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Relativistic quantum electrodynamic perturbation theory is applied to the high-Z few-electron
system. Interaction of the bound electrons with the radiation field is treated as a perturbation that
results in the electron-electron interaction and radiative corrections. The leading perturbations, of
order u, are examined. For two-electron atoms, a precise evaluation of the one-exchanged-photon
correction in the 1 'So, 2 Sl, 2 Po, and 2 P2 states is made.

I. INTRODUCTION

This paper examines high-Z few-electron atoms from
the point of view of quantum electrodynamic perturbation
theory in the bound-interaction picture. The purpose is to
provide a consistent framework for the relativistic calcu-
lation of the structure of these atoms including the effects
of radiative corrections. ' The perturbation theory con-
sidered here is an expansion about basis states of nonin-
teracting Dirac electrons bound in the static Coulomb
field of the nucleus. Radiative corrections and electron-
electron interactions are perturbations produced by in-
teractions of the electrons with the quantized radiation
field. For a few strongly bound electrons in a high-Z
Coulomb field, these perturbations are small compared to
the binding energy, and the perturbation expansion con-
verges rapidly. In particular, the relevant expansion pa-
rameter is 1/Z, and this method provides a generalization
of the 1/Z expansion methods of Layzer and Bahcall' and
of Dalgarno and Stewart to include higher-order relativ-
istic effects and radiative corrections.

This approach to high-Z two-electron atoms has been
briefly discussed by Bethe and Salpeter and by Sucher; it
is of renewed interest due to the rapid rise of experimental
activity in this area. More recent studies of electron-
interaction corrections in this framework have been made,
for example, by Ivanov, Ivanova, and Safronova.

The present paper gives a consistent discussion of all
the leading corrections, including radiative effects, to pro-
vide the groundwork for a study of the higher-order
corrections. Precise calculations are carried out for the
electron-electron interaction in two-electron atoms.

In Sec. II, the basic formalism is reviewed. The leading
corrections, of order a, are derived in Sec. III. The one-
exchanged photon-correction is examined in Sec. IV, and
a precise numerical evaluation is made for the 1 'So, 2 S&,
2 Pp and 2 P2 states of two-electron atoms. Concluding
remarks are made in Sec. V.

II. FORMULATION

Energy levels of high-Z few-electron atoms are
described here within the framework of the Furry bound-
interaction picture of quantum electrodynamics. The

.zeroth-order basis states are the eigenfunctions of the
Dirac equation

[ ia 7—+ V.(x )+p E„]p„(x)=0—

for an external Coulomb potential with source charge Ze

V(x) =—

where cr are the Pauli matrices. In the Furry picture, the
electron-positron field operator P(x ) is expanded in terms
of electron annihilation operators a„and positron creation
operators b„as

g(x )= g a„P„(x)+ g b„g„(x)
E„(& p) E„((p)

= g (a„+b„)P„(x), (4)

where

P„(x) =P„(x)e (5)

and where the creation and annihilation operators are de-
fined so that

a„and a„=0 if E„&0,

b„and b„"=0 if E„)0 .

Units are chosen such that c=A=m =1, where m is the
electron mass, and the y matrices are given by

0 cr I 0
7=pa' yo=p' a= 0 ' p= 0 I ' (3)—
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5„+-„=8(+E„)5„„5ip5)J5 (8a)

if n and n' correspond to states in the discrete spectrum,

5„—„=8(+E)5(E E')5—g 5JJ 5 (8b)

if n and n' correspond to states in the continuous spec-
trum, and

(8c)

if one index refers to a state in the discrete spectrum and
the other refers to a state in the continuous spectrum.

Zeroth-order electron states are given by electron

In Eq. (4) the summation symbol is understood to mean
summation over the discrete spectrum and integration
over the continuous spectrum. The subscript n denotes
the complete set of quantum numbers {n,l,j,m j needed
to specify the state. The principal quantum number n is
replaced by the energy E for states in the continuous spec-
trum; l determines the parity P = ( —1)' and is the
orbital-angular-momentum quantum number in the non-
relativistic limit, j is the total-angular-momentum quan-
tum nuinber, and m is the z component of the total angu-
lar momentum.

