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Harmonic oscillator with strongly pulsating mass under the action of a driving force
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The exact solution for the problem of a harmonic oscillator of frequency coo and mass Mo cos (vt )

is extended to include the effect of a driving force Mojo cos(At+/). With 4)+0, catastrophic reso-

nances occur when A. =(coo+v )'~2+v. Pseudoperiodic states exist, provided that A, =coo and k, v are
commensurate. The corresponding quasienergies are finite in the cases P =+sr/2.

I. INTRODUCTION

The effect on an oscillator of an input or removal of en-

ergy may be represented by suitably varying the mass pa-
rameter. The best known example is the case of damping,
when the mass is given a growth factor exp(2yt),
y~0. ' Remaud and Hernandez remark that whenever
energy is supplied to an oscillating system in a periodic
cycle, the resulting dynamics may be described by letting
the mass be a periodic function of the time. These au-
thors compute the fluctuations in the energy and position
of a Gaussian wave packet when the oscillator mass is
taken as

the conditions in a cavity or waveguide in contact with a
resonant atomic reservoir, it is desirable to add a periodic
driving force. The general problem of a driving force,
coupled with variable mass, has been considered aire&, dy
in Refs. 4—6, 8, and 21. As far as the authors are aware,
the present paper is the first in which an exact solution is
obtained for periodic mass and periodic driving force. In
Secs. II, III, and IV we work in the Heisenberg picture; in
Sec. V the Green function is'calculated and is applied in
Sec. VI to calculate the wave function for a quasicoherent
state at any time t & 0. Finally, in Sec. VI, an exact solu-
tion of the full Schrodinger equation is found and the
concept of quasienergy is discussed.

1, 1&0
M(t)= .

1+asin(kt), t&0, ~a
~

&1.
A well-known resonance is found in the case A, =2coo,
where coo is the natural frequency of the oscillator. Do-
donov and Man'ko, Landovitz et al. , ' and Leach"
have extended the discussion to variable coo as well as vari-
able mass.

Our aim in the present series of papers' ' is to exam-
ine mass laws which are of interest in quantum optics, or
other branches 'of quantum-field theory, and which are
mathematically tractable. As discussed in Refs. 12 and 15
the field in a Fabry-Perot cavity in contact with a reser-
voir of two-level atoms can be represented by the Hamil-
tonian

II. THE SOLUTION IN THE HEISENBERG
PICTURE

Under the action of a force F(t) the Hamiltonian be-
comes

H(t)= ,'p /M(t)+—[M(t)/M(0)][ —,M(0)cooq —F(t)q] .

(4)

We introduce the scaling transformation, as in Refs.
12—14

Q =[M(t)/M(0)] ~
q, P =[M(t)/M(0)] ' p,

then with

H (t) = ,' p'/M (t)+ —,M (—t)cooq' . (2)
M(t)=Mocos (vt),

Under suitable conditions the photon population in the
cavity and hence the field intensity can vary quite appre-
ciably with the time, often in a periodic or nearly periodic
manner. ' ' To simulate such situations the mass may be
taken of a form similar to Eq. (1)

the Hamiltonian [Eq. (4)] assumes the form

H (Q, P, t) = , P /Mo+ , Moro—oQ —,v ta—n(vt)(QP +—PQ)

—F(t)cos(vt)Q .

Let us consider a periodic driving force

M(t)=Mt+Mocos (vt) . F(t)=Mpfpcos(kt +P) (8)

The case M~ ——0 is considered in Refs. 14 and 15 and in
the present paper. The case Mo«M& is considered in
Ref. 20, and also in Ref. 15 when coupled with the adia-
batic condition v«~0. In order to represent more fully

The Heisenberg equations of motion are

Q =P/Mo —vtan(vt)Q, (9a)
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P =v tan(vt)P M—prppg +F ( t }cos(vt), (9b} For a constant driving force (A,~0,$—+0), Eqs. (13c) and
(13d) reduce to

or, in decoupled form
R ( t ) = (fp /ct)p )[cos( vt) —cos( Qt) ] (14a)

Q+Q Q =[F(t)/Mp]cos(vt),

P+[Q —2v sec (vt)]P=F(t)cos(vt),

Q =cop+v

(10a}

(10b}

(10c)

q' —2vtan(vt)q+copq =F(t)/Mp . (12)

