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Dispersion of an atomic, giant-dipole resonance
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The dispersion, of the collective excitation in the n =4 shells of xenon has been calculated, includ-

ing all significant partial-wave contributions, by a time-dependent, self-consistent-field method. The
calculation reveals details of the physical mechanism that produces the dispersion. The calculated

dispersion coefficient is compared with experimental results.

I. INTRODUCTION

This paper reports the first time-dependent, self-
consistent-field' calculation of finite-wavelength spectra
for xenon. It adds substantially to the understanding of
the dispersion of the strong collective mode that dom-
inates the spectra in the regions of 4d-shell excitations.
That mode is a dipole oscillation of the charge in the
n =4 shells. The collective peak disperses to higher ener-

gy as the wavelength of the applied field decreases. The
calculated dispersion coefficient is compared with existing
data. The calculation challenges experimenters to gen-
erate more and better data. It also identifies precisely
what it is, in the interaction between the n =4 shells of
the atom and the applied fields, that produces the disper-
sion.

The observed spectrum of photoabsorption by the 4d
shell of xenon to the continuum differs from the predic-
tions of simple calculations of atomic structure. The cal-
culations give a monotonically decreasing function of en-

ergy from 1 Ry above threshold. In the data there is a
peak about 2 Ry wide centered at 7.5 Ry excitation ener-

gy, or about 3 Ry above the 4d threshold. Most of the os-
cillator strength of the 4d shell is in this peak. Zangwill
and Soven (ZS) showed that a time-dependent, self-
consistent-field calculation of the spectrum gives good
agreement with the observed photoabsorption. ' They
showed evidence that the peak is an atomic, giant-dipole
resonance, that is, a collective oscillation of the charge in
the n =4 shells of the atom. It is strongly damped, as the
width of the peak proves. This is reasonable, since its en-

ergy is degenerate with a continuum of one-electron exci-
tations. The charge fiuctuations and the induced fields
they produce are dominated, at energies near the peak, by
the contributions from the n =4 shells. The spatial distri-
bution of the induced charge is consistent with a simple
picture of charge sloshing back and forth across the
atom.

The excitations of n =4 electrons in xenon and in simi-
lar atoms can be measured by electron-energy-loss spec-
troscopy. At small momentum transfer q, that is, when
the applied fields have long wavelength and I =1 angular
dependence, energy-loss and photoabsorption spectra
differ only by a slowly varying function of the excitation
energy. As the momentum transfer increases, the wave-
length of the applied fields becomes shorter and there are

angular. dependences other than I =1 present. There exist
preliminary measurements of the dispersion of the collec-
tive peak for atoms near xenon in the Periodic Table. '

II. THE CALCULATION

Vq =( 4meiq —) g (21+1)ij't(qr)Pt(cos8)
1=0

(2)

because, as ZS point out for the l =1 wave, the spherical
symmetry of the unperturbed atom means that its
response to each term in Eq. (2) may be calculated in-
dependently. For each l, an integral equation for the in-
duced charge density with that angular dependence was
solved using the method given in ZS. For each q, all im-
portant I's were included in a calculation of the spectrum.
Then the dispersion of the centroid of the collective peak
in the spectra was calculated.

Note that there are two ways in which dispersion may
arise. Let d be a typical radius for an electron in the
atomic shell being excited. - First, as qd becomes compa-

The time-dependent, self-consistent-field calculation,
extended to describe electron-impact excitations, can be
tested by comparison with the data. The method of the
calculation is close to that given by ZS. Consider a high-
energy electron (=10 eV) scattering from an atom. It is
fully adequate to consider an incident plane wave and
transitions to final states that are also plane waves. The
atom may be excited during the transition. The Coulomb
potential of the passing electron, acting on electrons
bound in the atom, drives their transitions. For scattering
with a particular momentum transfer q, the Fourier
transform of the Coulomb potential at wave vector q is
the effective part of the field applied to the atom. Thus:

V~=( —4m.e/q )exp(iq r)

is the applied field to use in the calculation. This poten-
tial cannot exist in a vacuum; rather it implies an applied
charge density —e exp(iq r). Even those transitions that
can be driven only by placing applied charge within the
atom, such as monopole (breathing-mode) transitions, are
observable in energy-loss spectra. It is convenient to ex-
pand the potential in spherical waves:
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FIG. 4. Contributions to the energy-loss spectrum of xenon
o

at 3.4A . The time-dependent, self-consistent-field calcula-
tions for all the I components of the transition operator that
contribute significantly are shown, as solid (1=1) and dashed

(sum of It =0, 2, and 3) lines.