The anticommutation relations among the creation and
annihilation operators are

+{an ~an' j 5nn' ~

{b„,b„j=5„„,
(7)

{a„,a„j= Ia„,a„j=0,
{b„,b„j= {b„,b„j=0,

where

The one-electron states are given by

I
nVm )=anljm I

0 & . (10)

Two-electron states with weak singlet-triplet mixing and
well-defined total-angular-momentum quantum numbers
J and M'are given by

I
njln'lj''JM&= g &jmj 'm'Ijj'JM)a. i~~a. ij'm 10&

m, m'

for {n,lj j&{n',l',j'j, and

njnlj'JM&= 2 &jmjm'Ijj JM&a~ijmanijm' I0&2 m, m'

(1 lb)

The zeroth-order Hamiltonian is

Hp ——Q (a„a„b„b„)E„—.

A direct calculation shows that the eigenvalues of Hp are
given by

Hp I njlm ) =E„
I njlm),

Hp
I
nljn'lj''JM) =(E„+E„)

I
njln'lj''JM) .

Thus the zeroth-order energy level is the sum of the Dirac
energies of the individual orbitals

creation operators acting on the Coulomb field vacuum
I
0) that has the property

a„
I
0) =b„

I
0) =0 for all n .

(Za)
{n —(j + —,

'
) +[(j+—,

' )' —(Za)']'~' j
'

~

—1/2

PlC

The interaction between the electron-positron field and
the radiation. field is determined by the interaction Hamil-
tonian density

HI(x) =j"(x)A„(x)—5M(x),
where

equivalent expression in terms of the S matrix to which
the standard renormalization prescription may be ap-
plied:4

(18)

5M(x )= —,
' 5m [ P(x ),g(x ) ] (17)

is the mass-renormalization counter term. The commuta-
tors in (16) and (17) refer only to creation and annihilation
operators, i.e., the Dirac wave functions and the y ma-
trices are always in the order shown.

The prescription of Gell-Mann and Low is employed
here to obtain an expression for the bound-state level
shifts in perturbation theory Sucher ha.s written an

j"(x)= ——[ p(x )y",p(x )]2

is the electromagnetic current, A&(x) is the vector poten-
tial operator for the radiation field, and

The subscript c denotes the fact that only connected
Feynman graphs are included in the matrix element. In
(18), S, i is the adiabatic S matrix defined by

S,.= 1+ X S,",',
j=l

S(J) ( —i~V 4. 4dxj . - dx)e ' e

X T[HI(xj ) HI(xi)] .
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In (20), T is the Wick time-ordering operator.
These equations provide the basic formulation of

bound-state quantum electrodynamics. In the next section
the leading corrections, of order o., are examined.

where

(22)

III. LEADING CORRECTIONS

To second order in Ht, Eq. (18) yields

b,E= lim —,
' ie[(S',"),+2(S,' '),

a~0

—(&s',"), )'+ 1,

( S,'" ),=i f d x e '~ '
~ (5M(x ) ) (23)

(21) and

To order a, only the first two terms in (21) are relevant.
The term 5M is of order a and contributes through the
first matrix element in (21). We have

(S', '), = ——, f d x2 f d x1e ' e ' (T[j '(x2)A„(x2)j '(x, )A„(x1)]),+O(a ) . (24)

It is convenient to employ the relations

5M(x) =:5M(x):—5m Tr[SF(x,x)]
and

j1'(x ) =:j"(x):+eTr[y1'SF(x,x )],
where Tr denotes the trace in the 4&(4 Dirac matrix
space, and the dots denote normal order. The propagation
function Sz is given by

Sp(x2, x1)= (0
~
T[g(x2)g(x1)]

~

0)
= y y„(x2)(() (x1)[5+ e(t2 t,)—

n, m —5„8(t,—t, )]

1 0 (x2)4 (xl) —'
(& — )

dz
" "

e
2ni —~ „E„—z(1+i5)

(27)

where the 8 function is defined so that 8(0)= —,'. The
second term on the right-hand side of (25) corresponds to
a Feynman diagram with a disconnected closed loop and
is neglected. The second term on the right-hand side of
(26) corresponds to a vacuum polarization loop and is re-
tained.

