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A finite-basis method [B. R. Johnson and W. P. Reinhardt, Phys. Rev. A 28, 1930 (1983)] recent-
ly introduced for calculating bound-free transition amplitudes is extended here to apply to the
Coulomb potential. This method is based upon the use of complex-coordinate techniques to calcu-
late matrix elements of the time-independent wave operators of formal scattering theory, and avoids
explicit enforcement of coordinate-space boundary conditions. Numerical experiments aiming at the
calculation of the known hydrogenic ground-state photoionization amplitude have been made with
use of different known forms of the two-body Coulomb wave operator. We have successfully repro-
duced the \hydrogenic photoionization amplitude, but only within an accuracy and precision of about
1%. The most plausible explanation for these numerical difficulties is associated with the singular
behavior of the “ie” limit in Coulomb scattering theory. In shorter-range problems, this limit is
conveniently implemented by complex-coordinate techniques or complex-coordinate techniques in
.conjunction with Padé extrapolation. However, neither of these methods effectively implements the
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£—0 limit in the Coulomb case.

I. INTRODUCTION

A new method has recently been introduced' for the
construction of bound-free transition amplitudes in a
broad range of systems. This requires the calculation of
matrix elements of Mgller wave operators,”>~* and has the
promising features of using only finite-basis techniques
while automatically satisfying the asymptotic boundary
conditions on the scattering wave function. The first cal-
culations demonstrated the feasibility of the method for
both short-range (exponentially decaying) and long-range
(—1/7% single-channel problems. This provides real en-
couragement for the extension to multichannel and
Coulomb scattering problems. This paper describes at-
tempts to numerically calculate bound-free amplitudes for
the Kepler problem. This differs from the previous
single-channel examples in that the wave operators for in-
teractions of charged particles are well-known to be of a
qualitatively different form.>—!2

The incentive for the pursuit of the present wave-
operator methods is the hope that partial scattering ampli-
tudes can be obtained even when a large, potentially infin-
ite, number of open channels are present. One specific ap-
plication we have in mind is the double-electron photoion-
ization amplitude for H™ above the three-body breakup
threshold,’ a region for which there do not as yet exist
systematic computational methods since the detailed
specification of the three-body Coulomb asymptotic form
has not been given. In this case the fact that explicit
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coordinate-space boundary conditions need not be en-
forced in the finite L? basis calculation would be used ad-
vantageously. Another planned application is in the cal-
culation of electronic amplitudes for molecular photoioni-
zation in the adiabatic nuclei approximation.!* This
would allow calculation of electron angular distributions,
in addition to the total cross sections, which are currently
calculable via moment imaging techniques.!®

The use of wave operators is very straightforward in
principle. We take | 1s) to be the ground-state hydrogen-
ic wave function and |k+) to be the three-dimensional
Coulomb continuum wave function for an ionized elec-
tron of momentum k. The superscript + (—) denotes a
state asymptotically prepared in the past (future). The
transition matrix element describing ionization by a pho-
ton of frequency w (fixed by energy conservation) is then
given by!® ‘

Ak)=—i

o2
(k— |eD]|1s) . (1.1
2
Here D is the dipole moment operator and € the polariza-
tion vector. The continuum wave function can be ex-
pressed formally as
|k+)=0%F|k), (1.2)
where Q') is a Coulomb wave operator and |k) is a
free-particle state. When operating upon |k), Q'*’ can
be expressed in different forms involving the resolvent
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G(E+ie)=(E+ie—H)™ !, : (1.3)

of the internal two-body Coulomb Hamiltonian H.
Complex-coordinate techniques for calculating matrix ele-
ments of resolvents’”!’~!° can then be exploited, facilitat-
ing the necessary implementation of the limit e—0. The
key to the success of this approach is the fact that the ma-
trix element A4 is damped exponentially by the presence of
the bound-state wave function. Thus good approxima-
tions to the resolvent are required only over localized re-
gions of coordinate space.

We show that use of one of the standard forms of the
wave operator from the scattering theory of shorter-range
potentials leads to very stable partial results in the compu-
tation of the ground-state hydrogenic photoionization am-
plitude. This provides encouragement that the finite-basis
methods can indeed be adapted to transition amplitudes
for Coulomb problems. It is not possible to recover the
complete amplitude in this manner, however, because the
shorter-range wave operator is simply inappropriate to
Coulomb potentials. This is manifested by the appearance
in the resulting amplitude of the phase factor e¥Z/k
where Z is the nuclear charge. This factor is ill-behaved
in the limit e—0. The same difficulty is well-known in
the context of the scattering amplitude for the two-body
problem, and also appears when more charged fragments
are present. For N-particle Coulomb systems, Zorbas’
has given a generalization of the wave operator which ex-
plicitly contains the inverse of the corresponding ill-
behaved phase factor. Computations based on this opera-
tor do not suit our purpose, however, in that we are seek-
ing a stable numerical method for determining matrix ele-
ments of the continuum wave functions (with the correct
normalization and phase) without singularities as the real
energy axis is approached.

Within time-dependent scattering theory, it was shown
by Dollard® that wave operators for Coulomb scattering
could be obtained which contain extra terms over those in
the shorter-range case. It has been shown subsequently by
Gibson and Chandler® that Dollard’s results, when
transformed into the time-independent framework, lead
naturally to an operator involving a complex power of the
resolvent. (See also Refs. 7, 9, 11, and 12 for related
work.) This complex power is no real complication for
our numerical methods, and so attempts were made to ob-
tain the photoionization amplitude using the wave opera-
tor corresponding to the work of Gibson and Chandler.
While these efforts were successful, there is unfortunately
a substantial sensitivity to the parameters used in the
finite-basis calculations, and nonsystematic convergence
or even divergence seems to be the general rule. The best
relative accuracy is approximately on the order of 1%.
Should this prove to be an absolute limit on the accuracy
available for a one-channel problem, it is unlikely that the
Gibson-Chandler method would yield a practical tool for
the much more difficult double photoionization problem.