In classical terms Eq. (12) describes the motion of a parti-
cle of mass M(t) =Mpcos vt attracted to q =0 by a force
M (t)cppq together with the driving force
[M(t)lM(0)]F(t). The solution corresponding to the
force (8) is [cf. Eqs. (4.3a) and (4.3b) of Ref. 14]

Q (t)=Q (0)cos(Qt)+ [P(0)/MpQ]sin(Qt) +R (t), (13a)

P (t) =P (0)[(v/Q)tan(vt)sin(Qt) +cos(Qt) ]

+MpQQ (0)[(v/Q)tan(vt)cos(Qt) —sin(Qt)]

+S(t),
where the responses R,S in Q,P are given by

(13b)

From Eqs. (5) and (6} the physical coordinate and
momentum are given by

q =Q sec(vt), p =P cos(vt) .

The equation of motion (10a) may be written in the form
Ap=—(cop+ v ) +v . (15)

If /&0 and k takes one of the values given by Eq. (15),
then a catastrophic resonance in Q occurs immediately
(i.e., at t =0). If, however, /=0 and A, takes one of the
values A,

~
or A,2, then from Eqs. (13a) and (13c) the

response R(t) contains a secular term proportional to
t sin[(k+v)t]. From Eq. (11) we see that the physical
coordinate q becomes infinite when M~O at t =ml2v,
but this is an unavoidable feature of the model.

III. THE ENERGY OPERATOR

We extend the expression for the energy given in Refs.
13 and 14 to include the work done by the driving force;
thus from Eq. (4) the energy operator is

F. = [M(t)/M(0)][T+ V —F(t)q],
where

S ( t ) = (Mpf p Q /Cpp )[sin( Qt ) —( v IQ )tan( vt )cos( Q t )]
(14b)

We see from Eqs. (11), (13c), and (13d) that the
responses in Q and the physical momentum p are finite at
all times for all driving frequencies except possibly for
resonances at

cos[(A, +v)t +P]—cos(Qt)cosg
Q —(A, +v)

T = —,p /M(t)= —,P /M(0),

V = ,
'

M(t)copq =——,M(0)copg
(16b)

cos[(A, —v)t +P]—cos(Qt)cosg
Q —(A, —v)

S(t)=Mp[R+Rvtan(vt)] .

(13c)

(13d)

The mass law (6) coupled with transformation (11) gives

E =cos (vt)(T+ V) —cos(vt)F(t)Q(t) .

Using the solution given by Eqs. (13), we find

E =Fp+Mpg (0) [v tan(vt)cos(Qt) —Q sin(Qt)]R

I[cpp+ tan (vt)]cos(Qt) —Qvtan(vt)sin(Qt) IR — —cos(Qt)cos( t)

P (0)
[v tan(vt) sin(Qt) +Q cos(Qt) ]R

+ I [cop+v tan (vt)]sin(Qt)+Qvtan(vt)cos(Qt)IR — sin(Qt)cos(vt)
Mo

"
+ ,'Mcg Rp+ ,' S /M—p FR cos(—vt), —

(18)

where Eo denotes the expression for the energy in the ab-
sence of a driving force, given by Eq. (4.5) in Ref. 14.

IV. DIRAC OPERATORS, NUMBER STATES,
AND QUASICOHERENT STATES

We proceed as in Ref. 14 and introduce Dirac operators
A, A which satisfy [A, A ]=1 at all times. A suitable

choice is

3 (t) =(2MpRQ) '~ tMp[Q —ivtan(vt)]Q+iP I

+L (t), (19a)

I.(t) = —(Mp/2AQ)'~'{QR (t)+i [R(t)—R(0)]I,
(19b)
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A(t)=e ' ' A(0)+ I e' 'e(~)dr +L(t),
e(r) = —,

' vtan(vr)(L L'—)+i(v /2Q)tan (vr)(L +L*)
(20a)

where we note that, apart from cases of catastrophic reso-
nance, L (0)=0. The variation of 3 with time is accord-
ing to

Q (t) =(iri/2MoQ)'~'[A (t)+ A t(t)]+R (t),

P(t) =(MofiQ/2)'~ I [(v/Q)tan(vt) —i]A

+[(v/Q)tan(vt)+i]At[

(21a)

+i(2MpQiit) '~ F(r)cos(vr) . (20b)
+M, [v tan(vt)R (t)+R(t) —R(0)] . (21b)

The scaled coordinate Q and momentum P may be ex-
pressed as

Using Eqs. (2la) and (21b) we may write the Hamiltonian
(7) in the form

H =RQ(AtA+ —,
' )[1—(v /2Q )sec (vt)] —(A'v /4Q)(A +A )sec (vt)

+(2 t(MpiriQ/2)' [(v/Q)tan(vt) —i]+coo(Mpiit/2Q)'~ R +(A'/2MoQ)'~ Fcos(vt)[+H. c.)