In the following we consider only zeroth-order states
consisting of a well-defined number of electrons in bound
states. In this case

and since

f dt e '~'~e " = 5(E„,E~)+—O(e),

where

1 if E„=E
5(E E-'= 0 f E ~E.,

the lowest-order mass term is

( S ) =—5m g fdx P„(x )P (x )5(E„,E )
n, m

X&a„'a )+O(e).

In the second-order term

( T[j"'(x2)A~ (x2)j '(x1)A„,(x1)]),

=(T[j '(x j)'(x )]),g„~ D (x —x, ),
where DF is the photon propagator

gp~1D+(x2 x1)= (o
I T[A„,(x2)A@1(x1)]

~

0)
—ik{x2—x) )

= —g d k
l 4 e

k +i5

(29)

(30)

(31)

(32)

(33)
(5M), =(:5M:),=5m gP„(x)P (x)(a„a ),

n, m

(28) From (26),

( T[j"'(x2)j"'(x1)]),= ( T[j"'(x2)::j"'(x1):]),+e Tr[y"'S~(x2, x2)](j"'(x1):),

+e Tr[y"'S„(x1,x1)](:j"'(x2):),+&, (34)

where & corresponds to a diagram with two vacuum polarization loops which in this order is a disconnected diagram.
With the aid of the identities

& T[ j"'(x2)::j '(»):]&.=e'g 4.(x2)y"'0 (x2) g A(x1)y"'01(x1)&a.akata
n, m k, l

+e gp„(x2)y 'Ss( x, 2x)y1'$1(x1)(a„a1)
n, l

+e g pk(x1)y 'SF(x1,x2)y 'p (x2)(aka )
k, m

(35)
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and

we have

n, m

(S, ),= —e d x2 d x)e e DF(x2 —x))(2) 2 4 —~
I t2 I

—~
I ty I

(x )y y (xz) y yk(x$ )y yI(xf )(a akala
n, m k, l

+ g P„(xz)y~S+(xz, x~)y"P (x~)(a„a )
n, m

—Tr[y„S~(x„x,)]g P„(x& )y"P (x & )(a„a ) +O(a') .
n, m

For small e, the integration over t2 and t& is simplified by employing the relation
—e

I t2 I

—&
I t& I

—iz(t& —t& ) —i ~ t& —i EEIkt&
dt2 dt&e e e e " e

26 2E'

[e +(z+bE „) ] [e +(z bEIk) ]-
=5(bE „, b.Etk) —5(z+b,E „)+O(1)

=5(E„+Ek,Et+E )—I d(t2 t&)e '—' e " 'e " '+O(1),—oo

where b,E,J E; E——J, in the firs—t term of (37), and the relation

—E
I t2 I

e
I tt I

— tz~t2 tt ~
—tE„t2 —tE~ tt 5(E

—
E )

1 I d( )
tz~t2 tl ~ tEtt t2 —tEttt tl— O( I )

OO OO —OO

in the second term. Equation (29) applies to the third term. We thus have for the level shift of order a (e =4+a),
E' '= 4mia I—d(t2 t() I d—x2 f dx)D~(x2 —x()

X 2 g 0 (x2)3 tt0ttt (x2) + tttk(x i )y"At(x & )5(E„+Ek Et+Em ) (attakalattt )
n, m k, l

+ g P„(xz)y„S„(xz,x, )y"P (x, )5(E„,E )(a„a )
n, m

—Tr[y„Sp(x2,x2)] g p„(x, )y"(t'~(x i )5(E„,E )(a„a )
n, m

—5m g f dxt)I„(x)P (x)5(E„,E )(a„a ) .