There is a third wave operator, due to Mulherin and
Zinnes,® which is more naturally suited to parabolic rather
than spherical coordinates. This operator has the advan-
tage of incorporating explicitly the leading asymptotic
distortion of the plane wave by the Coulomb potential.

(See also Refs. 20 and 21). This is in the spirit of distort-
ed wave calculations, but with no approximations made.
The problem thereby reduces to one involving operators
which take into account the ultra-long-range Coulomb
forces. Unlike the Gibson-Chandler and Zorbas opera-
tors, the Mulherin-Zinnes wave operator does not adapt
readily to a partial-wave expansion, but this slight techni-
cal disadvantage can be overcome in the current applica-
tion by projecting out the relevant partial wave.??> The nu-
merical results do indeed represent a small improvement
over those from the Gibson-Chandler operator, but not a
dramatic improvement.

Several other numerical experiments were made in at-
tempts to obtain higher accuracy. One finding was that
taking the wave operators off the energy shell (i.e., using a
finite value of €) causes the resulting amplitudes to con-
verge very rapidly. The finite-basis methodology is there-
fore capable of calculating the necessary matrix elements
extremely well, but only at unphysical complex values of
the energy. Furthermore, attempts to extrapolate well-
converged off-shell amplitudes back to the real energy
axis also failed to lead to greater accuracy than the primi-
tive real-axis calculations. We now consider these diffi-
culties to be related to those discussed by McCartor and
Nuttall?® in extrapolating T-matrix amplitudes for
Coulomb scattering from the complex energy plane on to
the real axis. The problem for any of the wave operators
used is apparently due to a pathological behavior of the
function calculated in the ie limit. It is important to re-
mark that this is transparently so for the Zorbas operator,
but not for the others. In fact, our previous work for
non-Coulombic interactions had led us to hope that the
other operators would readily lend themselves to simple,
stable computational procedures.

Another point arising from the experiments with finite
€ is that the use of complex scaling actually destabilizes
the convergence of the off-shell amplitudes. The usual ex-
perience’>'®!® in bound-bound and shorter-range bound-
free amplitudes is that the scaling allows one to effectively
avoid the poles occurring on the real axis in the finite-
basis approximation to the resolvent, thereby stabilizing
the results. On the other hand, in the off-shell ampli-
tudes, where the poles are avoided automatically, the op-
timal value of the rotation angle is found to be zero or
very close to zero, with larger values resulting in ampli-
tudes which diverge as the basis size increases. Not only
is the use of complex coordinates unnecessary in this con-
text, but it actually appears to be deleterious. This will be
discussed in more detail below.

The quality of the results obtained by the above
methods must be judged in terms of intended use. For the
problem of single-channel atomic or molecular photoioni-
zation a promising new method for calculation of ampli-
tudes may be at hand. Some numerical study will be
necessary to verify that in this case the combination of
short-range correlation and long-range Coulomb effects
are correctly described in this method. If the numerical
inaccuracies should prove to be comparable in one-
channel and multichannel photoionization, then the pro-
cedures outlined here would warrant further investigation.
However, viewed as a step towards calculating double
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photoionization amplitudes, it is likely to be a far more
difficult numerical procedure. The methods developed in
these initial efforts would not warrant a full-scale compu-
tational attack on the two-electron continuum.

The organization is the following. In Sec. II the
methods used in Ref. 1 for standard scattering problems is
reviewed. In Sec. IIl, the necessary operators and wave
functions for the two-body Coulomb problem are summa-
rized. The Zorbas .operator is treated in Sec. IV, the
Gibson-Chandler operator in Sec. V, and the Mulherin-
Zinnes operator in Sec. VI. Section VII contains a discus-
sion. Analytic results connecting the Zorbas and Gibson-
Chandler operators are sketched in an Appendix.

II. NON-COULOMB WAVE-OPERATOR METHODS

In our previous paper,! we showed that it is possible to
use complex-coordinate techniques'*~'® to calculate
bound-free matrix elements of the form (®yunq|kt),
where ®p,nq is a function which decays exponentially
with » and | k=) is the continuum state appropriate to a
Hamiltonian ‘

H=H,+V . @1

Here Hj is a free-particle Hamiltonian and ¥V is a poten-
tial decaying faster at infinity than 1/r7. The scattering
function can be obtained by application of the Mgller
wave operatorz““ to a plane wave, as indicated in Eq.
(1.2). Within time-dependent scattering theory, these
operators are expressed (with #i=1) as
QF) =5 — lim exp(iHt)exp(—iHt) . 2.2)
—>+o0
Equations (1.2) and (2.2) correspond to propagating the
free-particle wave function backward (forward) in time
until the scattering potential is completely turned off, and
then propagating it back to the present with the full Ham-
iltonian H.
In the time-independent picture with which we shall be
working, the Mgller operator may be recast in integral

terms with a suitable convergence factor,>*2*
+ LiHqyt

QB =¢ [ “dt e ~tte il 2.3)

The strong limit e—0 is implied in Eq. (2.3). Application
to a plane-wave state then yields

Q® | k) zsfowdte‘”e FiHt, i'iHote +ik2t/2 l k‘)
=tie(yk2+ie—H)™ ' | k)
=[1+(+k?+ie—H)"'V]|k) . (2.4)

The fact that | k) is a solution of the free-particle wave
equation with energy E =k?/2 has been used in obtaining
these identities. In terms of the resolvent of H, we shall
frequently refer in the following to

QP =+ieG (E +ig)
=14+G(E+ig)V (2.5)

as standard forms of the Mgller operators, with the under-
standing that they are operating upon the free-particle
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wave function.
If the potential V is spherically symmetric, one can
make a partial-wave expansion of the plane wave ¥y(k,r),

Wo(k,r)=(27) 32kt
172

Sk Vi ()Y (R)
ILm

2
T

(2.6)

where the radial function ¥;o(kr) is simply the regular
function corresponding to energy E and radial Hamiltoni-
an

1 d? I(I+1)

