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Evidence for a new period-doubling sequence in four-dimensional symplectic maps
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We have numerically investigated period-doubling bifurcations in four-dimensional symplectic maps. Our
study indicates the existence of a universally self-similar period-doubling sequence. Unilke the two-
dimensional case, the fixed-point map has two unstable directions under the period-doubling operator with
two relevant eigenvalues 8.7210972 and —15.0786. The four orbital scaling factors along and across the
dominant symmetry surface are, respectively, 16.1449, —4.01807, 16.36, and —7.5393.

The discovery of universally self-similar period-doubling
bifurcations in one-dimensional maps aroused a great deal
of interest in the study of period doubling in conservative
maps. 2 One-parameter family of two-dimensional area-
preserving maps is found to exhibit an infinite sequence of
period-doubling bifurcations analogous to one-dimensional
dissipative maps. However, the critical exponents 5 and a
for two-dimensional area-preserving maps are different from
their corresponding values in the dissipative case. Also, the
universality results for period doubling in one-dimensional
maps extend to higher-dimensional dissipative systems. An
interesting, but still open question, is whether the self-
similar period-doubling patterns of area-preserving maps
carry over to higher-dimensional symplectic maps. Symplec-
tic maps are of interest because they serve to describe the
time evolution of Hamiltonian systems through a Poincare
surface of section.

In this paper, we report a numerical study of period-
doubling bifurcations in two-parameter families of four-
dimensional symplectic maps. These maps may be viewed
as Poincare sections of Hamiltonian systems with three de-
grees of freedom. Four-dimensional symplectic maps are
also relevant to the study of crystal physics. 5 We have
fourid evidence for the existence of a complete period-
doubling sequence with two universal 5's: 8.7210972 and
—15.0786. This implies that the unstable manifold of the
fixed-point function is two dimensional. We have also ob-
tained four orbital scaling exponents: —4.01807, 16.1449,
16.36, and —7.5393, describing scaling along and across the
dominant symmetry surface, respectively.

Consider the following class of conservative maps:.

Xi+i = —Y, +F(X,), 1')+i =X

where X, Y, and Fdenote

X= (x,z)

Y= (y, r)

F = (fi(xz),f2(zx))
This map is symplectic if the functions fr and f2 satisfy the
condition

For our study, ft and f2 are chosen to have the following
form:

f, (x,z) =f, (x) —b(x+z)

f (z,x) = f, (z) —b(z —z)

where the function f, (x) depends on a parameter a. When
b is equal to zero, these equations decouple into two area-
preserving maps. This matrix . equation is an obvious
higher-dimensional generalization of the two-dimensional
Henon map. Also, this class of maps is reversible, i.e., they
can be factorized into a product of two involutions II and I2
(I2= 1)'

It.'X,~i = Xi, Yi+i = —Yi+ F(Xi)

I2: &i+i= Yi Yi+I=&r

Fixed points of II and I2 lie on a surface called the dom-
inant symmetry surface. A 2k-periodic point on the dom-
inant symmetry surface will also have its 2k ' iterate on it.
This greatly simplifies the process of locating the periodic
orbits.

The stability of a periodic orbit in a given dimension is
determined by the Floquet multipliers which are the eigen-
values of the linearized map T. The matrix T is real and
has determinant equal to unity. In two dimensions, this
condition restricts the eigenvalues of T to be conjugate
points e'~ and e ' on the unit circle, or reciprocal points p
and p

' on the real axis. The former case corresponds to
stable orbits; the latter case, unstable orbits. Hence, the
parameter that determines the stability of a two-dimensional
periodic orbit is the trace of T. The generalization of this
condition to four dimensions has been worked out. 7 In this
case, the eigenvalues of the matrix T are of the form pe'~,
pp '~, p p'~, and p-Ip-ie The stability regime is bounded
by the following curve in the (Tr T, Tr Ttq) plane:

B» —2+22, B» —2 —2A, B» +2, (6)
A2

where

g =TrT=QA, B=TrTi2= g Aihg
i(J

r),ft = r)~f2 (3) Here, X's are the eigenvalues of the matrix T Typically, .
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X 2X, Y 2 Y—F(X) (9)

so that Eq. (1) is transformed to the generalized DeVo-
gelare map

X+t = —Y+ F(X), Y+) = X;—F(X+,) (10)

The usefulness of this form of the map comes from the fact
that Y = 0 is the dominant symmetry surface. Hence, the
orbital scaling matrix S is decoupled:

0 pi

period doubling takes place when a pair of eigenvalues
passes through —1. This condition is satisfied along a line
2 Tr+ Tr T~2+ 2 = 0 in the stability region.

We have carried out a two-parameter search for period-
doubling sequences by simultaneously varying a and b.
Hence, both pairs of eigenvalues can be moved indepen-
dently on the unit circle. The period-doubling parameters
are determined when the two pairs of eigenvalues pass
through —1 and 1, corresponding to 3 =0. Results for the
map corresponding to f, (x) =1—ax' are shown in Table I.
At first sight the period-doubling parameter values did not
seem to exhibit any scaling property in an obvious fashion.
To unravel a possible underlining self-similar structure, we
will use a general method of testing for scaling developed by
Guckenheimer, Hu, and Rudnick.