FIG. 5. Dispersion coefficients for the collective peaks asso-
ciated with the filled n =4 shells in elements near xenon. The
results of Ref. 4 are plotted vs atomic number. Their stated un-
certainties are indicated. The diamond at xenon is an estimate
of the dispersion in the results of Ref. 5. The horizontal line is
the free-electron value and the open square at xenon is the result
of the present calculation.

The energy of the centroid of the collective feature and
its peak energy are linear functions of the square of the
wave vector q, as Fig. 3 shows. The constant of propor-0 0
tionality is 0.9 eVA for the peak energy, 1.2 eVA for
the centroid. This dispersion coefficient is the meeting
ground between theory and experiment. To provide a
scale, the ratio between the energy of a free electron and
the square of its wave vector is 3.8 eV A .

To learn why the centroid disperses, let us concentrate
on the calculation for 3.4A . Figure 4 shows all signifi-
cant contributions to that spectrum, separated according
to the value of I in the applied field from which they
arise. Even though the product of this q with the 4d ra-
dius is about 1.7, nondipole transitions make only a small
contribution to the spectrum. There is no collective peak
in the I =0 or I =3 channels, and no strong one in l =2.
The peak in the spectrum is dominated by the dipole,
l =1 channel. The dispersion of the l =1 peaks is indis-
tinguishable from that in the complete spectra of Fig. 2.
The dispersion must, therefore, be a finite-wavelength ef-
fect in the I = 1 channel, for these momentum transfers.
This is partly in accord with the predictions of a simple,
collective model formulated by Franck. A sphere, con-
taining ten electrons at the same density as is found in the
4d shell of xenon and a rigid, uniform, positive charge,
has normal modes of oscillation labeled by the usual angu-
lar indices I and m. Franck used the Lindhard dielectric
function to describe the response of the electrons to ap-
plied fields. He found a large dispersion, 11 eVA . In
agreement with the present calculation, he found that
finite-wavelength effects were much more important than
excitations of modes with l's different from 1. The large
value of his dispersion coefficient is the same as that of
the bulk plasmon in an electron gas with the density of
the 4d electrons in xenon. That the present calculation
finds the same mechanism for dispersion, but a much
smaller coefficient, suggests that the simple model may be
a good one, but only if the Lindhard dielectric function be
replaced by something more appropriate for describing
response in a bounded system.

IV. DATA

Now let us consider the observations. Franck and
Schnatterly have measured the dispersion of the collective
peak associated with filled 4d shells in antimony, telluri-
um, and barium. They used solid samples and varied the
momentum transfer from small values up to 1.4A
They found the dispersion of the energy centroids to be
close to a quadratic function of the momentum transfer,
with much scatter and large uncertainties. The dispersion
coefficients they obtained are shown in Fig. 5. The tellu-
rium samples and data were their best, and fell close to
the free-electron value. The coefficients for antimony and
barium were smaller than the free-electron value, one-
quarter to one-half of it, but with uncertainties large
enough to be consistent with the value found in the
present calculation, which is one-quarter of the free-
electron value. Analyses in this laboratory of real and
simulated data indicate that the background beneath the
collective peak in energy-loss spectra also disperses, and
that methods that have been used to remove that back-
ground may produce some false dispersion of the peak in
the data. Afrosimov, Gordeev, Lavrov, and Shchemelinin
have measured energy-loss spectra of noble gases includ-
ing xenon. From their Fig. 2, if one ignores the problems
in subtracting the background, it appears that the disper-
sion coefficient for the collective peak for xenon would be

0

about 2.3 eVA, near half the free-electron value. This
result is included in Fig. 5.

V. CONCLUSION

This paper reports the first realistic calculation of the
dispersion of a collective excitation in an atom. Over the
range of wave vectors investigated, applied and induced
fields with dipolar angular shape dominate the computed
spectra. The dispersion of the peak is therefore a finite-
wavelength effect in the I =1 part of the response of the
atom to the applied field. The dispersion coefficient cal-
culated is smaller than the experimental results. Better
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data and more painstaking analysis of it may reduce this
discrepancy. They will provide a new test of time-
dependent, self-consistent-field calculations of atomic
spectra.
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