—— . 2.7)
2 dr? * 272

Similarly, the full three-dimensional wave function can be
expanded as

hio=—

172
S il (k) Y () Y (K) , © (2.8)

Lm

1 |2
(£) R <
v (k,r)— p”

with ¥ *)(k,r) corresponding to the radial operator
hy=hp+V(r) . (2.9)

The radial wave operator is then as in Egs. (2.5), except
that H is replaced by h;. The last form is convenient for
utilizing the coordinate-rotation method because € only
occurs in the combination E tie. Letting ¢ be a purely
radial function, the matrix element (¢ | Y™} becomes

1

<¢!¢5¢’>=<¢1¢10>+(¢ l———v

- ¢,0> . (2.10)

The second integral can be subjected to the dilatation
transformation r—re‘® with the result

<¢ _ET:,:E,"V ¢zo>=<¢a E—i_ieITh;Ve ¢zoe> ,
@2.11)

in terms of the rotated quantities

bo(r)=e'®¢(re’®) , (2.12)

hio=e 20+ Vo(r) , (2.13)

Vo(r)=V(re®) , (2.14)
and

Vioolk,r)=e 02 o(k,re') . (2.15)

The radial Hamiltonian h;e is next diagonalized in a
convenient basis, in our applications the Laguerre basis
172

n!A (kr)1+le_}‘r/2L,%I+2(kr) .

Plr)= [(n +21+2)

(2.16)

For a given basis size N, this results in N complex eigen-
values E;q and eigenvectors X;o(7). The matrix element in
Eq. (2.11) can then be approximated by
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(¢

where the parentheses indicate that there is to be no com-
plex conjugation. This approximation of the resolvent
Green’s function by square-integrable functions is only ex-
pected to be valid over a localized region of configuration
space, but this is the only region sampled in any case due
to the presence of the bound-state function ¢ in the origi-
nal matrix element. The importance of the coordinate ro-
tation lies in the fact that the branch cut of the resolvent
is swept down into the complex energy plane at an angle
20 with respect to the positive real axis.!” This allows one
to take the e—0 limit smoothly in each term of the sum
in Eq. (2.17) with no danger of a vanishing denominator.
The practical utility of this method has been demonstrat-
ed in our earlier examples.!

(do|Xie)(Xio| Vo | ¥100)
EiiE—Eig ’

1 N
Exic—hy 0 ¢100>=i§1

(2.17)

III. COULOMB WAVE FUNCTIONS
AND PARTIAL WAVES

The propertiés of the hydrogenic functions needed
below can be succinctly described. The discussion closely
follows that of Newton? and the parallel description for
shorter-range potentials in Ref. 1.

The attractive Coulomb Hamiltonian is given by

ipe_Z (3.1)
r

H=—

where Z is the nuclear charge. The ground-state wave
function for this Hamiltonian is

X,s(r)— R (P)Yoo(7) , (3.2)

where Yy, is a spherical harmonic and R is the radial
wave function
R (r)=2Z3"%e %", (3.3)

The three-dimensional scattering function has the expli-
cit form

2
Wk, )= ———T(15in)

Xe'® T \Fi(xin;1;+i(krTk1)) , (3.4)

where the F; is a confluent hypergeometric function and
n=Z/k . (3.5)

The wave function ¥*)(k,r) has a partlal wave expans1on
as in Eq. (2.8) with the radial function ¥{*’(k,r) given by

(+) _(2kr) nﬂ/zr(l+1+l'fL) +ikr
kyr) =" r2i+2) ¢
X F (U +1Fin;21 42, F2ikr) , (3.6)

Hereafter, we shall restrict discussion to /=1 and drop
this index except when necessary for clarity.

In the examination of the Zorbas wave operator for the
two-body problem, we shall also consider the individual
spherical waves

fi(k,r)=e_nﬂ/ZWi—i,?,yz(——%:Zikr) s (3.7)

where the W'’s are Whittaker functions. These are the
solutions of the radial equation which are irregular at the

origin, and which have the following asymptotic
behaviors:
falke,r)—(2kr) X e Tk ag p 5 o . (3.8

In terms of these functions, the physical wave function
P HUk,r) is

Yk r)=—— |f_(k,r)+ f+(kr . (3.9)

J, (k)
where the Jost functions J 4 (k) are given by

Ji(k)=e "/2/T(2Fin) . (3.10)

In the limit that the nuclear charge Z vanishes, the above
radial functions reduce to the appropriate free-particle
analogs:

~(1,2)
f+k,r)—>for(k,r)=—hy (kr),
Yk, r)— b (k1) =7, (kr)

(3.11)
(3.12)

Here i\til'Z)(kr) are spherical Riccati-Hankel functions,
and }'\1( kr) is the regular spherical Riccati-Bessel function
mentioned in Eq. (2.6).

By use of Eq. (2.8) in (1.1), the Coulomb photoxonlza-
tion amplitude can be reduced to

A(K)=—Q2m) 21+ 2ekI (k) , (3.13)
where the radial integral I(k) is
1= [ “dr¢'=*rR, . (3.14)

Since ¢~ *(k,r) =14 )(k,r) for real k, and R (r) is real,
I(k) can also be written in the convenient form

1= [ “dr Ryt (3.15)
adopted in the remainder of the paper. The integral I is
straightforwardly evaluated in closed form:

1—in

_ r(2—in)
3/2 4 nw/2
I(k)=8Z" 14in

(3.16)
(1+7]2)3

This will provide us with an absolute standard for judging
the numerical results of later sections. The helicity-
averaged cross section is then given by!¢

_ Ark

2 2
() [ 1R |2

o (3.17)

We will also have occasion to examine the individual
contributions of f . (k,r) to I (k). Thus we define
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I, (k)= fowdrRls(r)rf+(k,r)/J+(k)

__ 192in’T(2—in)
Z32T(4—in)(1+in)°

X F1(5,2—in;d4—in;(1—in)/(1+in)) .

