
PHYSICAL REVIE%' A VOI.UME 32, NUMBER 3 SEPTEMBER 1985

First-passage time problems for non-Markovian processes

Peter Hanggi
Department of Physics, Polytechnic Institute of New York, Brooklyn, New York 11201

Peter Talkner
Department of Physics, University of Basel, CH-4056 Basel, Switzerland

(Received 29 May 1985)

Subtle difficulties encountered with non-Markovian first-crossing problems are emphasized and illustrated

by an exact study of a non-Markovian flow driven by exponentially correlated telegraphic noise. The con-
nection with approximative schemes is made and a general inequality is derived. The relationship with the
escape rate at a low noise level is clarified and the Markovian limits to white shot noise and white Gaussian
noise are presented.

The study of first-passage time problems has a long histo-
ry and enjoys great popularity among many engineers,
physicists, and chemists. ' For one-dimensional Fokker-
Planck systems the study of first-crossing problems with ab-
sorbing (or reflecting) boundary conditions is rather
straightforward. ' For more general processes, however, its
broad applicability is marred due to the difficulties with ap-
propriate boundary conditions. In higher dimensions, the
problems caused by the boundary conditions in the presence
of momentum or velocity degrees of freedom can be sub-
stantial. For example, such difficulties already show up
very distinctly if one attempts to solve first-crossing prob-
lems for a harmonic oscillator. 2 5 Similar arcane difficulties,
e.g. , boundary jumps, occur in first-passage time problems
of systems driven by white shot noise.

Apparently, we might think that we could diminish these
problems if we instead first contract the dynamics onto the
single variable of interest. For example, we might want to
contract the osci11ator dynamics onto the amplitude dynam-
ics Ix (t) I before investigating first-crossing problems of
Ix(r) I, surpassing a threshold value. This reduction, how-
ever, introduces memory into the stochastic one-
dimensional flow Ix(r) I

—known as non-Markovian dynam-
ics. The formal theory for first-crossing problems in non-
Markovian flows has been developed recently by the au-
thors. Given a non-Markovian flow, the problem of ob-
taining exact results for first-passage time moments is beset
with subtle difficulties which we might not have emphasized
enough in our previous work. This is further substantiated
by recent work by others in which our notions have been
adopted erroneously. Thus, a clarification of those concepts
together with a pedagogical illustration seems appropriate.

To begin, let f, (x ly) denote the probability that a trajec-
tory which starts from y at initial time to=0 within a safe
domain I will arrive at x at time t without ever having left the
safe domain. Then

F, (y) =Jt f, ( y)xd xF, (y) =1

is the probability that the system is still in I at time t. With
the w, (y)dt = —[(r)/rit )F, (y) ]dr denoting the probability for
the first-crossing variable r(y) to lie between t and t +dr,
the mean first-passage time (MFPT) t (y) is the average

OO fO OO

t (y) = J rw, (y) dt = J F, (y) dt (2)

(3b)
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FIG. 1. Typical trajectories which determine the non-Markovian
stochastic kernels used in the text. The solid trajectories contribute
to the statistical weight of the adjusted kernel E, (x,y), while the
dotted trajectories, leaving the safe domain I = [O,L ] before time s,
must be omitted in the consideration of zero backflow. The statisti-
cal weight induced by the dashed trajectories, which initially start
outside the safe domain I, is all that is omitted in the construction
of the crude approximation E,'(x,y).

Both, the unrestricted probability p, (x) and the restricted con-
ditional probability f; (x ly ) obey a generalized master-
equation dynamics. Within an operator notation one has

pt
pt =

g~o +st —s d& Oa)
t

t

f, =J) K f, , ds

The overbar in K, indicates that the operator must be ad-
justed so as to prevent transitions back into the interval I
(no backflow of probability). In particular, the kernel
K, (x,y) is thus restricted not to count the statistical weight
induced by the trajectories which start at y C I, but upon
evolving time leave the interval I and return at times s at
x E I (see the dotted trajectories in Fig. 1). Most important-
ly, this implies that the kernel K, (x,y), (x,y) inside I, can-
not be identified with the unrestricted kernel K, (x,y); i.e.,
K, (x,y)&K, (x,y), (x,y) 6 I. This is in clear contrast to a
Markovian situation, where the kernel K, (x,y) contains the
5 function, 8(s). Then only the statistical weight of those
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trajectories which start outside I at time s and arrive at
x 6 I at time s must be deleted in operator E, in order to es-
tablish zero backflow.