+ ,
'

MptppR —(RQl4)g—(t) FR cos(v—t)+ —,
' iv tan(vt)(2MoA'Q) '~2Rg (t),

g (t) =i (2Mp/fiQ)'~ I vt an( vt)R (t)+ [R(t)—R(0)] I .

(22a)

(22b)

Time-dependent number states (eigenvectors of A A) and quasicoherent states (eigenvectors of 2) exist for A, A t given
by Eqs. (19a) and (19b). Since we have ensured that [ A, A ]= 1 at all times, it follows that

A 2
f
n(t)) =n

f
n(t)), n =0, 1,2, . . .

3 fa(t))=a(t) fa(t)),
(23a)

(23b)

where the connection is

(23c)

From Eqs. (21a), (21b), and (23b)

(a
f
g(t)

f
a) =(iit'/2MoQ)'~'[a(t)+a*(t)]+R (t),

(a
f
P(t)

f
a) =(fiMoQ/2)' {[a(t)+a'(t)](v/Q)tan(vt) —i[a(t) —a*(t)]I+S(t) MpR(t) . —

(24a)

(24b)

Clearly, the uncertainties in Q and P in state
f
a) are not

affected by the presence of a driving force and the expres-
sions (9.2c), (9.2d), and (9.3) in Ref. 14 still hold. In a
number state

f
n ) we find that the uncertainties are

(b,g)„=(n+ —,
' )(A'/MoQ), (25a)

(n fH fn)=(n fHo fn)

+ —,Mp I [R (t) —R (0)]i

+[Q —v sec (vt)]R (t)I

(KP)„=(n+ —,
' )iitMoQ[1+(v/Q) tan (vt)],

so that the product of physical uncertainties is

b, q„bp„=(n+ —,
' )A'[1+(v/Q) tan (vt)]'~

& Aq Ap~,

(25b)

(25c)

FR cos(vt), — (26b)

where, on using Eq. (3.16) of Ref. 14,

(n
f
Ep

f
n ) =(n+ i )iri(top/Q)[1+ i (v/cop) sec (vt)],

(26c)

FR cos(vt), — (26a)

where we have used Eq. (9.3) of Ref. 14.
The expectation values of E and H in state fa) are

easily derived from Eqs. (16), (21), (22), and (23b). The
expectation values in state

f
n ) are given by

~n
f
E

f
n) =~n

I
Eo

f
n)+ ,'MocooR —+—,'S /Mo

(n
f Hp f

n) =(n+ —, )irtQ[1 ——,'(v/Q) sec (vt)] .

V. THE GREEN FUNCTIQN G(Q, Qo, t)

A formal integral of the evolution equation

HG =txaG/at, G(g, g„o)=i(g—g, ),
for the Green function is given by

(26d)

(27)
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6(g, gp, t) =exp ——J H(r)dr 5(Q —Qp) . (28)

Hence 6(Q, Qp, t) satisfies the equation

Q{—t)G{Q Qo t}=QoG(Q Qo t), t ~0. (29)

We put P(0)= —iA'(8/BQ) in Eq. (13a) and solve the
Schrodinger equation (29) to find, with F=F( t) —and
t&0,

iMoQ6 ( Q Qp t)'G'p( Qp t)exp . [Q cos( Qt) +2FQ —2QpQ]
2fisin Qt

In order to calculate the function Gp(Q, t) we invert Eqs. (13a) and (13b) to give

g (0)=[(v/Q}tan(vt)sin(Qt)+cos(Qt}][Q(t) —R (t)]—[»n(Qt)/MpQ][P(t) —~(t}] . (31)

Replacing t by —t, we let both sides of Eq. (31) operate on the Green function. Using P( t) =,
—(—A/i)(BIBQp) and Eq.