(3.18)

We have taken the simple expedient in computing this
amplitude of summing the Gauss hypergeometric series
via Padé approximants.?® Inspection of Eq. (3.9) gives the
explicit connection between I, (k) and I(k),

I(k)=—J_(k)Re[I , (k)] . (3.19)

IV. ZORBAS WAVE OPERATOR

As mentioned in the Introduction, it is known in the
literature of the two-body Coulomb problem that matrix
elements of the standard form of the T operator yield the
correct scattering amplitude, but multiplied by a
momentum-dependent term containing a phase factor that
diverges as e—0.2 This phase factor also occurs in the
present context. If the standard wave operators in Egs.
(2.5) are applied to a plane wave Wy(k,r), then

*in
k), (4.1)

2

QFY=T(1Fin)

where W'®) is defined in Eq. (3.4). This identity can be
verified explicitly in the same vein as results presented in
the Appendix, although we do not do so here. We see that
the correct wave function is thus obtained except for a
multiplicative factor. This factor can, of course, be in-
cluded in the wave operator, which is then in the form de-
rived by Zorbas,’

1
T I(1+in)

(+ig)
E+tie—H °

€

—2;2— (4.2)

+
o4

Zorbas has also given the generalization of this operator
to the case of N charged fragments.

This wave operator carries over directly to an expansion
in partial waves, in which case we have

1
Qi) —
Z 7 T(1+im)

(+ig)
Etie—h;

€

—2—](“2 (4.3)

It appears from Eq. (4.3) that there is no simple expedient
for expressing this operator strictly in terms of the vari-
able E +ige, which would allow computations analogous to
our earlier work.! However, certain identities derived
there are of interest in the present investigation. Specifi-
cally, it was proven that, if we denote the p-wave radial
resolvent with E +ige by g'*’, then

ieg P for =1+ D V)for Ff, /T, . (4.4)

In other words, although the two standard forms of the
wave operator produce the same result when acting upon
the spherical Riccati-Bessel function that is regular at the
origin, they produce different results when acting upon
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the two irregular functions. The inhomogeneous . terms
f4+/J 4 cancel when the two spherical waves f,, and
fo_ are combined to give ¥\t since

o= —75(foy +fo-) - (4.5) v

Equation (4.4) is valid even in the Coulomb case, as is
possible to verify directly through use of known forms of
the radial Coulomb Green’s function.?’” It was also con-
jectured that

ieg' fo, =0, 4.6)

based on a proof for the analogous s-wave result.! Ac-
cepting Eq. (4.6) for the moment, Egs. (4.4) and (4.6) tell
us that ,

(I+g P Wfor=Fi /T4 . 4.7)
Furthermore, the radial analog of Eq. (4.1),

ieg Po=T(1+in) 2k /ey '+, 4.8)
combines with Egs. (4.5) and (4.6) to yield

ieg' Yfo_ = —20(1+in)(2k2/e) M+ . 4.9)
Finally, this and Eq. (4.4) lead to
(14-g V) foo = =201 +in)2k2 /eyt —f /T, .

(4.10)

With these developments, we have the extremely in-
teresting fact that the application of 14+-g'*'V to £, pro-
duces a function which is well-behaved in the limit e—0.
Application of 14+g*t'¥V to f,_, however, produces both
terms that are well-behaved and terms that are not. The
validity of analogous results in the s-wave case has been
explicitly verified analytically. For the p wave, we instead
turned directly to numerical verification. The techniques
discussed in Sec. II were accordingly applied to the indivi-
dual free-particle spherical waves. Defining the ampli-
tudes

I(k)=(Rs | r(1+g V)| for ) ,

the terms involving the resolvent can be approximated by

(Rig |8 PV | fox)

_ 3 Rusalre|Xioio| Vol fore) o,
- E—}—iE—Eig ’ )

(4.11)

i=1

Here R and fy1g are the rotated versions of the func-
tions [cf. Egs. (2.12) and (2.15)], and E;g and X;¢ are ob-
tained by numerical diagonalization of the complex radial
Hamiltonian in the Laguerre basis of order 4. Comparing
Egs. (4.7) and (4.11), the amplitude I, is seen to agree
with the earlier définition in Eq. (3.18). The results ob-
tained for I, are shown as a function of basis size in
Table I. It is seen there that the calculated amplitude is
converging to the correct value, but at a fairly slow rate.

It is possible that faster convergence could be obtained
by a careful optimization of the parameters A and 6, but
this was not investigated. Instead, an extrapolation pro-
cedure which previously proved successful was adopted.!
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TABLE I. Values of the amplitude I, (k)=(Ry |7 | f4)/J . calculated by use of QH'=14+G 'V
and coordinate rotation. Extrapolated values refer to use of the epsilon algorithm on the intermediate

sum in Eq. (4.13).
—2.61717923—i1.73561995.

Parameters used are A=1.8, 6=0.18, Z=1, and k=1.

The exact I (k) is

Calculated Extrapolated

N \ I,.(k) I1,.(k)

10 —2.03206437—i1.398 925 44 —2.61705106—i1.73573235
20 —2.49207321—i1.886 84968 —2.61717927—i1.73561996
30 —2.65593932—i1.76149777 —2.61717923—i1.73561995
40 —2.62083485—i1.726257 69 —2.61717923—i1.73561995
50 —2.61508798 —i1.735459 66 —2.61717923—i1.73561995
60 . —2.61720115—i1.73561945 —2.61717923—i1.73561995

Inserting a resolution of the identity in terms of the
Laguerre basis into Eq. (4.12), we have

<Rls|rg(+)VlfOi>

(Rys0 | re’®| Xi6)(Xiq| ®,)
E+i€—Ei9

p>

n=0 (i=1

[

n|f019)

(4.13)

A sequence of partial sums is generated by successively
taking the sum over nup t0 0,1,2, . ... ,N —1. These par-
tial sums can be extrapolated by the epsilon algorithm,
which is used to form pointwise Padé approximants from
a given Taylor series.”> The results are given in the extra-
polated column of Table I, and show convincingly that
the complex-coordinate method is performing very well at
recovering the amplitude I,. Similar efforts with I
failed to shown any evidence of convergence, either with
or without the extrapolation procedure. This confirms
Eq. (4.4) and following. The partial amplitude lacking the
phase factor is computationally quite stable, while the am-
plitude containing this factor is not.

