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Mean-electric-field approximation to multiple ionization in distant collisions
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The description of ion-atom collisions in a mean-electric-field approximation is discussed. In this
method the sum of the interactions between the projectile and the electrons of the target is expressed
as the sum of the Coulomb field acting on the center of charge of the target electrons and a residual
interaction. For distant (high-energy) collisions the residual interaction can be neglected. The calcu-
lation of the scattering amplitude corresponding to the mean electric field is performed within the
framework of the first Born approximation. It is shown that for high-energy collisions the scatter-
ing amplitude is a product of single-electron scattering amplitudes and the cross sections of the mul-

tiple ionization follow the binomial distribution. A simple expression is derived for the cross section
of n-vacancy production. The calculated ionization cross sections and mean numbers of outer-shell
vacancies in the presence of an inner-shell vacancy are in satisfactory agreement with experimental
values for high projectile energies.

I. INTRODUCTION

P„(b)=

d o"=2m P„(b)b db .

The validity of the binomial distribution in formula (l)
has been discussed within the independent-Fermi-particle
model, which contains the electron correlations due to
the antisymmetry of the atomic wave function. The re-
sults of such coupled-channel calculations show that the
correlations largely cancel because of a tendency of the
scattering amplitudes to have random phases. This im-
plies that the binomial distribution (l) is a good approxi-
mation to the multiple-ionization scattering amplitude.

In this paper we present a description of multielectron
excitation and ionization processes which is based on the
use of the Coulomb field acting on the center of charge of
the target electrons. This approximation is constructed
within a fully quantum-mechanical framework using the
momentum transfer to characterize the collision. As is
demonstrated later, the operator of the two-body Coulomb
interaction acting between the projectile and the center of

For calculations of multiple-excitation and -ionization
cross sections the single-particle model' meets with a
remarkable success. In this description, which has also
been denoted the "independent-electron approximation, "
the projectile moves classically and the wave function of
the target electrons is expressed as a product of single-
electron wave functions. Then the probability amplitude
of the scattering is the product of single-electron scatter-
ing amplitudes, and the multiple-ionization transition
probabilities P„(b) for removing n electrons from a shell
containing X electrons in a collision with impact parame-
ter b are given by

N [P,(b)]"[l—P,(b)P-". (l)

Here („)are the binomial coefficients with P, (b) being the
transition probability calculated in a single-electron
model. The differential cross section is of the form

/

charge of the target electrons may induce multielectron
transitions even in the first Born approximation.

II. THE SCATTERING AMPLITUDE

We discuss ion-atom collisions where the incident ion is
fully ionized. In this section we use some elements of the
formalism developed in a previous paper of the author.

A. Coordinates and momenta

To describe the collision in the laboratory system we
use the following coordinates. Let Rp and RT be the
coordinates of the projectile and target nuclei, respective-
ly, and R~, . . . , Rz the coordinates of the ZT target

electrons, ZT being the atomic number of the target. The
corresponding momenta are Pp, T, and P~, . . . , Pz .

We define a new set of coordinates as

rj ——R~ —RT,
R=Rp —R~,

ZT

m g Rj+MTRT+MpRp
)=1

R,
MT+Zgm +Mp

(3)

where m is the electron mass, Mp and Mz are the masses
of the projectile and target nuclei, respectively, and Rz is
the coordinate of the center of mass of the target atom:

ZT

MTRT+m g RJ.

Rg —— (4)
MT+Zoom

The conjugated momenta for coordinates (3) have the
form

MTP. —IPT
PJ
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ZT

(MT+Z7m)Pp M—p PT+ g PJ

M~+Zgm +Mp

ZT

P, =PT+g P, +Pp .
j=1

B. The Hamiltonian

The Hamiltonian is given by

ZpZ&e T Zpe+&p~+~~+

(7)

C. The mean interaction

The source of the multiple ionization is the simultane-
ous interaction of the atomic electrons with the projectile.
We describe this process by a mean Coulomb field of the
target electrons. Using the center-of-charge (-mass) coor-
dinate of the target electrons fixed to the target nucleus

R, =
ZT J=1

we split the sum of the projectile-target electron interac-
tions (13) into two parts as follows:

I =VI(IRPT-R, I)
IRPT —r, I

p'
2m

T e2
+r. . r- —r.J i=1 ~ J

(9)

