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Stability of finger patterns in Hele-Shaw cells
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The finger of fluid formed during the displacement of a more viscous fluid is a well-known example of
nonequilibrium pattern formation. Previous efforts claimed that the steady-state solution discovered by
Saffman and Taylor was linearly unstable, in contradiction with experimental observations. In this work,
we present a new stability analysis which demonstrates stability and resolves the aforementioned conflict.
We describe how this lends support to a new paradigm governing interfacial pattern-forming systems, that
of "microscopic solvability. "

Recently, considerable progress has been made in under-
standing pattern selection in nonequilibrium dynamical
processes such as crystallization and multiphase fluid flow.
Specifically, there is a growing amount of evidence that
these systems choose their spatial structure via a solvability
condition that arises when one considers the effect of the
(microscopic) capillary length on the family of macroscopi-
cally consistent steady-state solutions. This mechanism has
been shown to apply to simplified models of dendritic
growth, '2 and to fingering in a Hele-Shaw cell. In the
case of true diffusively controlled crystallization, there is
suggestive evidence, 5 but as of yet no direct proof.

Under this new paradigm of "microscopic solvability, "
the stability characteristics of the steady-state solution do
not determine the velocity, but are nonetheless important
for such properties as the presence of sidebranches. In this
regard, the stability of the Saffman-Taylor finger3 in the
Hele-Shaw cell has to date been a complete mystery. Exper-
imentally and computationa11y, a fluid forced into the gap
between two para11e1 plates saturated with more viscous
fluid will eventually form a single fingerlike interfacial pat-
tern which then propagates with constant velocity. The pat-
tern is a reproducible function of the externa1 conditions
and is apparently stable with respect to small perturbations
for a wide range of velocities. However, the one attempt to
compute the spectrum of the linear stability operator around
the selected pattern concluded that the finger was unstable at
all velocities. Clearly, this result is inconsistent with the
scenario sketched previously.

The purpose of this work is to resolve this problem by
presenting a new stability analysis of the Saffman-Taylor
finger. We derive a singular integro-differential stability
operator and study its properties by analytical and computa-
tional techniques. Our result is that a proper treatment of
this operator and in particular of the effect of finite surface
tension leads to stability for a wide range of velocities. The
relevance of this result for some recent experiments will be
discussed briefly.

The standard geometry for the Hele-Shaw cell is shown in
Fig. 1. The equations of motion for the fluid-fluid interface

are

V2T=0
—n V'T=fi (at the interface)

dt

T(interface) = —yx

z = p+2/m. (1—A. ) ln(1+e "~) (2)

The interface is determined parametrically by setting / = 0
in (2).
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FIG. 1. Top view of Hele-Shaw geometry.

together with the boundary conditions T ——x as x
riT/'dy =0 at y = + 1. Here, T is proportional to the pres-
sure, ~ is the interface curvature, and y =o.b2/12@, va2, for
surface tension o-, viscosity p, , gap thickness b, and ce11
width a. We have for simplicity neglected the pressure drop
in the less viscous fluid and these equations are strictly ap-
plicable to the case of displacement by a fluid of almost van-
ishing viscosity, such as air.

Saffman and Taylor solved these equations for steady-
state interface shapes in the limit of zero surface tension.
They found a family of possible patterns labeled by ~, the
ratio of finger width to cell size. Using the fact that T satis-
fies Laplace's equation, we can construct a coordinate sys-
tem ($, P), @=—T, B„@=e„„d„p.The complex coordi-
nate z =x+iy is then an analytic function of p=P+ip.
The solution is given by the mapping
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It was shown by McLean and Saffman and Vanden-
Broeck4 that inclusion of finite y selects a discrete set of
values for X, and at the same time slightly modifies the
shape of the interface. In the small y limit, X. approaches

and the shape correction becomes very small. Our

method will be to derive a stability operator by neglecting
the shape correction entirely but still including the surface
tension. This method is justified by the fact that the effect
of nonzero y is crucial even when the shape correction is
infinitesimal. This idea parallels an approach due to
Muller-Krumbhaar and Langer in their study of dendritic
crystal growth, and the reader is referred there for more de-
tails. This approximation enables us to derive an explicit
expression for the stability operator, something which con-
siderably eases the subsequent analysis.

Assume that the perturbed interface is parametrized by

@= 8(g), for 8 small and @, P the coordinate system given
by (2). The field T can now be expanded

T = —$+ X a„cosrrn pe
n=0

which satisfies the sidewall condition, and where we have
assumed a symmetric perturbation. We now impose the two
boundary conditions at the interface and keep terms only to
0 (8). After some algebra, this yields

—8(f) + g a„cosign Q
= —y~ ' (8) (4a)

X 7r na„cosa nP = (~8+ sin7r$8'+ m8)/(1+ cosmic), (4b)

where the linearized curvature is given by

K = —25 cos —m' sin 5
2 2

m'@ 1
5 cos +

2 2 cosn p/2

assuming a Fourier series for 5. It is easy to show that the
spectrum is given by co„=8„ /8„= 2mn, with corresponding
eigenfunctions

n+1
8„= X b „cosm. mP

m =0

b „(n —m +1)= (m+1)b +t.„

(7a)

1+s&nhms stnhms' [8(,)
sinhm s' —sinhms

= ~ cosh'n s [(—,
'

o) + m) 8(s ) + tanhvrs 8'(s )], (9)

These modes all vanish at P= 1 and are all unstable. This
agrees with results obtained previously. " The first ques-
tion to answer is why the introduction of nonzero y can
completely alter this result. This can be addressed by re-
casting the stability matrix at y =0 into a basis given by
pure Fourier modes. From (7a), this matrix has nonzero
elements on the diagonal equal to (n —1) and in positions
(n, n +1) eq'ual to n. This matrix is supersensitive to per-
turbations (for finite n, eigenvalues change by n.e) and is,
in fact, very similar to a matrix used as a textbook illusta-
tion of an ill-conditioned matrix. ' This analysis demon-
strates that arbitrarily small surface tension can in principle
completely alter the spectrum. Note that this ill condition-
ing invalidates any approach based on expansion in the
y =0 eigenfunctions, or in Fourier modes.