- It was mentioned in Eq. (3.18) that the full amplitude
I(k) could be obtained from the partial amplitude I (k)
if only there were an independent means of calculating the
Jost function to the same accuracy. The Jost function is,
of course, exactly known in the two-body problem, but
this is of little help for extension to three or more parti-
cles.

The use of the operator Qi3 off the energy shell, that
is, for a finite value of €, is well-defined. Using the ap-
propriate form of the radial Coulomb Green’s function,
we have been able to calculate analytically the result of
applying the Zorbas wave operator with a finite value of €
to a free-particle wave function.
tion was for the s wave, but this does not matter.) At-
tempts to numerically analytically continue®® the resulting
amplitude back to the real axis were only accurate to
within a few per cent, which is in no way comparable to
the accuracy shown in Table I. This appears to be due to
the fact that the off-shell amplitude near the real axis is a
sum of two different series in the variable €. The dom-
inant series for small € has a multiplicative phase factor
involving €. The off-shell amplitude can be multiplied by

(Actually, the calcula-

the inverse of this phase factor and the analytic continua-
tion procedure applied to the result. It then turns out that
the second series, even though vanishing for €—0, causes
interference in the extrapolation. Exactly this phe-
nomenon has been discussed in the context of Coulomb
T-matrix calculations by McCartor and Nuttall.?> Simi-
lar difficulties in extrapolating e®*-H amplitudes have

been discussed by Nuttall.?

V. TIME-INDEPENDENT FORMS
OF THE DOLLARD WAVE OPERATOR

It was first shown by Dollard® that the wave operators
for charged-particle interactions must be modified to ac-
count for the fact that the effects of Coulomb forces ex-
tend out to infinite separation. Working within the
framework of time-dependent scattering theory, he ob-
tained, instead of Eq. (2.2),

. i —iH (1)
QF)=s— lim et 70C" (5.1)

t—F oo
where H () is given by

Hoc(t)=Hot —Z sgn(t)(—V?)"2n(—2]t |V?) . (5.2)
This operator has recently been used in finite-basis calcu-
lations of the Coulomb scattering amplitude by Kroger.>
His work is in a certain sense a time-dependent analog of
ours.

A transcription of Dollard’s work to the time-
1ndependent framework has been given by beson and
Chandler.® From their work, it is found that Q%" may be
expressed in similar fashion to Eq. (2.4),

—1, —et, FiHt, TiHoc) (5.3)

i_
6¢=T

Besides the presence of Hc(t) instead of Hyt, Eq. (5.3)
also differs from Eq. (2.4) by the parameter y. This is
positive real, but otherwise unrestricted. Related develop-
ments®*! may be found in the works of Prugovecki and
Zorbas,’ Tlp,11 and Gesztesy

Upon application of Q% to the plane wave state | k),
one obtains!!
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1 —. 22 —_ 2
le €t +1Hte tik“t/2FinIn(2k*t) l k)

(ic)lk e

e
T T(y)

Fin v—l Fit(H—E¥ie)
1“W)(Zk ) f dit k)
— i Y2k 2)Fing VII:((V; (E+ie—H)~"|k), (5.4)

where we have used Eq. (3.5) and the definition
v=yTin . (5.5)

Thus, the Gibson-Chandler form of the wave operator in-
volves a complex power of the resolvent rather than the
usual real power found in Eq. (2.5). As with the Zorbas
operator, these results extend to multiparticle Coulomb
problems with more than two charged fragments—a
necessary feature for the possibility of extending our cal-
culational methods to the three-body breakup in H™. In
proving that this leads to the correct Rutherford scatter-
ing cross section, Gibson and Chandler use the fact that
this complex power of the resolvent can be replaced by a
convolution integral over the energy appearing in the usu-
al resolvent,

l_(l—v)
i H) Vet
(Etie—H) =1 R 1—w)

x [Tdyy MExiptie—H)"
O<y<l. (5.6)

We have used this fact and Hostler’s integral representa-
tion for the Coulomb Green’s function?’ to verify that ap-
plication of Q ) to ¥, does indeed produce ¥'*’ of Eq.
(3.4). As mentloned earlier, there is also a straightforward
radial analog to these equations in which the wave opera-
tor contains the radial resolvent instead of the three-
dimensional one,

ofge =ik rer L2

) (Exie—hy)™". (5.7)

We have used derivations along the lines of the Appendix
to verify that the radial equation

Yk, r) = Q4 Dok, ) (5.8)

holds as well, but these results are not discussed here.

The key point in the use of Q& would seem to be that
the problems associated with the phase factor £¥7 are
avoided when the complex power of the resolvent is used.
We therefore used the matrix methods described before to
construct the amplitude I (k) according to

I(k)={(Ry | rQ{%c | o) . (5.9

We now take advantage of the freedom of choice for the
specific value of y. Using ¥ =1 and the free-particle wave
equation satisfied by ¢, we get

Yocto=1e(2ik?) T (1 —in)(E +ie—h)~ Ty,

_I%(—z)—j]’—[usm Rym

+(E +ie—h)" g, . (5.10)

This puts the wave operator into a form suitable for tak-
ing the e—0 limit, since it only appears within the com-
bination E +ig, as discussed above for the standard wave
operators of Egs. (2.5).