(29) [Q ( t)6],—we find

aG iMp& 5
Q —(Qp —R ) —tan(vt)sin(Qt)+cos(Qt) + sin(Qt)6 8 o AsinQt Q M.n

'"

where 5 =S( t) and—R =R ( t). By dif—ferentiating Eq. (30) with respect to Qp we obtain

BG
~go

Go

Go ~go

iMpQ

%sin(Qt)
G. (33)

Comparing Eqs. {32}and (33)

j BGp iMp0
(Qp —R ) —tan(vt)sin(Qt)+cos(Qt)

Go 3 o AsinQt
~

Q

and hence with NG(t) a normalization factor,

5 sin(Qt)
MpA

(34)

iMpQ
Go {Qp, t) =NG ( t )exp ~ . ( Q o —2R Qo ) —tan( vt )sin( Qt ) +cos( Qt )

' 2A'sin(Qt) Q

Substituting Eq. (35) into Eq. (30) we obtain

2S
Qosin(Qt)

MpQ

iMpA V
G(g, go, t) =NG(t)exp ~ . Q cos(Qt)+Qp(gp —2F) —tan(vt)sin(Qt)+cos(Qt)

2fisin Qt

2S—2ggp+ 2RQ — Qosin(Qt}
Mp

(36)

NG(t) =
t MpQ/[2M

~

sin(Qt)
~ ] I

'~ (38)

When we set R =5=F=0 in Eq. (36) we are, left with the
Green function (8.1) obtained in Ref. 14.

VI. THE %'AVE FUNCTION
FOR THE QUASICOHERENT STATE

~
a(t) }

At time t =0, the Dirac operator (19) reduces to

A(0)=(2MpA'Q) ' [MpQQ(0)+iP(0)] . (39)

The Schrodinger equation corresponding to Eq. (23b) with
t =0 is, with a=a(0),

To determine NG(t), we use the relation

f 6'{QQo t}6{QQi t}dQ=@go—Qi»
where, for convenience, we take normalization with
respect to Q. Then we find

MpQ+ Q f (Q,O)=a/ (Q,O),

with solution

M,Q, 2Mpof (Q,O)=N exp — Q~+2' ag

(40)

(41a)

N =(MpQ/~A')'~ exp[ ——,
'

(
~
a

~

2+a~)] . (41b)

We haye followed Louisell in taking a convenient choice
of phase for N, which accounts for the difference be-
tween Eq. (4.1b) and Eq. (9.5a) of Ref. 14. The
quasicoherent state at any time t ~0 may be calculated
using the Green function (35)

P (Q t)= J
"

dQoG(g, go, t)g (Q„O), (42)

which yields the result
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g (Q, t)=

Q exp

1/4
iMO

exp . Q(Q —2R)[icos(Qt)+vtan(vt)sin(Qt)] —(Q —R) Qe ' '— Q sin(At)
2A sinQt
I /2

2Mo
(Q —R)a ——,'a (t) ——,

'
~

a
~

(43a)

where y =Q —Nt» (45)

(43b) where g(t) is to be determined, cf. Ref. 23. Let us write

and we have dropped a phase factor exp(iver/4).

VII. THE %'AVE FUNCTION FOR DISPLACED
NUMBER STATES

~
n (t) )

The Schrodinger equation

Hg =i fidpldt, (44)

with H given by Eq. (7), may be separated by introducing

tP(Q, t) =X(y, t) .

Then

aq/ag=aX/ay, a'y/ag'=a'X/ay',

ay/at =aX/at —jaX/ay,
and Eq. (44) transforms to

(46)

(47a)

(47b)

a2X
2

Mpa)p
(y +g)'X

iMp ~ ax 2Mp 2iMp ()y2[vtan(vt)(y+g)+g] +vtan(vt)X + cos(vt)F(t)(y +g)X =
Bg $2 Bt

(48)
It should be noted that the term in g arising from Eq. (47b) has been transposed to the left-hand side of Eq. (48), so that
the equation ceases to be of the form HX =iAdX/Bt This po. int is important in any attempt to generalize the concept of
energy eigenvalues.

We seek a separation of the form

iMp
X(y, t)= Y(y)T(t)exp [( zy+g)vtan(vt)+g]y (49)

which leads to the following partially separated equation

( —A' /2MO)( Y"/Y)+ —,
'

MOO y + [Mo(g+ Q g) —F(t)cos(vt)]y

=iiri(T/T) —,'Mo[tog' ——[vtan(vt)g'+g] I+cos(vt)F(t)g .

To effect a complete separation, we choose g(t) to satisfy

(+II (=F(t)cos(vt)/Mo .