+ Vll(RP„r, , . . . , rz„)
—ZpZ&e 2

VM( IRPT R8
I
)=

PT 8
(17)

Here T, is the kinetic energy operator of the center of
mass and Tpz is that of the atom-projectile relative
motion, and Zp is the atomic number of the projectile.
The symbol Hz represents the Hamiltonian of the target
atom. We split the Hamiltonian (8) into three parts in the
following way:

aO+ ~~a+ VPE

1

r1 —r2

I
r& r1 r2
i+l ~&

r=o ~)
(18)

Wltll RPT =Rp —RT. The quantities V~(
I
RPT —R, I

)

can be regarded as the mean interaction between the pro-
jectile and the Z~ target electrons and
Vg (RPT r~ . . . l'z ) as a residual interaction. Consider-

T

ing the multipole expansion

with

ZpZy e

IRp —RT
I

ZT Zpe 2

IRp —R, I

Ho ——T, + Tpg +Hg,

(13)

we can see that in the region APT & r~ (j =1, . . . , ZT) the
monopole and dipole terms of the left-hand side of Eq.
(16) and that of the mean interaction (17) coincide, that is,
the residual interaction starts with quadrupole terms. The
collisions where the main contributions come from the re-
gion Rpz- ~ r~ are the "distant" collisions. For an atomic
orbit with radius r„ in the case of distant collisions the re-
lation

/

The initial and final asymptotic wave functions corre-
sponding to the eigenfunctions of Ho (11) have the form qmin

U ~n

AE
(19)

%,(Rrl, rz )

=(2~) ~ exP(iP, R/le)C&, (r,, . . . , rz ),
a =i,f (14)

where P; and Pf are the conjugated momenta (6). The
quantities N; and @f are eigenfunctions of H~,
4;(r&, . . . , rz ) is the initial ground-state atomic wave

function, and 4f(rl, . . . , rz ) describes the final state of
T

the Zz- electron-target nucleus system. The motion of the
center of mass of the whole system is separated off and is
not considered. For the sake of simplicity the spin indices
are neglected.

is fulfilled, where U is the velocity of the projectile, b,E is
the energy transfer, and q;„ is the minimum momentum
transfer to the electron on this orbit. For distant col-
lisions the residual interaction V~ can be neglected. In
what follows we restrict ourselves to the investigation of
high-energy collisions where the condition (19) of distant
collisions is valid.

D. The Born approximation
)

We denote the contribution of the mean Coulomb field
(17) to the scattering amplitude in the first Born approxi-
mation by TM. Using the asymptotic initial and final
wave functions given by (14) TM can be written as

2—ZpZye
T~ ——%f R, r1, . . . , rz +; R, r1, ~, z

e
—iq R/fi

= —(2m) ZPZTe2 f dRdrl. drz @f(rl, . . . , rz ) @.(rl . rz )
Rp, —R,
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where

q=pf —P; (21)

Rpr —R, =R— g rjZp (22)

is the momentum transfer to the target atom. According
to the relations (3), (4), and (15) the Rpr —R, coordinate
can be expressed as

with

Mpk~= ~~1
Mz. +Z&m

Applying Bethe's integral6

e iK.R
dR 4 iKx

/R —x/

the TM(q) amplitude in (20) can be given as

(23)

(24)

(25)
—ZpZre A' k~ ~TM(q) = » Cf(r&, . . . , rz ) exp i — g rj N;(r&, . . . , rz )

2& q

which is the matrix element of a Zz-body operator which contains the coordinates of the atomic electrons in a symmetri-
cal form. Excluding the electron-electron correlations, the Born series corresponding to the sum of the projectile-electron
interactions (13) can give contributions to the n-body transitions only from the nth-order terms. In distant collisions,
where the mean-electric-field approximation is valid, the n-body transitions can be described even in the first of the Born
terms of the mean interaction.

Using Eq. (24) the first Born term of the projectile-nucleus interaction (12) which we denote by T„,(q) can be written

ZpZz-e fi
T«, (q)= @f(r~, . . . , rz ) exp i — g rj @;(r~, . . . , rz )

27K q
p ~ ~ ~ P .