The results of the above procedure are exemplified by
the second column in Table II. The amplitudes obtained
with varying basis size are clearly in the proximity of the
exact amplitude, but there does not appear to be a sys-
tematic approach to the latter, and they eventually diverge
as N is increased with all of the other parameters fixed.
This is in distinction to the behavior (at least the observed
behavior) for the shorter-range potentials considered in
Ref. 1. It is, however, consistent w1th the general pattern
of the results obtained by Kroger in using Dollard’s
wave operator, upon which Q%) is based, for calculating
the two-body scattering amphtude We have found a very
sharp dependence of our results upon the rotation angle 6
and, to a lesser extent, the nonlinear parameter A. In fact,
it is very easy to enter into a parameter regime in which
the calculated I (k) diverges quite strongly with basis size.
Attempts at extrapolating an intermediate sum as in the
case of Eq. (4.13) met with no success.

With this disappointing turn, we attempted another
procedure which recently proved successful in extracting

TABLE II. Values of I(k) from Eq. (5.9) with Gibson-Chandler wave operator. The parameters
used are the same as in Table I. Extrapolated values in this case are the [N /2—1, N /2—1] approxi-

mants obtained from the sequence of calculated I(k) for basis sizes 1,2,...

,N. Exact

I(k)=0.6529655—i0.3430658. Shown in the fourth column is the extrapolated total photoabsorption
cross section, for which the exact value is 0.033 26 a.u.2. The extrapolated value for the Coulomb phase
shift 6, =arg[I'(2+i7)] is given in the last column; the exact value is 0.4838 rad.

Calculated Extrapolated Extrapolated Extrapolated
N I(k) I(k) o (au? 6. (rad)
10 0.7024 — i 0.2463 0.7296—i0.2567 0.03657 0.3518
20 0.6973—i0.2781 0.6842—10.2943 0.03391 0.4062
30 0.6846—i0.2927 0.6725—i0.3186 0.03385 0.4424
40 0.6824—;0.3012 0.6662 —i0.3281 0.03371 0.4576
50 0.6714—i0.3017 0.6607 —i0.3317 . 0.03341 0.4653
60 0.6737—i0.3302 0.6608 —70.3324 0.03345 0:4661
70 0.7135—i0.2661 0.6591—i0.3339 0.03337 0.4689
80 0.4399—10.3255 0.6592—i0.3341 0.033 39 0.4691
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free-free transition matrix elements for an asymptotic » —*

potential.®> Although the complex-coordinate calcula-
tions in that case actually diverged with increasing basis
size, it happened that Padé approximants (Shanks extra-
polants) formed from the divergent sequence converged
with no difficulty at all. The results of such a procedure
in the present context are presented in the third column of
Table II. The entries are the diagonal Padé approximants
of order N/2—1 obtained from the amplitudes I (k) cal-
culated with basis sizes 1 to N. It appears from these and
more extensive results that the extrapolation procedure
converges with moderate stability with respect to the pa-
rameters used. However, if it does indeed converge, it is
at such a slow rate that there is little promise in pursuing
this route. The photoabsorption cross section o and the
Coulomb phase shift are both obtainable from the extra-
polated results, the first through Eq. (3.17) and the second
from the negative of the argument of the matrix element
I(k) (see Ref. 1). These quantities are also given in Table
II.

With the failure of these results, we decided to investi-
gate more carefully the limit e—0. The hope was that,
while the algorithm did not possess any obvious singular
behavior in this limit, greater stability might still be
achieved by moving off the energy shell, i.e., using a finite
value of €. This is dramatically borne out by the sample
results in Table III, which show a marked improvement in
the convergence of I(k) with increasing €. We therefore
have a clear indication that the amplitudes can be calcu-
lated by the present procedure to a satisfactory accuracy,
but that the quantities the calculations represent have a
problematical behavior in the approach to the real axis.
Furthermore, efforts at analytic continuation?® of con-
verged off-shell calculations back to the real axis met with
only partial success, just as for Q5" in Sec. IV. This is at
least consistent with the remarks made in the Appendix
that the singularity structure in the analytic treatment of
the two operators is the same.

It should be noted that € in Table III has been taken to
be zero. Finite values of & obviate the need for complex-
coordinate rotation in the resolvent matrix elements since
the poles in the energy denominators are then bounded
away from the real axis automatically. In addition to be-
ing unnecessary, however, nonzero values of 6 were found
to very quickly degrade the convergence of the finite €
amplitudes. This was something of a surprise since one
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expects (or hopes for) a certain degree of 6 invariance in
the matrix elements, especially given the damping influ-
ence of the bound-state wave function. The initial impli-
cation was that complex coordinates can fail miserably in
some imprecisely known manner, and that this might con-
tribute to the problems in the ie limit. Upon closer exam-
ination, however, the finite & results were found to diverge
in a spiralling manner as the basis size N was increased.
Exactly this behavior was observed in the computation of
free-free transition amplitudes for the long-range —1/r*
potential of Ref. 32. We have found that the Padé extra-
polation of the amplitudes with N which proved success-
ful there also cures the divergence of the present off-shell
amplitudes for nonzero 6. Thus, at least in conjunction
with the extrapolation, a good degree of 6 invariance is
actually found. This is an informative discovery: Even if
it is not immediately clear how the extrapolation could be
generalized in more complex problems (e.g., multichannel
problems or different bases lacking the analytic structure
of the Laguerre functions), we have a clear indication that
coordinate rotation does not irreversibly upset the conver-
gence.

VI. MULHERIN-ZINNES WAVE OPERATOR

The third form of the Coulomb wave operator investi-
gated here is the one obtained by Mulherin and Zinnes.’
This operator, unlike the two above, is most naturally
described in parabolic coordinates in the two-body case.’
Application of the Mulherin-Zinnes wave operator to a
plane wave yields the result

Qe r—s_ lim e™H kD¢ k1) 6.1)

t—>F o

where ¢&F(k,r) is a plane wave modified by the familiar

logarithmic distortion

¢k, 1) =explik-rFin In(kr vk-r)] . (6.2)

In analogy to non-Coulombic scattering, the form of Eq.
(6.1) leads to a representation of the wave operator in
terms of the resolvent

old) 4 1€

—1 T M xi’" .
Mz =% e g krrkn

(6.3)

This type of representation (at least for the two-body

TABLE III. Calculated values of the amplitude I(k) for three values of € in the Gibson-Chandler
wave operator. The parameters used are the same as in Table I except that the angle 0 is taken as zero.

