~

V« ~%') .

Now, it is certainly true that

(74)

(75)

where 4 is that normalized-antisymmetric function which
yields n and minimizes ((T+V„)). The wave function
4 turns out to be an eigenstate of some Hamiltonian of
the form

and

y +(yrl yr2 yrx)~y n( yr)

(y' '+(yr], yr2, . . . , yr~)
~

T(r], r2, . . . , r~)
~

y' 'Il(yr], yrg, . . . , yr~)) =y'T[n],
(76)

(y +(j r1 yrp . yr+)
~

V«(r~, r2, . . . , r~)
~

y' "+(yr~, yr2, . . . , yr~)) =yV«[n]

where y is a scale factor. So it might seem that

(77)
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T[nyl=y T[n], (78)

V„[n ]=yV„[n], (79)

where ny(r)=—y n(yr) is the scaled density, especially since Eqs. (78) and (79) would give the correct virial relation,
E= —T[n], for an atom, etc. But interestingly, both Eqs. (78) and (79) can never be true in the exact theory, unless, of
course, y = 1, because by the definition of Q [n] as a minimization in Eq. (72), and by the fact that
y lp(yr, , yr2, . . . , yrlv)&+y(r„r2, . . . , tv), it follows immediately, for y&l, that

Q[ny]= &@'y
I
(T+ V-)

I
q'y& « y'~"q'(yrl yr2 . yrlv)

I
(T+ V-)

I
y'""q'(yrl yr2 re) & (80)

which gives the inequality

T[ny]+ V„[ny] &y T[n]+y V„[nl, (81)

I

the left-hand side of Eq. (106).
Equations (86) and (89) require

where +& is that normalized-antisymmetric function
which yields the scaled density ny(r) and minimizes

&(T+ V,.) &.

To see why

y +(yrl rr2 ' rrlv )W+y(rl r23N/2

(y& 1), (82)

(T[ny]+ V„[ny])y l
——2T[n]+ V„[n] .

ay
(90)

So, even though Eqs. (78) and (79) cannot be both right
(and are actually both wrong as shown below), these equa-
tions do, interestingly, correctly yield Eq. (90) because of
Eq. (89).

Thus it is not true that

observe that

~( yrl rr2 ' rrN )+(yrl yr2 ~ ~ yrN )

=Eq (rr„rr„. . . , rr~) (83)

Qfny] =y'Tfn]+y V„[n] . (91)

But, is it possible to find functionals, other than T [n] and

V„[n], say P[n] and S[n], such that Q[n]:—P[n]+S[n]
with

or Qfny] =r'Pfn]+rsfnl ' (92)

r 'T+r ' V-+ g w(rr» 'p(rrl, rr2 .
i=1

=E'P(rrl, yr2, . . . , yr~), (84)

so that
r

~ A A N

T+rV:+ g r'w(rr;) q'(rrl rr2
i=1

The answer to the question is no; the exact Q [n] can nev-
er be partitioned according to Eq. (92). If Eq. (92) were
true, then because n(r) is an eigenstate density for some w

in Eq. (73), it would follow from

f d r ny(r)w(r)+Q[ny] (93)
Bp

=(y'E)%1(yr„yr„. . . , yrlv) . (85)

Because of the appearance of the factor y in front of V„,
0'(yrl, yr2, . . . , yrlv) cannot be an eigenstate of an H of
the form of Eq. (73), as required for an equality in Eq.

. (82).
In summary, thus far we have

2P [n) +S[n] = — f d r
n
y(r)w(r)

Bp

%'e also have, of course,

2T[n]+ V„[n]=— f d r ny(r)w(r)
Br

(94)

Q[n ]=T[n ]+V„[n ]

=y'T[n]+y V-fnl+«[n];r» (86)

G([n];y) &0 (y&1), (87)

G([n];y)=0 (y=1) .

Since 6 is maximal at y = I,

(BG/By)y l
——0 .