@ J g P 4 ~ ~ P

J = I

Zym
krec =

M~+ Zz-m

(26)

(27)

(28)

As k„„ is small, T„„(q)can have considerable values
only at very large recoil momenta q, and in the calcula-
tion of the total ionization cross sections can be neglect-
ed.4

For distant collisions, which according to relation (1'9)
correspond to high-energy projectiles, the characteristic
momentum transfers are small enough to justify our fur-
ther approximations. Hence, if we apply for the atomic
wave functions C&, (r~, . . . , rz ) a Slater determinant, the

T
part of the amplitude corresponding to the exchange
terms can be neglected and we can write

2'rT Q
~ i ZT

(28) Zr by Z, where Z~ is the number of atomic elec-
trons given by the sum which runs from the E shell up to
the ionized main shell. That is, at the excitation and ioni-
zation of electrons in a given shell, according to Eq. (28)
each of the electrons of this shell and the electrons inside
obtain the momentum q/Z . Below we use the number
Z„ instead of Zr.

III. THE CROSS SECTIONS

A. Inelastic cross section

The differential cross section for the transition with
momentum transfer q leading to a final state f using the
scattering amplitude (28) can be given as

~fj, (K)=(Pf(r, )
~
exp( —iK.r, )

~ P(r, )), (29)

where p,'(rj ) and Pj(r~ ) are the single-electron wave func-
tions of the jth electron in the initial and final state,
respectively.

Formula (28) shows that for high-energy projectile the
scattering amplitude is a product of single-electron
scattering amplitudes. This result has been obtained
without the assumptions on the product wave function of
the target and on the classical motion of the projectile
made by Mcguire and Weaver in the single-particle
model.

To calculate ionization and excitation of outer shell
electrons we shall apply the amplitude (28). In inner-shell
processes the momentum transferred to the outer-shell
electrons can be neglected. In this case we replace in Eq.

do-f
=8m

dq

ZpZ e
(30)

where af; is the squared single-electron amplitude for the
jth electron:

f;(K)=
~
Af;(K)

~
(31)

B. Inelastic cross section at a given momentum transfer

The inelastic cross section cr(q) at a given momentum
transfer q can be calculated by summing over the possible
final states f. Considering the completeness relation of
the single-electron amplitudes we can write
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g af~;(K.) =1—a ~J(K),
f&i

(32) dov
=8m

dq

2 2
ZpZ e 1 q

n 3fv Z

n

the sum runs over the possible bound and continuum
atomic electron states except the ground state. If there
are n vacancies in the orbit v (v=nolm) which contain X
electrons in its ground state, from formulas (29)—(32) fol-
lows

N —n

where f„(q/Z, ) is given by the elastic form factor as

(33)

1 &m q.rf„(q/Z, )=1— g p„(r) exp i
2l +1 Z

2

m„(r)) (34)

where i is the quantum number of the orbital momentum
and the sum is over the magnetic quantum numbers m.
Expanding the exponential operator into a partial-wave
series

For the determination of q;„and q,„we use the rela-
tion between the momentum and energy transferred to the
target atom. The absolute value of the momentum
transfer (21) is given as

oo

exp(iK r)=4~ g g ij~(Kr)YII(K)Y&m(r) (35) q =Pf+P; 2P;Pfc—os@, (42)

f„(K)= 1 —g (21'+ 1)(lOl'0
i
lO)Eii (K) (36)

l=o m= —l

we obtain after straightforward calculations the following
expression for f (K):

where'0 is the center-of-mass scattering angle. The ener-

gy transfer in the laboratory system to the atom with ini-
tial energy E; and final energy Ef can be expressed as

2 2 2

43
Pfr Pg ( P;I, —Pf1 )

with

+tI'(K)= J dr r jl (Kr)qr„(r),

where jp(Kr) is a spherical Bessel function.
We notice that by introducing the new variable

2ZpZveb=
Uq

(37)

(38)

here the label I. relates to the laboratory system. The
third term is the kinetic energy transferred to the target
atom which can be neglected when only projectile-electron
interactions are considered. Furthermore, in this case the
scattering angle 8 and the transferred momentum com-
pared to the projectile momentum are very small. Then
we obtain from relations (42) and (43) that

the differential cross section (33) can be written in a form
analogous to the semiclassical cross-section formula (2)

n 2 N —n
2Zpe 2Zpe

do"„=2rrb db f„ 1 f-
U6 Ub

(39)

C. Inelastic cross section
integrated over the momemtum transfer

Now we consider the cross section of the process lead-
ing to the final state f which can be obtained by integrat-
ing the differential cross section (30) over the momentum
transfer q:

PL, (Pfl. —PI. )
Ef—E; = =U (PfL —PL ) =Uq~~ =v'q,

Mp

q~ =P;5. (45)

The lower integration limit q;„ is determined by the
minimum value of q from Eq. (44) as given by (19):

qmin =q)J = (46)

(44)

that is, the component of q parallel to P; is fixed by the
energy conservation-and that its perpendicular component
has the value

~max
o. = dq

q min dq
(40)

In the case of n-electron ionization the threshold of the
momentum transfer is

Introducing the new variable

q'=q/Z
qth = (47)

o-f=8m-
2 2

Zpe f + afJ;(k q/fi) .
/ q3

(41)

and using (30) the total cross section o.f can be expressed
as

where Ez is the energy needed to remove n electrons from
the atom.

The upper limit q,„can be calculated using the
kinematics of the process. Instead of this kinematical
limit which can practically be taken as infinity we use as
the maximum of qz the characteristic value
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qj. max = 2Z~Zp8

where r is the root-mean-square radius of the investigat-
ed shell. This choice of qj,„corresponds to the momen-
tum transfer from the projectile to the Z electrons con-
centrated in one point in a collision with impact parame-
ter r . Equation (48) is an asymptotic form of the expres-
sion valid for the Rutherford scattering:

to take the characteristic value of the momenta of the
directly ionized electrons.

With constant integration limits and neglecting the con-
tributions corresponding to excitations to bound atomic
states, for the integrations over p; we can apply the treat-
ment discussed in Sec. III B. Through relations (32), (34),
and (52) the cross section of the n-vacancy production in
the orbit v with X electrons in the ground state can be
written as

Zp8 /Pl U

qJ. max v
((Z p/ p)p+ p )]/pq j. max Zv2Mv (49) 0."=Sm

2'2
Zp8 d

vq

for the limit r, »Zpe /mv . Using Eqs. (46) and (48)

q „can be written as
2 2 1/2

a =(q~~+qx

[(Ef E—;) +(2Z—„Zpe /r )']'~'. (50)

The reduction of the kinematic upper limit to q,„as
given in Eq. (50) makes it possible to fulfill the condition
of distant collisions for velocities

2Zp8 (1. (51)

D. The multi-ionization cross section

The total cross section o", of the n-vacancy production
can be obtained by integrating the cross section (41) over
the momenta p~, . . . , p„of the ionized electrons as fol-
lows:

If this relation is valid the contributions which correspond
to the spatial region where the strength of the mean-field
interaction strongly exceeds that of the sum of the
projectile-electron interactions are removed from integral
(41). Since Z,e /r, has the order of magnitude of the
binding energy of the ionized electrons for low projectile
charges, q,„ is close to q;„. The limits (46) and (50)
show that the region of momentum transfer for high-
energy projectiles is fairly confined.

E. Multiple-vacancy production in high-energy lixnit

If we restrict ourselves to the study of atomic orbits
with orbital momentum l =0, then in formula (36) only
the term corresponding to the spherical Bessel function of
zeroth order gives contribution. Even in the case of atom-
ic orbits with l)0 at small momentum transfers the
essential contribution comes from the term of zeroth or-
der. If the projectile velocity is so high that the inequality

Zp8
(56)

is fulfilled, i.e., q/fiZ is small compared to the inverse
radius of the atomic orbit, see Eq. (48), the zeroth-order
Bessel function is duly approximated with the first two
terms of its power-series expansion

'2

jp(k~rq/fi) =1——kM r—1

6
(57)

(55)

This cross-section formula is valid for high projectile en-
ergies where the condition (19) of the distant collisions is
fulfilled and the upper momentum-transfer limit is small
enough to allow the omission of the exchange terms of the
scattering amplitude (25). The high projectile energy al-
lows further simplification of the formula (55) as given in
Sec. III E.