N £=0.0 e=0.1 £=0.2

10 0.14+1i0.17 1.16403—i0.09277 1.4906161—i0.188 5014
20 1.22—i0.63 1.25462—i0.234 16 1.5079541—i0.208 999 4
30 0.69—i0.09 1.26828 —i0.228 89 1.5098600—i0.209 580 8
40 0.12+i1.10 1.26843—i0.225 86 1.5099762—i0.209408 4
50 0.46—i0.46 1.26770—i0.226 87 1.5099754—i0.2094112
60 —0.14—i0.16 1.26820—i0.227 10 1.5099781—i0.209 4104
70 0.00+470.47 1.26824 —i0.226 99 1.5099780—i0.209409 5

80 0.23—i0.46

1.26822—i0.22701

1.5099780—i0.209409 5
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problem) as been discussed briefly by Mulherin and
Zinnes,® Chandler and Gibson,?! and Rosenberg.20

It is apparent from Eq. (6.3) that the wave operator
does not have as simple a form in spherical coordinates as
in parabolic coordinates. Nonetheless, it is possible to
project out the individual partial waves of the full scatter-
ing function as given in Eq. (2.8). If the z axis is taken in
the k direction, then multiplication of Eq. (2.8) by Y;5(T)
and integration over the angles of r leads to

(+) -
U (k,r)=i"'mkr 11

itk

_+—[ (21+1)]-‘/2fdr——g,(r,r SE+ie) Yo () (k,r') .

The integrals over angles in Eq. (6.6) can be performed
without great difficulty. We have verified Eq. (6.6) expli-
citly using the radial Green’s function, although we again
pass over details.

Having convinced ourselves of the correctness of Eq
(6.6), we next turned to the problem of converting Q JZ to
a form amenable to the previously described matrix
methods This can be accomplished by noting that
P *)(k,r) obeys the equation

~__L¢<t)
kr(krikr) €

Thus, the full scattering function can be obtained by use
of

(H—E)$& = (6.7)

Bk,r) =055 ¥o(k,1)
=+ieG(E+ie)pg")

Z2 +
1 —_— (+) .
+G(E_ E)k (kr : ) ¢C . (68)

ik, )— (2k )y~ing —ikr l F(1;2—in;2ikr)— 5

1/1(R+)(k,r):(37r)‘”2

_g —in © g . - n—1—in, —ikr'
= (2k) fo dar' g(r,r';E+ie)(#’) e

The radial amplitude I(k) now consists of two contri-
butions, with the one originating from 45"’ posing no
(+
computational problems. The one arising from ¥z"’ can
be calculated by the complex-coordinate method again,
with the Green’s function approximated by the L2
methods used before.

172
] [ a2 Y@ Yok, 1)

2 in F1(2;3—in;2ikr)

f dr'g(r,r';E +ic) fd’f’[ kr'—k-r’)
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(+) Jar vk, ny@) .

1T =1

“‘mkr (6.4)

2
21 +1

The partial wave expansion of the full Green’s function

G(r,r’;Eii5)=—r—:;zg,(r,r’;Eiie)Y,m(?)Y,f,,(?’) 6.5)
ILm
can then be used to rewrite Eq. (6.4) as
(6.6)

This has a similar structure to the ordinary results
described by Eq. (2.4) except that the plane wave is re-
placed by the distorted plane wave ¢’ and V to the right
of the resolvent is replaced by a term which decays as
1/r% 1t is also singular in the forward (backward) direc-
tion, but all integrals will still be finite.

The radial wave function can now be obtained through
the projection procedure and use of the new form of the
Mulherin-Zinnes wave operator??

Pk =3 2T [ iy @)

=5t (k,r)+ 9%k, r) (6.9
A natural division of ¥‘*)(k,7) has been made here into a
Born-like term and a residual term. The Born term is the
p-wave projection of the asymptotic wave function ¢’
and the residual term makes up the difference between it
and the exact p-wave function. The angular integrals can

be done exactly, with the results

(6.10)

@ (k)]

F1(2;2—in;2ikr’)— (Fi(1;1—in;2ikr’) (6.11)

Table IV lists some representative flndlngs from this
approach. The amplitudes calculated with Q}}; are stable
for some range of N and then eventually dlverge quickly.
This problem can be largely overcome by introducing a
resolution of the identity to the right of g'*’ and then us-
ing the epsilon algorithm to extrapolate the resulting sum
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TABLE IV. Calculated values of I(k) using Mulherin-Zinnes wave operator. Extrapolated values in
this case refer to intermediate-sum extrapolation similar to that used in Table I. Parameters used are

A=0.8, 6=0.6, Z=1, and k=1.

Exact I(k)=0.6529655—i0.343065 8.

Shown in the fourth

column is the extrapolated total photoabsorption cross section, for which the exact value is 0.03326
a.u.2. The extrapolated value for the Coulomb phase shift is given in the last column; the exact value is

0.4838 rad.
Calculated - Extrapolated Extrapolated Extrapolated

N 1(k) 1(k) o (a.u?) 8. (rad)
10 0.6403—i0.3017 0.6644 — i 0.2464 0.03070 ° 0.3551
20 0.6523—i0.3172 0.6537—1i0.3212 0.03243 0.4567
30 0.6533—1i0.3263 0.6541—10.3348 0.03301 0.4731
40 0.6532—10.3306 0.6525—1i0.3392 0.03306 0.4794
50 0.6532—170.3332 0.6530—i0.3381 0.033 06 0.4778
60" 0.6836— i 0.3257 0.6531—i0.3389 0.03310 0.4787
70 9.5—i13.9 0.6531—i0.3385 0.03308 0.4782
80 1x10°—i2.2x10° 0.6527—1i0.3385 0.03305 0.4784
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[cf. Eq. (4.13)]. As can be seen from the extrapolated
column of Table IV, this procedure remains stable even in
the face of rampant divergence of the original amplitudes.
We have generally found that the Mulherin-Zinnes opera-
tor is capable of greater accuracy than the Gibson-
Chandler operator. This is represented by comparison of
the phases §, obtained here and in Table II. We attribute
this increase in precision to the 1/72 behavior of the fac-
tor to the right of the resolvent in Eq. (6.8). This is still
considerably less accurate than desired, if implementation
in the three-body case is to be attempted. Once again,
evaluation at finite € stabilizes the amplitude very strong-