This expression for the level shift applies to any zeroth-order basis state consisting of a well-defined number of eiectronst.
The electron-electron interaction term (first) in (40) agrees with the result of Brown derived with a time-dependent for-
malism, and with the earlier results of Breit and Oppenheimer. '0 The self-energy (second) and vacuum polarization
(third) terms in (40) agree with the well-known single-electron expressions. This is shown explicitly by considering the
level shift for a single electron in state i, according to Eq. (10). In that case

( a„at,ata ) =0,
(41)

(a„a ) =5„;5;,

where

EsE +EvP(2) {2) {2)
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and

ESE ~ 2 1 X2 X1 F X2 +1 i +2 Vp~F +2 +1 7 ' +1

Evp =477t~ f d( t2 t—
& ) f dxz f dx~DF(xz —x ~ ) Tr[1 &S~(x2,xz )]p;(x ~ )y"p; (x ~ )

(43)

(44)

The Feynman diagrams corresponding to (43) and (44) appear in Fig. 1.
For a two-electron state of the form

g C,J.a;~ajt
~

0& (45)

(a„akata & =(Ck„—C„*k)(ct —C I),

(a„'a &= g(c„*„—c„'„)(c„—c,) .
k

The two-electron second-order level shift is written as the sum

EPE+ESE +EVP(2) (2) (2) (2)

(46)

(47)

corresponding to the three Feynman diagrams in Fig. 2. The exchanged-photon term EPE arises from the first term of
(40) and is given by

EPE —4~ttz f d(t2 tl ) f dxp f dx]D+(xp x])g C«[ pk(xz)p„(x&) —p„(x2)pk(x&)]7'& '1'
k, n

X g CI [$((x2)P (xr) —P (x2}gt(xr)]
1

rn 2

X5(E„+Ek,Et+Em ) . (48)

To evaluate the self-energy and vacuum polarization terms we confine our attention to two-electron states that are linear
combinations of products of hydrogenic states with well-defined parity, total angular momentum, and z component of
angular momentum. We further restrict our attention to states of the form of Eq. (11) so that the C's in (45) can be writ-
ten as

Can' ~pp&~p'p&Dcrcr (49)

where p denotes the subset of quantum numbers [n, Ij J and cr denotes the remaining quantum number I m j. Equation
(49) simply reflects the fact that in this case the summation in Eq. (45) extends over the magnetic quantum numbers o
and o.' for fixed p and p'. Then in the last three terms in (40),

QQ. &a.a &= gQ- g[ck.«« —C.t )+C.*k«.k —ck. )]
n, m n k

= XQPPX X [&PPPP'P, D 'o(D ' &P,P,D~ ')+~P—PPPP, D '(D ' ~P,P,D ' )]
P ~ P' ~'

P=P) P2

(50)

The result in (50} takes into account the fact that the operators represented by Q„are diagonal in the specified basis,
and that they are independent of cr. The last equality in (50) follows from the normalization of the C's,

(b) (c)

FICx. 1. Feynman diagrams for the (a) self-energy and {b)
vacuum polarization in one-electron atoms.

FIG. 2. Feynman diagrams for the (a) one-exchanged-photon
correction, (b) self-energy, and (c) vacuum polarization in two-
electron atoms.
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g CJ (CJ. —CJ,. ) = g D~~ (D~ ~ 5p—p D~ ) = 1 .

Hence the self-energy term Esp' in (47) is

EsE = —4mia f d(t2 ti) f—dx2 f dx~Dp(x2 —xt) +pp(x2)y„SF(x2, x&)y"$p(x~) —5m g f dxPp(x)Pp(x)
P P

and the vacuum polarization term Evp is

Evp =47TEaf'd(t2 —t& ) f dx& f dx&DF(x2 x& ) T—r[&~S&(x2,x2)]g pp(x & )1 "pp(x & )

P

(52)

(53)

In (52) and (53), the summation over P extends over the hydrogenic orbitals that comprise the two-electron state, and o.
can have any value in each orbital. For the ground state, the summation introduces a factor of 2.

The self-energy and vacuum polarization corrections of order a for the two-electron atom in the present perturbation
approach are just the sums of the corresponding hydrogenic corrections. The exchanged-photon correction is considered
in more detail in the next section.