We take F(t) as in Eq. (8), then the solution of Eq. (51) is

cos[(A, +v)t+P] cos[(A, —v)t+P]
0 —(A, +v) Q —(A. —v)

(50)

(51)

(52)

where C and 8 are arbitrary. It is possible, and obviously convenient, to choose C and 0 so that g =R (t), as defined in

Eq. (13c). Then, to meet the requirement of finite Y(y), we have from Eq. (50)

( —iri /2MO)( Y„"/Y„)+—,'MOQzy =iriQ(n + —,), n =0, 1,2, . . .

g„(g,t) =

and solutions of the form (49) in terms of the original variable Q are

~~i(n I)—&&&H (g R)n

(53)

&&exp —
I [0—ivtan(vt)](Q +R ) —2QQR 2i (Q R)R—J-

2A

Xexp iQ(n+ ,')—t+i coo R (t')dt' J—[R+vtan(vt')R] dt' —2fo J R(t')cos(gt'~—y)cos(vt')dt'

(54)
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In the absence of a driving force, so that R ~0, Eq. (54)
agrees with Eq. (3.8) of Ref. 14. As we noted above in
connection with Eq. (48), these fundamental solutions g„
are not time-dependent eigenfunctions of H. In the case
R —+0, f„is easily seen to be an eigenfunction of the
"augmented" Hamiltonian

H'= 2P /Mo+ —,'Mo[coo+v sec (vt)]Q

exp(2z8 —0 ) = g H„(z)8"/n!,
7l =2

z =(MQ/A) (Q —R), 8=2 'i2a, (60)

one may check that Eq. (23c) holds, where
g„(Q,t)=(Q

~
n(t)). The case /&0 is more difficult,

owing to the occurrence of R in Eq. (43a).

——,
' v tan(vt)(QP +PQ), (55) VIII. DISCUSSION

with eigenvalues as in Eq. (53). The success of the separa-
tion in Ref. 14 depends on the cancellation of a term
—,'Mov sec (vt)Q g. With F(t}, as in Eq. (8), an "aug-
mented" Hamiltonian, which is a complicated extension
of Eq. (55), can be written down, but any significance of
the extra terms is unclear. A better approach is to ask
under what conditions Eq. (54) may be regarded as a
quasiperiodic state with a corresponding quasienergy.
This requires

H(t +~)=H(t), r =m/v

P„(t+r)=exp( i 8'—„r/R)g„(i).

(56a)

(56b)

0 is obviously incommensurate with v and coo, but in the
case A=coo, R. (t) does not depend on Qt. Thus g„is
quasiperiodic if, and only if

A, =coo, rA, =sv (r,s integers) . (S6c)

It should be noted that Eq. (56c) cannot hold in the reso-
nance cases described in Eq. (15}. Also we see from Eq.
(14a) that Eq. (56b) cannot be satisfied in the presence of a
constant driving force.

When Eq. (56c) is satisfied, Eq. (54) gives the quasiener-

5'„=A'Q(n + —, ) +MfOA + —,
' Mo(B —cooC),

where

R t' cos t'+ cos vt' t', (58a)

I '+~8= f [R+—v tan(vr')R]2dr', (58b)

I+7
C =—f Rz(r')dr' . (58c)

As an example, let us consider the case A, =v=coo. Unless
P=+m/2 the integrand in Eq. (58b) has a double pol'e in
the range of integration and, consequently, 8~oo. This
is a consequence of the periodic vanishing of M(t) Tak-.
ing P=m/2 a simple calculation shows that the quasiener-
gies are

8'„=RA(n+ —, ) —Mof 0/(32coo) . (59)

When /=0, the Hamiltonian given by Eqs. (7) and (8)
is invariant under t~ —t. Then R=R and, using Eqs.
(43), (54), and the expansion in Hermite polynomials

The exact solution of the motion of an oscillator with
mass pulsating according to M =Mocos (vt) and driven
by a force F =Mofocos(A, t +P) has been obtained in both
the Heisenberg and Schrodinger pictures. In the case
/=0, the system is invariant with respect to time-reversal
and then, as discussed in Sec. VII, the solutions in the
Heisenberg and Schrodinger pictures may be connected
via the Green function calculated in Sec. V. This forms a
useful check. Although the periodic vanishing of the
mass gives rise to some undesirable divergences in the
solution, the system is an important one to study. We be-
lieve that, as a time-periodic system, it is unique in pos-
sessing an exact solution. Our reasons are set out in Ref.
E4.

From a physical point of view, as discussed in Refs. 16
and 26, a pulsating mass given by Eq. (1), or, alternative-
ly, the more tractable form Moexp[2pcos(2vt)], which
excludes M =0 and has a variable strength parameter a
or p, is preferable. The weak case p &&1 is considered in
Refs. 20 and 26. , It would be interesting to compare the
strong case p ~~1 with the present model. This would re-
quire numerical computation and could form the basis of
some future work.