(88)

(It shall always be understood in this paper, of course,
that y ~0.) Also, G shall be identified as the negative of

(95)
Finally, from Eq. (86) and Eq. (92) at y=1, and from
Eqs. (94) and (95), it would follow that P [n] = T [n] and
S[n] = V„[n]. But, since we already proved that Eq. (91)
is not true, it then follows that Eq. (92) is not correct.
Consequently, when an approximate Q obeys Eq. (92), it
means that Q can legitimately approximate only the
exchange-only density-functional theory. Significant is
the fact, then, that Thomas-Fermi theory, common
forms of extended Thomas-Fermi theory, and Xa
theory all conform to Eq. (92).

Let us now derive the inequalities involving T[n] and
V„[n] with their scaled counterparts. As we shall see,
the directions of the derived inequalities change at y= l.
From Eq. (85), we have for y&1
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&q',
l
(T+y V„)

I +,» &y'""q'(yri yr~, , yr~)
l
(T+y V„) y'""'P(yri yr» (96)

OI

T[, n ]+yV„[nr])y T[n]+y V„[n] .

Combination of Eq. (81) with Eq. (97) gives

(97)

(98a)

(98b)

(99b)

V«fnyj&yV-[nl (y&1),
V„[nr] & y V«[n] (y & 1);
T[nr])y T[n] (y(l)
T[nr] &y2T[n] (y) 1) .

Further, combination of Eqs. (98) with Eqs. (99) gives
E [nr] —f d3r nr(r)u ([n];r)

Bf
(107)

(2y —y2)E [n]+(y —y ) f d r n(r)r Vu, ([n];r)
—E, [n r ]& 0, (106)

where the equality in Eq. (106) holds only at y = 1, so that
the left-hand side of Eq. (106) has a unique minimum at

y = 1. Note that the negative of the left-hand side of Eq.
(106) is the G of Eq. (86). Further, by functional Taylor
expansion of E, [nr] in powers of nr n—,

y V«[n] —V«[nr]) y T[n] —T[nr] (y & 1)

y V«[n] —V«[nr j & y T [n]—
T[nr ] (y) 1) .

(100a)

(100b)

which is an equation of interesting symmetry. Alterna-
tively, by a change of variable in Eq. (107),

Note that Eqs. (100) actually connect kinetic and repul-
sion functionals.

E, [nr]
a

By
= —f d r n(r)r. Vu, ([n];r) . (108)

E„[n~]=yE [n] . (102)

This property was suggested without proof in Ref. 7 and
corroborated in Ref. 45. We note however that only the
Kohn-Sham E~ (as defined in Refs. 43—45) and not the
Hartree-Fock E„has this property. Equations (101) and
(102) result from the fact that when a single determinant
N(r&, rz, . . . , r~) is an eigenstate of a Hamiltonian of the
form of Eq. (73), with V„absent, then
@(yr~,yrq, . . . , yr~) is also an eigenstate of the form of
Eq. (73), with V„absent. But we now assert that

E,[nr]~yE, [n], (103)

because an equality in Eq. (103) would lead to Eq. (92), in
contradiction to the fact that Eq. (92) can never be true.
Hence, the existence of a nonzero G in Eq. (86) results
essentially from correlation effects as defined for density-
functional theory. Accordingly, let us now derive various
conditions upon the exact universal correlation functional
and its corresponding correlation potential.

From Eqs. (4) and (101),obtain

T[nr]=y T [n]+T [nr] . (104)

Next, insert Eqs. (4), (46), (102), and (104) into Eq. (81) to
yield

y T, [n]+2yE, [n]+y f d r n(r)r Vu, ([nj;r)

& T, [nr]+2E, [nr j+ f d r nr(r)r Vv, ([nr];r) .