IV. ONE-EXCHANGED-PHOTON CORRECTION

In this section we examine the one-exchanged-photon correction in Eq. (48) for states of the form of Eq. (11),and give
precise numerical results over a wide range of Z. It is convenient to express the correction as the sum of a direct term
Ed and an exchange term E„

EPE —Ed +Ee(2)

with

Ed —— 4~ia f—d(t2 t)) f dx2 f—dx(D~(x2 —x()C& (x2, x))a„' 'a"'"C&(x2,x()

(54)

(55)

E,=4mia d(t2 —t~) dx2 dx&D+(x2 —xt)e 4' (x2, x&)a& a C(x&,xz),I( 2 1) f (2) p(1) (56)

where

@(x2,x))= g D Pp (xz)Pp, (x)) (57)

and

q =Ep —EI3

Integration over the time difference in (56) yields

. z lglx2
iq(&2 —~, ) ie

d(t2 ti )DI; (x2 ——x i )e
4m.X21

(58)

and for the real part of the exchange term

with x2& ——
~
x2 —x~

~

. We thus have for the direct term

Ed=a f dx2 f dx&@ (x2,xi) a a C&(x„x&),(2) p(1)
&Z1

the level shift. Equations (60) and (61) give the Feynman
gauge form of the one-exchanged photon correction. By
direct calculation, this can be shown to be equal to the
Coulomb gauge expression which consists of a static
Coulomb interaction plus an exchanged transverse pho-
ton. The latter term with retardation neglected (g=O)
gives the well-known Breit interaction.

An accurate evaluation of EpF for high-Z two-electron
atoms is given here for the 1'So, 2 S„2 Po, and 2 P2
states both as a power series in (Za) and numerically.
The level shift, understood to mean the real part, is ex-
pressed as

EPE ——a(Za)P(Za) mc (62)

where P(Za) can be expanded as

P(Za)=p~+p3(Za) +p5(Za) +p7(Za) +
(63)

Re(E, )=—a f dx2 f dx&C (x2, x~)
cos(gx2) )

TABLE I. Values of the coefficients p1.

)&a„' 'a"'"4(x),x2) . (61) State P1

The imaginary part of the exchange term corresponds to a
partial width of the excited-state resonance associated
with decay to the ground state. The remainder of the
natural width arises from the imaginary part of the self-
energy. We are concerned here only with the real part of

1 Sp

2 S1
2 Pp

2 P2

5
8

137
729
1481
6561
1481
6561
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State P3

TABLE II. Values of the coefficients p3. L( ——, ) = g i ( ——,
' )"=—0.44841421. . . .

n
(64)

1 'Sp

2 S1

2'Po

2'P2

2075
4374 +

17801
39366 +
28223
98415

1 —
4 ln2

592 2549
729 ln2 —

29
6104 20957
6561 ln2 —

~6244 ln3
5848 13759
6561 ln2 —,7496 ln3

The leading term p& corresponds to the nonrelativistic
Coulomb interaction of the electrons. For completeness,
these well-known coefficients are listed in Table I. The
next term gives the leading relativistic correction in the
electron-electron interaction. The coefficient p 3 was
given for the 1 'So state numerically by Wu and Tauber"
and exactly by Dalgarno and Stewart. ' Stewart calculat-
ed the exact value of p3 for the 2 Si state, ' and Doyle
gave accurate numerical values for p3 for the 2 Po and
2 P2 states. ' The latter two authors considered other
states as well.

We have calculated the coefficients pi, p3, and p5 ex-
actly for the states of interest. The procedure followed
was first to carry out the integration over coordinate an-
gles in Eqs. (60) and (61) to arrive at expressions for the
sum in terms of radial integrals. These integrals are
displayed in the Appendix. The remainder of the calcula-
tion was done with the aid of the algebraic computation
program MACSYMA basically as follows. The integrands
in the radial integrals were expanded in a Taylor series in

g up to fourth order. The I -function integral over the
variable y, defined in Eq. (AS), was formally evaluated.
The integrand of the remaining integral was expanded in
Taylor series in Za, and finally the integral over r, de-
fined in Eq. (A5), was evaluated. The results for pi and

p5 are listed in Tables II and III, respectively. The values
obtained for pi are in agreement with the previous work
already mentioned. The expressions for pz include the di-
logarithm function I.of argument ——,

' where'

To provide values for the level shift b,EpE for large Z
and as a consistency check, we calculated the function
P(Za) numerically for the states of interest for
Z= 10,20, . . . , 110. Gaussian quadrature was applied for
each of the variables r and y in (A5), with 60 and 100 in-
tegration points, respectively. The numerical precision
was estimated by varying the number of integration points
in each dimension. The results are given in Table IV. All
figures shown in that table are significant.