2 2
Zp8

x I dp~ . dp„ I 3 g af;(k~q/4) .
dmin /Zv J=

and from Eqs. (36) and (37)
2

, ("),
follows. If the relation

(58)

Ef—E; =E~+g p; /2m (53)

also depend on the momenta p;. We get rid of this depen-
dence by approximating Ef —E; by the constant I„de-
fined as

2
qi max

Ef—E; -I„=Eg+n
Z~2m

(54)

where the momentum qz, „/Z„given by (48) is assumed

(52)
Unfortunately, in the limits of integration over q, given by
Eqs. (46) and (50), the term Ef E; given as—

X
1

n —I
pg 2Zp8

n v 3A'v

2Zpe I„)) (59)
r~ V

holds then the assumption I„=O seems valid. With ap-
proximation (58) we can perform the integration in the
cross-section formula (55) analytically. Taking kM equal
to unity and neglecting the higher-order terms according
to the condition (56) and using (59) we obtain

2 2'
2Zp 8o"„=m (r ')„
&3AU
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This relation shows that the n-vacancy production de-
creases as v "-Ep " with the projectile energy Ep. The
properties of the electron orbit are suppressed into the
mean-squared radius r, = (r )„ofthe shell;

F. One-electron ionization

&~ax/' ~ dII1RX V

cr =8m1

Now we discuss the difference between the cross-section
formula given by the mean-electric-field approximation
(55) for ionization of one electron,

2'
Zp8

the projectile only through the ratio Zp/v. This scaling
property has been recently discussed within the frame-
work of a simplified binary-encounter model.

If the projectile is not fully ionized, we determine the
projectile effective charge Zz using a screened charge
based on the Gaspar potential as discussed in Ref. 9. If
the atomic number of the projectile is Z~ and its ionic
charge is J, Zp can be expressed as

e 0

Zp I+——(Z~ I)— (65)1+K' v

We parametrized vo and v as in Ref. 10:

(61)

and that corresponding to the conventional Born approxi-
mation,

vo(Z~ ) =(0.1306X 10 Z~+ 0.2765)Z~

~(Z )=(0.3453/10 Z +0.9406)Z'
(66)

2 2
Zp8

X f 3f„(q). (62)

The screening described by relation (66) corresponds to
the case when the projectile moves at the center of the tar-
get atom.

Since at high velocities the (X—1)th power in Eq. (61)
may to a good approximation be set equal to unity, the
main difference between the expressions is in the limits of
the momentum-transfer integral. As the integrand
behaves like 1/q [see Eq. (58)], in transforming the in-
tegral (61) the Z, number in the limits can be omitted.
Since the value of the integral is determined by the lower
limit, the different upper limits cannot make a drastic
difference between the cross-section values calculated
from Eqs. (61) and (62).

V. RESULTS

When calculating the f (q) factors in (36) we have used
nonrelativistic screened hydrogenic wave functions. We
have followed the screening procedure of Slater. " In this
case the calculation of the integral (37) can be performed
in analytical form. We have neglected the difference be-
tween the subshells of the given main shell using the wave
function. of the s subshell for the main shell.

IV. VACANCY PRODUCTION IN THE PRESENCE
OF AN INNER-SHELL VACANCY

As is well known, the intensive inner-shell vacancy
production occurs at impact parameters close to the in-
verse of the minimum momentum transfer defined by re-
lation (19). This distance, also called the adiabatic radius,
has values similar to those of the inner-shell radius r„ for
swift collision. The radius of an inner-shell orbit is much
less than that of the outer-shell orbits. Therefore, when
producing an inner-shell vacancy the projectile has the op-
portunity to transfer the maximum amount of momentum
to the outer-shell electrons. According to this argument
the mean ionization probability for the outer shell v at
zero impact parameter, denoted by P,(0), corresponds to
the factor f„defined in (34) at momentum transfer
q,„/Z, [see also relation (39)]. Using relation (50) for
q,„we can write

2Zp8
P,(0)=f„

vr
(63)

where according to inequality (59) we have neglected the
parallel component of q,„. For a high-energy projectile,
in approximation-(58), we obtain

2 2

P (0)=—4 Zp8'
(64)

3 Rv

The relation (63) shows that the mean ionization probabil-
ity at zero impact parameter depends on the properties of

A. Ionization cross sections

We present calculations for He and Ne targets at proton
impact in the energy range 0.01—4 MeV and compare
them with the experimental data. ' In the investigated re-
gion for the Ne target, the multiple outer-shell ionization
is far more probable than the multiple ionization occur-
ring via K-shell ionization followed by Auger decay. ' '
It has been demonstrated by DuBois' that in the energy
region 0.015—0. 1 MeV the simultaneous electron capture
plus ionization and the direct multiple ionization of the
outer shell dominate over direct single target ionization.