A naive (Markovian-like) method of accounting for no
return transitions in a non-Markovian situation consists in
the "crude" approximation A;, which neglects only back-
flow into the domain I from points which initially lie outside
the domain I (see the dashed trajectories in Fig. 1).
Thus, we set equal to zero all transition probabilities
K, (y x)ds =K, (x,y)ds, with x in I and y not in L This
crude approximation then implies

ics"

pr(x, a) = la I

—p, pr(x, a) + p, 'pr(x, a'),
BX

t r

(10)

pr(x, a') =ppr(x, a) —a' + p,
'

pr(x, a')
8X

By virtue of (10), the MFPT's, t(y, a) and r(y, a'), y 6 I,
obey, on the interval I = [O,L ), the equations

K, (x,y) ~ K, (x,y) (4)
la I +p, t(y, )a+ pt(y, a') = —1,

By

With the crude approximation, we have

n, r, = —1, 0, (x,y) =J K,'(y, x)ds (6)

In view of (4), we therefore obtain the general lower bound

(y) (rexact(y)

i.e., the crude approximation will underestimate the exact
result. The differences between (5) and (6) vanish in the
Markovian (zero memory) limit in which both K, and
Kc F—Markov

All of that shows that extreme care must be taken if one
attempts to obtain exact results for the MFPT of non-
Markovian processes. ' Some of those difficulties will be
washed out in situations where the MFPT takes on ex-
ponentially large values. For example, if we consider the
weak noise activated escape rates in bistable non-Markovian
flows, " the mean escape time T is given by the inverse of
the rate. This average escape time can also be estimated in
ter~s of a mean first-passage time. In that case, the com-
plex details such as the dependence on initial preparation
(see also below) between monitored variable and residual
environmental background7 do not enter the result for the
exponentially large value of the MFPT, being determined by
an Arrhenius factor and a prefactor. "' Incorrect absorbing
boundary conditions, however, do generally impact the ex-
act result for the prefactor.

In the remainder of this Rapid Communication we now il-
lustrate the above difficulties by an example of a non-
Markovian, diffusivelike flow

x(r) = g(r),

This is so because the statistical weight coming from the
dotted runaway trajectories overestimates the operator E, .
Following Ref. 8, the exact mean first-passage time r(y),
y EI, obeys

0 r = —1, 0 (x,y) = JI K, (y, )xds

r

p, r(y, Q)+ 8 —p, r(y, rr )= —1
By

The absorbing boundary conditions outside (O, L) are given
by

r(y, A) =0, b, =a,a', y P [O,L J,
r( 0+,a)=0, r(L,a')=0, L &0 .

(12a)

(12l )

and in what follows we use the correlation-free initial
preparation

wo(a ly) =1, wo(a'ly) =0 (13)

In other words, we initially prepare the system in state y
with certain negative velocity a. The exact mean first-
passage time t'""r(y) of the reduced non-Markovian dynam-
ics is then given by

t'""'(y) = t(y) = t(ya )wo(a ly) + t (ya') wo(a'ly), (14a)

MFpr f(y )

tC

05

The conditions (12b) account for the fact that with certainty
the process escapes from the domain [O,L ] at y = 0+ with
initial negative velocity a and, likewise, certain escape oc-
curs aty =L with initial positive velocity a .