By fitting a sixth- or seventh-degree polynomial in
(Za) to the first seven or eight calculated values of
[P(Za) pi]/(—Za) we estimate the first few coefficients
of the power series in (Za) . With the full calculated ac-
curacy (more than shown in Table IV) of the values for
P(Za), the corresponding coefficients pq and pz agree
with the analytic results to about nine and seven figures
past the decimal point, respectively. In addition, a numer-
ical estimate for the next coefficient p7, apparently accu-
rate to more than four figures past the decimal point, is
obtained. The estimated values appear in Table V. Previ-
ous estimates of coefficients in (63) based on polynomial
fits to numerical calculations have been made. An earlier
estimate of hp& ——0. 10 for the 2 Si—2 Po splitting by
Mohr is in agreement with the current results. ' An esti-
inate of p5 and p7 by Safronova is consistent with the
present results for the 1'So state but not for the excited
states. ' Results of a numerical calculation of P(Za) for
the 2 Si, 2 Po, and 2 Pi states for Z = 14, 16, 17 by
Cheng are in complete agreement with the values given by
Eq. (63).' Grant has estimated p, for the 2 Po and 2 P2
states based on a numerical fit to results of a multiconfig-
uration Dirac-Hartree-Fock calculation. ' His results
p5(2 Po) =0.143 282 and p5(2 Pi) = —0.001 691 2 are in
reasonable agreement with the values in Table III. Drake
has calculated numerical values for p5 that are in agree-
ment with the results given here.

The power series for the level shift provides an accurate
approximation to the function P(Za) for Z not too large.

State

TABLE III. Values of the coefficients p5.

1 'Sp

2 S1

2 Pp

2'P,

i09 17 S1
32 16 ln2 —

4 ln 2
16

29845 181 p 958 57667
104976

—
17496

—
2187 n2 + 69984 n3

181 g 2549 2549 2
5832 ln 2 + 2» 6 ln2 ln3 —z» 6 ln 3
3 1+ —,L( ——, )

129731 1411 ~ 643 1 441845
157464 + 157464 + 729 ln2 —

629856 ln 3
17021 2 29149 20957 2
52488 ln 2+ 26244 ln21n3 —

z6z44 ln 3

+—I-( ——)
3 1

1712371 1667 ~ 39623 4458869
9447840 314928

—
39366 2 + 4199040 ln3

42461 2 16831 13759
104976 n 2+,7496 ln2 ln3 —

~33~8 ln 3

+—', L( ——,
'

)
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TABLE IV. Numerical values of the function P(Za). TABLE V. Estimated values for the coefficient p7.

Z 1 'So 2 Si 2 I'o 2 I2 State

10
20
30
40
50
60
70
80
90

100
110

0.627 563
0.635 328
0.648 533
0.667 603
0.693 209
0.726 364
0.768 597
0.822 278
0.891 270
0.982 380
1.109 168

0.188 340
0.189 587
0.191718
0.194 816
0.199010

. 0.204496
0.211 564
0.220 657
0.232 481
0.248 242
0.270 240

0.226 902
0.230 475
0.236 601
0.245 561
0.257 799
0.273 996
0.295 189
0.323 008
0.360 135
0.411 348
0.486 234

0.225 944
0.226 593
0.227 672
0.229 179
0.231 114
0.233 478
0.236 279
0.239 535
0.243 284
0.247 598
0.252 618

P(Za) = —, +0.480 140(Za) +0.219 653(Za)

+0.1507(Za) + . for 1 'So,

P(Za) =
729 +0.076935(Za) +0.043223(Za)

+0.0281(Za) + . for 23S, ,

P(Za) = 6,6, +0.219 768(Za) +0.142891(Za)

+0.1070(Za) + for 2 Po,

P(Za) =,'„", +0.040639(Za) —0.001 882(Za)

+0.0037(Za) + . . for 2 P2 .