(105)

Next, utilize the equality in Eq. (6) to eliminate T, [n]:

VII. SCALING PROPERTIES OP E,[n],
g„[n], AND T, [n]

Unhke T[n], T, [n] does have the property that7

T, [nr]=y T, [n], (101)

when nr(r)=y n(yr) is the scaled density. Further,
E„[n]does have the property

y E [nr] y3E [n] &—y(y —1)T [nr]
Since T~[n] & 0 and T, [nr j)0, it follows from Eq. (110)
zt y & 1, and from Eq. (111)at y & 1, that

E,[nr] &yE, [nj (y & 1),
E, [nr j&yE, [nj (y) 1),

(112a)

(112b)

which reveal the direction of the inequality in Eq. (103).
Next, from Eqs. (99),

T, [nr]&y T, [n] (y&1),
T, [ny](y T, [n] (y&1),

and substitution of Eq. (6) into Eqs. (113) generates

E [nr]+ f d r nr(r)r'Vu ([nr];r)

&y E,[n]+y f d r n(r)r Vu, ([n];r)

(113a)

(113b)

(y & 1), (114a)

E,[nz]+ f d mr(r )r Vu, ([nr];r)'

&y E,[nj+y f d r n(r)r Vv, ([n];r)

(y) 1) . (114b)

From the approximate validity of Eq. (7) for compact
closed-shell densities, Eq. (108) reveals that the correlation
energies of these densities should not be very sensitive to
their scaling (as is evident in Tables II and V), and ap-
proximate E,[n] should be made to reflect this fact.
Namely, E,[nr]=E, [n].

Just as Eq. (81) leads to Eq. (106), Eq. (97) leads to

(2y —1)E,[ny]+(y —1) f d r nr(r)r Vu, ([nr];r)
—y E,[n] & 0 . (109)

Via the equality in Eq. (6), equivalent forms of Eqs. (106)
and (109) may be written, respectively, as

yE, fn] E,[nr] )y(1 —y)T, [n]—, (110)
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It should be noted that for the equations of this section,
we have partitioned E„, into E, +E . The equations, of
course, could have also been written with E„intact. For
instance, with E„,intact, Eqs. (112) become

(1—y)E„,[nr] &(1 y)—yE„,[n] (y&1) . (115)

Finally, it is clear that Eqs. (110)—(113) will be satisfied
within the local-density approximation, provided that the
electron-gas correlation-energy input obeys the inequali-
ties (for y&1)

ye, (n) —e, (y n) —y(l —y)t, (n)&0,

y~, (y'n ) —y'e, (n)+(1 y)t, (—y'n ) &0,
(1—y)[ye, (n) —e, (y'n)] & 0,
(1—y)[t, (y n) —y t, (n)]&0,

(110')

(112')

(113')

with t, (n) given by Eq. (53). These inequalities, as well as
the relation t, ( n ) & 0, were tested with r, and r, /y be-
tween 0.001 and 3200 for four common parametrizations
of e, (n ): Wigner, Gunnarsson-Lundqvist, ' random-
phase approximation, and Ceperley-Alder. All ine-
qualities were found to be obeyed.

The local-density approximation for the correlation en-

ergy does not obey the scaling invariance for compact den-
sities predicted by Eqs. (7) and (108). Instead, the LDA
correlation energy has a lny dependence. For instance,
for an atom in the limit of large nuclear charge Z and
fixed electron number X, the LDA and SIC correlation
energies vary as lnZ, while the exact correlation energy
varies as Z or Z', depending upon N. ' For all closed-
shell and certain open-shell atoms, the exact limiting
behavior is Z .

VIII. CLOSING REMARKS

The Hellmann-Feynman relations, Eqs. (1) and (2), are
necessary requisites that density optimization has in fact
been achieved. Further, there are Uery few known equali-
ties or inequalities involving the exact E„, and U„, for ar-
bitrary trial n. Accordingly, this paper has introduced a
number of rigorous necessary requisites upon E„,and u„„
in the form of equalities as in Eqs. (5) and (29) and in the
form of inequalities as in Eqs. (6), (106), and (109)—(115).
These requisites are satisfied within the local-density ap-
proximation. The local-density approximation for E„
however, does not exhibit the required insensitivity to a
scaling of n, and one should take this into account in the
quest for improved exchange-correlation functionals.
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