In the calculation of q;„ from Eqs. (46) and (54) for
the He and Ne targets we have used experimental and cal-
culated' binding energies, respectively. For Ne we have
averaged over the energy values corresponding to the 2s
and 2p subshells. Contributions arising from the Auger
decay following the E-shell ionization of Ne have been
neglected.

At higher projectile energies where the mean-electric-
field approximation and the Born approximation become
valid there is satisfactory agreement between the calculat-
ed and experimental multi-ionization cross sections, see
Fig. 1. At projectile energies Ep &0.5 MeV we also give
the results calculated by the approximate formula (60).
The results slightly exceed the cross sections calculated
without approximations. The single-ionization cross sec-
tions calculated by the mean-electric-field approximation
(61) and by the conventional formula (62) agree remark-
ably. This agreement supports the arguments that in the
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1p-15

d(Cm2)

10 17

1p-18

I I I I I I I I I I II-'

(&)

H+- He

case of single-electron ionization the two approximations
are equivalent.

B. Vacancy production in the presence
of an inner-shell vacancy

There are a number of experimental data for Ne targets
for the average number of I.-shell vacancies produced
simultaneously with a K-shell vacancy. Figure 2 shows
the data of papers' compared with the theoretical
curve calculated according to the relation (63) with effec-
tive charge defined by (65). The results, presented as a
function of the dimensionless scaling parameter Zpc/U, at
high energies, which corresponds to smaller values of
Zzc/U, show a good agreement with the values evaluated
from the measured spectra.

VI. DISCUSSION

1p-19

1p-20
0.01

1p-15

d(cm )

10-16

1p
17

I I I I I I II

0.1
I I I I I IIII I I I I I III

10
Ep CNeV)

The region of validity of the mean-electric-field approx-
imation corresponds to the high projectile energies where
the contributions due to the residual interaction and to the
higher Born terms of the mean interaction seem to be
negligible. In this region the approximations connected
with the choice of limits of the momentum transfer, in-
tegral given by formulas (48) and (54) obviously cause
negligible errors.

The application of this method for lower projectile en-
ergies is hindered by a number of difficulties. If the con-
dition for distant collision is poorly fulfilled then the
cross sections are strongly overestimated. The contribu-
tions corresponding to electron-electron correlations for
low energies may be important.

The choice of atomic wave function can affect seriously
the results only at lower projectile energies, at high ener-
gies it has little influence on the results. At high energies
the cross section depends only on the low-momentum
behavior of the elastic form factors, which is determined
by the asymptotic behavior of the wave function. Since
the asymptote is determined by the binding energy, the
atomic wave functions of correct binding energy should be

1p-18
1.0

0.8—

10-19

CL 0.4—

10 20

0.01
I I I I IIIII

0.1
I I I I I I III I I I I IIII

Ep (NeV)

FICx. 1. Multiple-ionization cross sections for (a) H -He and

(b) H+-Ne collisions. The data are taken from the work of Du-
Bois et al. (Ref 12): &, single vacancy; 0, double vacancy;
triple vacancy. Solid lines correspond to the mean-electric-field

approximation, dashed lines are the single-ionization values cal-
culated by the conventional formula (62), dotted lines corre-

spond to the simple approximate formula (60) of the mean-

electric-field model.

0.2

I

150
0

100
I

50 200

2 pc/v

FICx. 2. Mean L-shell ionization probability at zero impact
parameter for Ne as a function of the scaling parameter of the
projectile Z~c/v compared with experimental data: 0, Brown
et al. (Ref. 17), &&, Kauffman et al. (Ref. 18); 0, Schneider
et al. (Ref. 19); D, Kadar et al. (Ref. 20). Solid line has been
calculated by relation (63).
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appropriate for the description of multiple ionization.
The importance of the contributions of inner-shell va-

cancies via Auger decays as compared to the multiple ion-
ization has to be discussed in each case separately. Within
the present framework we cannot properly determine the
role of the simultaneous capture and ionization mecha-
nism as compared to the direct single target ionization.

In conclusion we can say that the mean-electric-field
approximation seems to be a consequent description of the
multi-electron transitions at high energies. The method is
tractable, moreover, the very simple approximate formula
derived for multiple-vacancy production may be a useful
tool to estimate the multiple-ionization cross sections for
different physical problems.
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