(65a)

(65b)

(65c)

(65d)

This is in contrast to the self-energy correction where the
convergence is poor numerically. The power series ex-
pressions are summarized as

1 'So
2 Si
2 I'o
2 3P

0.1507
0.0281
0.1070
0.0037
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V. CONCLUSION

We have made a direct application of bound-state quan-
tum electrodynamics to the high-Z few-electron system to
derive all corrections of order a to the energy levels. The
corrections are the exchanged-photon correction, the one-
electron self-energy, and the one-electron vacuum polari-
zation. In this approach it is clear how to proceed to
higher-order corrections in a consistent way. Calculation
of the next-order corrections, which include two-
exchanged-photon and screened-Lamb-shift corrections,
should be feasible within the present framework.

Accurate numerical values for the two-electron
exchanged-photon correction are given here, and the one-
electron corrections at high Z have been reviewed else-
where. ' For a stringent test of quantum electrodynamics,
however, higher-order corrections in a or equivalently
1/Z are needed. A tentative comparison of theory and
experiment, based on partial knowledge of the higher-
order terms, yields satisfactory agreement.

APPENDIX

Integration over coordinate angles in Eqs. (60) and (61) yields the following expressions for the one-exchanged-photon
level shift:

, dxixi [g,'(xz)+f,'(x2)l[a'(xi)+f,'(x»] + 3g, (x2)f.(x~)g'(xi)f. (xi)
0

for 1'So,

(A 1)

EpE ——a f dx2x2 f dxix~ [g„(x2)+f,(x2)][g, (x&)+f, (x&)] ——9g„(x2 )f„(x2)g, (x ~ )f, (x & ) 2X)

+ [g,(x2)gs(x2)+fr(x2)fs(x2)1[gr(x i )gs(x i )+f.(x i )f,(xi )]1Jo(ax & 5'o(1x & )

+ —,
' [g„(x2)f, (x2)g, (x ~ )f,(x ~ )+f„(x2)g,(x2)f, (x ~ )g„(x ~ )

5gr(x2 )fs(x2 )f.(xi )gr(xi ) —5f.«2)g (x2)g's(xi )fr(xi )]

0& qj~ (gx & )y ~ ( gx & ) for 2 S, ,
(A2)
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Epp =ct dxzx z dx t x t [g,'(xz )+f, (x z )][gp (x t ) +fp (x i ) ] —'
, g„—(xz )f„(xz )gp (x t )fp (x, )

0 0

+[g.(xz)g, (xz)+f.(xz)fp«z)][g. (xt)gp«t)+f, (xt)f, (xt)]nA (nx )yt(nx

—[g„(xz)fp(xz)gp(xt )f„(xt )+f„(xz)gp(xz)fp(x t )g, (x t )

+3gr(xz )fp«2)fp(x 1 )gr(x 1 )]rlJo(rlx & )yo(tix

——,
' f„(xz)gp(xz)gp(xt)f„(xt)

Xri[Jo(rix&)yo(tix& )+8jz(gx& )yz(tax& )] for 2'Po, (A3)

Ep'E=~ J, dxzxz f, dxtx't [g.(xz)+f.«z)][gq(xt)+fq(xt)l —»g. (xz)f.«z)gq(xt)fq(xt)

+ [g,(xz)gq(xz)+f, (xz)fq(xz) l[gq(x t )gr(x t )+fq(x t )fr(x t

)]adjt�(nx

& )y t(nx & )

+ T[gr(xz)fq(xz)g'q(xt)fr(xt )+fr(xz)gq(xz)fq(xt )gp(xt )

9gr (xz )fq (xz )fq (x t )gp (x t ) ]tlJz (7/x & )yz ('gx & )

f,(xz)gq(xz—)gq(x t)f„(xt )

Xri[ 3 Jo('9x )yo(tax )+» jz(tlx& )yz(rix& )] for 2'Pz .

In (Al)—(A4), g and f are the Dirac radial wave functions, the subscriPts r, s, P, and q refer to the 1st/z, 2s«z, 2@t/z,
and 2@3/z states, respectively, and x &

—min(xz, xt) and x& ——max(xz, xt). To evaluate the integrals in (Al) —(A4) it is
convenient to make the change of variables

QQ 00 QO 1f dxz I dxtF(xz, xt)= f dyy I dr[F(ry, y)+F(y, ry)] (A5)

where y =x & and ry =x (.
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