ly.
VII. DISCUSSION

An extensive investigation has been made into use of
" finite-basis and wave-operator techniques to calculate the
hydrogenic photoionization amplitude. Different means
of calculating the matrix element replete with the phase
information contained in the scattering function have
been attempted, but have been met with only qualified
success. The quality of amplitudes obtained suggests util-
ity of the method in molecular photoionization. However,
numerical difficulties have been encountered which ap-
pear to be connected with the nonanalytic structure for
Coulomb scattering in the €—0 limit. The difficulties
have limited the ultimate precision to about 1%. This is
discouraging given that similar methods have reproduced
total photoeffect cross sections to several significant fig-
1833 and that equally good convergence was obtained
in the use of only the outgoing spherical wave in Sec. IV.
On the positive side, it is hoped that the evidence present-
ed here will eventually lead to a resolution of the conver-
gence problems, and allow the methods used to be extend-
ed to multiple ionization processes.
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APPENDIX

Gibson and Chandler® have given a rigorous
momentum-space demonstration that the wave operator in
Eq. (5.4) leads to the correct form of the two-body
Coulomb scattering amplitude. This derivation moreover
was free of divergent phases that had existed in previous
calculations. We give below a sketch of the coordinate-
space proof that QG transforms a plane wave into the
appropriate Coulomb continuum function W'+’ given in
Eq. (3.4). The outline of the integral evaluation (which in-
volves taking a tricky singular limit similar to that in Ref.
8) is informative because it is closely related to those
occurring for the other forms of the wave operator, and
also in the partial-wave analogs for the Gibson-Chandler
and Zorbas cases. We have confidence that the details of
rigor can be filled in, but they are not our primary con-
cern in this paper.

Equations (5.4) and (5.6) lead immediately to the fol-
lowing expression for the Coulomb scattering function:

(+) _ i(2k2)_i’7£1+i’7
D= R —w)

X fomdyy“’fdr’G(r,r’;E—}—iy +i€)

X Wo(k,r') . (A1)

From Hostler’s work,?’ there is a convenient integral rep-
resentation for G:
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G(r,r';E+iy +ig)

i
IK s+1 e Ks(r+r)
~or s—1
XJo(2K[rr'(s2—1)]"%cos(6/2))
(A2)
where J; is a Bessel function and
J
2k2)—ingl+in s +1
pit) — 2 VK [ ds 1
(2P T(y)T(1— f vy K [

X[ —2iKs(K?s*—
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+K?=E+iy+ie, Im(K)>0, (A3)
4
== (A4)
K=k
cosf=T-1" . ] _ (A5)

To allow for certain values of u, the integral can be
transformed into a contour integral which encircles the
point s =1 with an infinitesimal radius.

We now have for Eq. (A1), using the results of Ref. 27,

(Kzsz—kz)_3

k) +2K%kts(s2— 1) — (K22 4+ k2K (s2—1)r]

KZ—— kK2 KXs?—1
X exp szr 2 +i k-r———Kz(Ssz_kz) . (A6)
T
With hindsight, we may identify the term singularity explicitly, therefore, we can make the changes
£ vari
(K2sz_k2)—3=[k2(s2_1)+i(y+E)]—3 (A7) O Varlables,

as the cause of the divergence of the double integral in Eq.
(A6). If £ were taken to be O before the integral evalua-
tions, then there would be a nonintegrable singularity at
s=1 and y =0. This is integrable as long as € is finite,
but ‘the result will be ill-behaved as e—0. To extract the
|

(A8)
(A9)

s=142¢v,
y=&x,

Retaining everywhere only the leading powers of &, we
find that Eq. (A6) becomes

4k4‘(2k2)_“’7e""’r o v [ v—im . i(x+1)
plit = dxx~"| dv —i|v+———= | —v(kr—k-r)
Q2732 (y)I(1—v) fo fo 2k +i(x +1)]? 2k
Xexp | — (x—i;l)(llcr—k‘r) ) (A10)
2k“v+i(x +1)
While this looks very complicated still, it is possible to simplify it enormously by making another change of variables,
At ), (A1)
2k
followed by a rotation of the integration path back to the real axis. We thus find that the integral becomes
- —in ikt
Pt — L€ [ dxx V(x +1)"1-1
: 2m)¥’ ()L (1—v) f
@ i _ jw(kr —k-r) i(kr—k-r)
d in -2 | wlkr —k-r) Hrr—Xr
fo ww ™ "Mw +41) { w1 w1 ) (A12)
which can be evaluated from known integrals,
/2t (1 ——v) 2
Y = e__¢ Ly C(1+in) |2 Fi(in; Lilkr —k-1)]
@rP AT (—v) T+ | W1 Fuli
e""/z ik . .
L(1—in)e™™ Fi(in; ;i (kr —k-1)) . (A13)

= 2r)2
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Thus, the exact three-dimensional Coulomb wave function
has been recovered, assuring us of the proper normaliza-
tion in our numerical calculations and reaffirming the
correctness of the results of Gibson and Chandler.

It should be noted especially that, in the final analysis,
the y or x dependence of the integral has factored; that is,
the variable associated with the convolution over the ener-
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gy of the normal resolvent was only involved in the most
singular part of the integral by a multiplicative (normali-
zation) factor. Upon reflection, this fact shows that the
Coulomb wave function could be obtained by the use of
the ordinary Coulomb resolvent given a suitable normaliz-
ing factor. This, of course, is precisely what is accom-
plished by the Zorbas wave operator.’
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