Let ha~ = a; —a; i, Ab; = b; —b; ~, and define

(ha;, bb;) =5(ha;+), bb;+))

The matrix 5 was found to converge rapidly; moreover, its
eigenvalues 5~ and 52 were seen to obey very nice, scaling re-
lations (see Table II). The exponent 5t=8.7210972 is the
same as the two-dimensional case, whereas 52= —15.0786
is new and signifies the existence of another unstable direc-
tion. [As a matter of fact, if we apply this scaling-matrix
method to analyze the data presented in Table III(a) of Ref.
9(b), we obtain the same 5~ and 52, despite the fact that the
form of the maps is completely different. ]

To calculate the orbital scaling factors, we make the fol-
lowing coordinate change:

TABLE I. Convergence of the period-doubling parameters a and
b for a four-dimensional symplectic map with f~(x) =1—ax .

Period = 2"

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1.551 052 531 382 147
3.154929 859 908 943
3.310106308 833 480
3.302 711501 079 377
3.303 272 425 207 032
3.303 252 894478 886
3.303 256 133362 466
3.303 256 140 697 924
3.303 256 165 659 491
3.303 256 166 921 683
3.303 256 167 172 515
3.303 256 167 194420
3.303 256 167 197 197
3.303 256 167 197 506
3.303 256 167 197 543
3.303 256 167 197547

0.884 566 136 19324
0.286 068 854 598 49
0.244 813629 780 80
0.249 186673 247 67
0.249 158 055 154 25
0.249 185 866 13081
0.249 187 022 559 87
0.249 187 290 167 15
0.249 187311907 23
0.249 187 314993 39
0.249 187315307 92
0.249 187315346 59
0.249 187 315350 86
0.249 187315351 36
0.249 197315351 41
0.249 187315351 42

where a and p are 2&&2 matrices describing, respectively,
the self-similarity along and across the dominant symmetry
surface. They are defined as

(Xo —XIg ) = a(XO+ Xty~ ), YIi4 =p YI(4 . (12)

Here (Xo, Yo), (Xqg, Ytg), and (Xt~4, Yqy4) are, respectively,
the initial, halfway, and quarterway points of a limit cycle.
This definition is the same as that used for two-dimensional
area-preserving maps. The scaling exponents o.i, o.2 and
p~, pq are the eigenvalues of the matrices cx and p, respec-
tively. Again we notice that the exponents at and pt are
the same as those for the two-dimensional area-preserving
case, whereas n2 and p2 are new. We have computed the
exponents for various functions f„and universality is seen
to be well obeyed.

In sum, we have succeeded in finding a complete period-
doubling sequence in four-dimensional symplectic maps.

TABLE II, Period-doubling bifurcation rates 5i and 52, and orbital scaling factors Q. i, P& and 0.2, P2 along
and across the dominant symmetry surface, respectively.

Period = 2"

3
4
5
6
7
8
9

10
11
12
13
14
15
16

6.335 730 0
8,455412 9
9.394 969 0
8.847 625 6
8.723 543 0
8.722 287 7
8.721 1000
8.721 1097
8.721 096 6
8.721 097 2
8.721 097 2
8.721 097 2
8.721 097 2
8.721 097 2

—13.872 058
8.455 412

—17.738 353
—16.842 358
—15.303 906
—15.049 664
—15.092 972
—15.075 200
—15.079 738
—15.078 419
—15.078 773
—15.078 672
—15.078 641
—15.078 659

—0.016689
0.006 529

—19.326 037
16.965 790
15.955 490
16.183 370
16.135 221
16,148 114
16.143 809
16.145 397
16.144 747
16,145 025
16.144 902
16.144 957

—0.003 3172
0.006 529 3

—4.727 903 4
—4.030 998 8
—4.017347 4
—4,018 263 7
—4.018066 8
—4.018079 2
.—4.018076 5
—4.018 076 7
—4.018076 7
—4.018076 7
—4.018'076 7
—4.018076 7

0.000005
0.012 851
6.206 889

13.169810
15.579 237
15.876 244
16.214 081
16.261 098
16.314274
16.335 769
16.349 052
16.355 799
16.359 544
16.361 541

—0.000 004 3
0.012 851 8
6.206 889 8

13.169 8109
—8.743 703 7
—7.693 843 1
—7.539 500 3
—7.545 752 7
—7.538 013 1
—7.539 838 0
—7.539 211 2
—7.539 3900
—7.539 336 8
—7.539 352 0
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There exist two universal bifurcation rates Si and 52, which
imply that the fixed-point function has two relevant eigen-
values under the renormalization transformation. Within
numerical precision, we also found n2=nj and &q=2P2.
The relation nf = n2 is similar to the two-dimensional cases,
where n2 rescaling emerges due to the curvature of the sym-
metry line. However, we have no clue as to why 52= 2P2.

In the future, we would like to understand the universali-
ty of period doubling in four-dimensional symplectic maps
by studying the fixed points of the renormalization transfor-

mation. Perhaps this study would shed more light on such
new features as the existence of a new unstable direction,
the commonality of exponents between two and four
dimensions, and the relations among the exponents.
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