The Heisenberg picture shows very clearly that if the
mass and driving force are not exactly in phase (/&0),
then a catastrophic resonance occurs if A, =Q+v, and
f1=(coo+v }' . If /=0 the resonance weakens to secular
type. In the variable-strength model with p «1 and the
same driving force and any phase difference P, we find
secular-type resonances at k =coo, coo+ v/2, and

~
coo —v/2 ~, as discussed in Ref. 20.
As Eberly remarks, a solution in the Schrodinger pic-

ture is more difficult than in the Heisenberg picture.
Furthermore, the Schrodinger solution is more powerful.
Although in principle it is possible to pass from one pic-
ture to the other via g, using Eq. (60), we did not find
this practicable rather we had to seek the correct separa-
tion via Eq. (49). We regard the fundamental "number
state" wave function given in Eq. (54) as the most impor-
tant outcome of our work.

Although we are convinced that no further exactly solv-
able periodic mass laws exist, there might be some further
physically interesting oscillatory masses (hopefully that
exclude M =0) that are amenable to exact solution, for in-
stance, an oscillatory modification of the law in Ref. 17.
However, we must always remember that exactly solvable
models in quantum mechanics are extremely rare.



1964 M. SEBAWE ABDALLA AND R. K. COLEGRAVE 32

*Present address: Department of Mathematics, King's College,
Strand, London WC2R 2LS, England.

J. R. Ray, Am. J. Phys. 47, 627 (].979).
E. Kanai, Frog. Theor. Phys. 3, 440 (].948).

3D. M. Greenberger, J. Math. Phys. (N.Y.) 15, 395 (1974).
R. W. Hasse, J. Math. Phys. (N.Y.) 16, 2005 (1975).

5A. Tartaglia, Lett. Nuovo Cimento 19, 205 (1977).
V. V. Dodonov and V. I. Man'ko, Phys. Rev. A 20, 550 (1979).

7P. Caldirola, Nuovo Cimento B 77, 241 (1983).
B. Remaud and E. S. Hernandez, J. Phys. A 13, 2013 (1980).

~L. F. Landovitz, A. M. Levine, and W. M. Schreiber, Phys.
Rev. A 20, 1162 (1979).
L. F. Landovitz, A. M. Levine, and W. M. Schreiber, J. Math.
Phys. (N.Y.) 21, 2159 (1980).
P. G. L. Leach, J. Phys. A: Math. Nucl. Gen. 16, 3261 (1983).

~~R. K. Colegrave and M. S. Abdalla, Opt. Acta 28, 495 (1981).
R. K. Colegrave and M. A. Abdalla, J. Phys. A: Math. Nucl.
Gen. 14, 2269 (1981).
R. K. Colegrave and M. S. Abdalla, J. Phys. A: Math. Nucl.
Gen. 15, 1549 (1982).

I5R. K. Colegrave and M. S. Abdalla, Opt. Acta 30, 849 (1983).

I R. K. Colegrave and M. S. Abdalla, Opt. Acta 30, 861 (1983).
7M. S. Abdalla and R. K. Colegrave, Lett. Nuovo Cimento 39,

3?3 (1984).
8S. Kumar and C. L. Mehta, Phys. Rev. A 21, 1573 (1980).
S. Kumar and C. L. Mehta, Phys. Rev. A 24, 1460 (1981).

~ M. S. Abdalla, A. Khosravi, and R. K. Colegrave (unpublish-
ed).
M. D. Kostin, J. Stat. Phys. 12, 145 (1975).

~ W. H. Louisell, Quantum Statistical Properties of Radiation
(Wiley, New York, 1973).

~ E. H. Kerner, Can. J. Phys. 36, 371 (1958).
F. Gesztesy and H. Mitter, J. Phys. A: Math. Nucl. Gen. 14,
L79 (1981).

~5V. Ritus, Zh. Eksp. Teor. Fiz. 51, 1544 (1966) [Sov. Phys. —
JETP 24, 1041 (1967)].

~ R. K. Colegrave and A. Vahabpour-Roudsari, Opt. Acta 32,
485 (1985).

~7J. H. Eberly, iu Proceedings of the Second Veto Zealand Sum
mer School in Iaser Physics, edited by D. F. Walls and J. D.
Harvey (Academic, Sydney, 1980), p. 3.