We proceed by recognizing that nonzero surface tension
allows for the existence of continuum modes which vary as
e k', where s is the arclength along the interface. s is relat-
ed to p via

~ =2cos ~ or cos (8)
ds 2 2 coshm s

Any mode with finite wavelength will be extremely singular
in Q. We reexpress the stability equation (6) as

To go to the final form of the stability operator, we elim-
inate the unknown coefficients a„. The function defined by

f(y) =X a„e

with

= —
2 COShmS5" —vr SinhvrS5'

is analytic and vanishes for large negative imaginary g.
Therefore,

f (Q')

or

—
2 m28(coshms+1 /c os has).

We can now substitute the form 5 —e""' and identify the
dispersion relationship for these modes. Clearly, the real
part of k must be negative to ensure convergence of the
principal-value integral at large s'. After some algebra, we
find for q = k+1

f( )
—1 p d, Ref(@')

1 2 3 Vlq

2m 2
= —q —

zygo q tan
2

(10)

Combining this with the definition of f and with Eq. (4a),
we can rewrite the left-hand side of Eq. (4b) as

1 B p
'"

d
8(y') —yn"'[8(y')l

vr By

Making use of the periodicity of 8 under P P+2, we can
arrive at the spectral equation

T8+ sinmg8 + rr8

In 1

= —,
' (1+cosa y) P J d y' (8—y K"') ' cot—(y —y')

For the y = 0 case, this equation can be solved simply by

Before turning to our numerical results, it is worthwhile
to comment on the form of Eq. (10). This dispersion rela-
tion has two pieces —the first can be associated with having
transformed to the moving frame of reference and the
second is due to surface tension. The usual positive contri-
bution on the right-hand side representing the Mullins-
Sekerka" instability (which gives rise to the nontrivial pat-
tern by making a horizontal planar front unstable) is absent.
This is due to the walls preventing fluid motion asymptoti-
cally far from the tip region. Now, the normal displacement
of the interface is related to 5 via a factor of coshms. As we
shall see, all modes have Req & 0 and hence cause large
displacements at large distances. The tip stabilization, which
will be demonstrated numerically, is directly traceable to the
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FIG. 2. Redo vs Imago for y=0, 005. (a) For all curves, Ã=50Sm, „. (1) Bottom of the continuum, extrapolated to infinite S~«.

coupling of displacernents in the vicinity of the tip to ex-
ponentially growing displacements down the sides of the
pattern and their suppression by the walls.

To study Eq. (9) numerically, we discretize the equation
on a one-dimensional grid of X points with an arclength cut-
off S,„. Note that the singularity in the integral kernel
must be treated carefully to ensure that the resulting matrix
is accurate to O(1/A' ). We then solve the resulting non-
symmetric eigensystem by using EIspAcK library routines.
For all y~0.001, the spectrum consists of exactly one
discrete mode which has purely real co, as well as a continu-
um with cu generally complex. The discrete mode is due to
the translation invariance of the steady-state solution, and
always has Redo —0. We have checked that by approximate-
ly including the shape correction, one recovers co = 0 for this
mode without affecting the continuum. This will be. dis-
cussed at length elsewhere.

The remainder of the modes always have Redo ( 0, giving
rise to stability. They all satisfy the dispersion equation
(10) with Req varying between 0 and 1. A typical set of
data is presented in Fig. 2, where we have extrapolated to
S,„ infinite using the results of computations for values
between 2.0 and 8.0 at the same value of the spatial resolu-
tion. Morc details will be presented in a longer paper in
preparation, but we would like to note that the stability we
see is completely independent of any assumptions made in
the extrapolation; it is only the higher frequency modes
which are all extremely stable that are sensitive to the de-
tails of our procedure. We have studied the spectrum at
many differing values of the surface tension, again with the
same conclusion. In fact, the modes most likely to be un-
stable have small Imq and positive Req, guaranteeing stability

via the above dispersion relation. Finally, we have repeated
this calculation with antisymmetric perturbations with simi-
lar results; the continuum is stable, and there is a single
discrete mode now with negative Recu. For y greater than
1.0x 10, Saffman-Taylor fingers are stable.

Howe does this compare with experiment? The stability
of the single finger for this range of the parameters is clear-
ly borne out by both real and computer experiments. This
agreement is the main result of our paper. Now, at still
smaller surface tension, there appears to be an antisym-
metric instability which causes the finger to break apart. '

Given our findings, there are two consistent possibilities.
The discrete antisymmetric mode discussed above does tend
to become less stable as y is decreased, and it may cross the
Re~=0 axis at finite surface tension. However, it is also
possible that the instability is only present at finite ampli-
tude and that the finger is linearly stable even for infini-
tesimal surface tension. Some evidence for a finite ampli-
tude instability has recently been provided by Schwartz and
DeGregoria. ' Resolution of this point awaits additional
study, although we favor the latter possibility.

To summarize, our work has shown how the inclusion of
surface tension can stabilize the Saffman-Taylor finger. The
single finger pattern can indeed be understood by velocity
selection and subsequent linear stability analysis. It falls
neatly into the emerging scenario for pattern formation by
interface propagation in nonequilibrium systems. This
strengthens our belief in the universality of the idea of mi-
croscopic solvability.

We would like to acknowledge useful discussions with
H. Aref, A. Libchaber, and P. Saffman.
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