Next we introduce the initial preparation function
wo (~ ly ); i.er r

po"' (y, ~) = o(~ly)po(y) ~

wherein g(r) is telegraphic noise;" i.e. , it jumps between
positive velocity a' with rate p, ', and negative velocity a & 0
with rate p, . Moreover, we assume a vanishing mean
(g(r)) =0, i e., I = Ia I/p, = a'/p'. " For the correlation
function of the noises we find an exponential decay

0 0.5

(g(r)g(s)) = —exp( —Ir —s I/r),D (9)

where D =a'la lr, r = (p, + p, ') '. The flow in (g) and (9)
is equivalent with the two-dimensional Markovian dynam-

FIG. 2. Values of the mean first-passage time t(y), y 6 I. o, 1], for
the parameters: L =1, Ia I=a'=1, p, =p'= —(i.e., I =2), and dif-

fusion D = 1. , exact non-Markovian result (15);
crude approximation (22); — —~, white shot-noise limit (24a);

simple diffusion limit (23) . .
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which for our preparation in (13) simplifies to

r(y) =r(y, ~) . (14b)

particular, note that the exact non-Markovian MFPT has a
jump aty =L:

From (11), this exact MFPT is evaluated to be" (L) L I + L
2D (L + I) p, (I +L) (16)

y' L(L+2I) 1 y
2D 2D p, (L +I) (15)

expressed in terms of the length scale I = Ia I/p, =a'/p, '. In

Next we illustrate the crude approximation scheme in (6).
With the initial preparation (13), the non-Markovian retard-
ed master equation is given by [see Ref. 11(b), Eq. (2.9)
with f'(x) = 0 and g (x) = 1]

8 pt
p(x) = Ia I p(x) —(la I+a')p, J exp — (p + @,')+a' s p, , (x)ds

Bx Qx Qx
(17)

The adjusted operator 0, , Eq. (6), is nonseparable, and explicitly reads (8 denotes the step function)
r f

+0, h(y) = —Ia I h(y)+p, , +1 Jl 8(y)0(z —y) exp —,(z —y) h(z)dz, y E Ip+p 9
a OO a Qz

From here on, the sailing is smooth though there are still irksome details related to the possible jump of t, (y) at y = L
With (6) and (18) we have (prime denotes differentiation with respect to y)

—Ia It,'(y) + p, , +1 Jl t,'(z) exp —,(z —y) dz = —X(y),
(+')

a a' (19)

r, (0+) =Q . (2Qa)

With a possible jump at y =L; i.e., lim~ t L, r, (y) = 0,
lim~ t L r, (y) = t, (L)e0, we must set

where x is the characteristic function X (y) = 1, y & [0,L 1,
X(y) =0, y g [O,L], and t, (y) =0 for y not in I. The boun-
dary condition at y = 0+ reads [see (12)]

A somewhat cumbersome calculation shows that the ine-
quality (7), follows from the inequality 1/p,

' ~ 1/(p, +IA, '). '4

On the other hand, without further justification in (21),
simply using the absorbing boundary condition t, (0) = t, (L)
=0 for diffusion [see, e.g. , Ref. 9], the resulting MFFT
rD(y) reads

r, (y) =I,'(y) —r, (L)5(y —L)
By

rD (y) = —
2D

+ 2Dy, (23)

Settting y =L —e, ~ 0+, one obtains from the integral
equation (19) the jump condition

I&It, (I- )+p, , +1 r (L )=1a'

which disagrees with both the crude approximation in (22)
and the exact result in (15) (see Fig. 2).

Moreover, we mention that in the Markovian shot-noise
limit, a' ~, p,

' ~, D =az/p, ,
" both (15) and (22) yield

the exact result t

Upon differentiating (19) once more, whereupon one is des-
troying any information about the boundary conditions, one
obtains in the open interval (O, L )

r

wsN( )
y' 1 2I'+2IL +L'
2D 2D I +L (24a)

dD, r, (y) = —1 (21)
with the jump

rw'"(L) = LI (L + 2I )/[2D (I + L ) ] .
This is of the form of the MFPT equation of a Fokker-
Planck process describing simple diffusion. Just as with
Ref. 6, the absorbing boundary condition in (20b), howev-
er, is clearly different from that for simple diffusion, yield-
ing t, (L ) =0. Combining (21) with (20), the crude ap-
proximation is calculated to be

In the white Gaussian limit, I 0, all our results (15),
(22), and (24) coincide, of course, with (23). Finally, the
results of this example can also be extended to more gen-
eral non-Markovian flows, x =f (x) +g (x)g(t)."

with

2
r'""'(y) ~ r, (y) = —y + dy,

2D

d = (D/p, +LI + ~ PL2p/D)/[I (D + IL p ) ]
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