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We have numerically investigated period-doubling bifurcations in four-dimensional symplectic maps. Our

study indicates the existence of a universally self-similar period-doubling sequence.

Unilke the two-

dimensional case, the fixed-point map has two unstable directions under the period-doubling operator with
two relevant eigenvalues 8.7210972 and —15.0786. The four orbital scaling factors along and across the
dominant symmetry surface are, respectively, 16.1449, —4.01807, 16.36, and —7.5393.

The discovery of universally self-similar period-doubling
bifurcations in one-dimensional maps! aroused a great deal
of interest in the study of period doubling in conservative
maps.2® One-parameter family of two-dimensional area-
preserving maps is found to exhibit an infinite sequence of
period-doubling bifurcations analogous to one-dimensional
dissipative maps. However, the critical exponents 8 and «
for two-dimensional area-preserving maps are different from
their corresponding values in the dissipative case. Also, the
universality results for period doubling in one-dimensional
maps extend to higher-dimensional dissipative systems. An
interesting, but still open question, is whether the self-
similar period-doubling patterns of area-preserving maps
carry over to higher-dimensional symplectic maps. Symplec-
tic maps are of interest because they serve to describe the
time evolution of Hamiltonian systems through a Poincaré
surface of section.

In this paper, we report a numerical study of period-
doubling bifurcations in two-parameter families of four-
dimensional symplectic maps. These maps may be viewed
as Poincaré sections of Hamiltonian systems with three de-
grees of freedom. Four-dimensional symplectic maps are
also relevant to the study of crystal physics.” We have
found evidence for the existence of a complete period-
doubling sequence with two universal 8’s: 8.721097 2 and
—15.0786. This implies that the unstable manifold of the
fixed-point function is two dimensional. We have also ob-
tained four orbital scaling exponents: —4.01807, 16.1449,
16.36, and —7.5393, describing scaling along and across the
dominant symmetry surface, respectively.

Consider the following class of conservative maps:.

Xis1=—Y+F(X), Yi1=X , (D
where X, Y, and F denote

X=(xz) ,

Y=0,0 , 0))]

F= (fl(x,z),fz(z,x)) .

This map is symplectic if the functions f; and f, satisfy the
condition

0:./1=0x/2 . 3)

For our study, f, and f, are chosen to have the following
form:

filxz)=f(x)—b(x+2) ,
) )
filzx)=f,(z)—b(z—2) ,

where the function f,(x) depends on a parameter a. When
b is equal to zero, these equations decouple into two area-
preserving maps. This matrix . equation is an obvious
higher-dimensional generalization of the two-dimensional
Hénon map. Also, this class of maps is reversible, i.e., they
can be factorized into a product of two involutions /; and. ],
(1/2 = 1).

Ii Xip1=X, Yiq=—-Y+F(X) ;
Q)

Iy Xip1=Y, Yia=X .

Fixed points of [, and [, lie on a surface called the dom-
inant symmetry surface. A 2*periodic point on the dom-
inant symmetry surface will also have its 2¥~! iterate on it.
This greatly simplifies the process of locating the periodic
orbits.

The stability of a periodic orbit in a given dimension is
determined by the Floquet multipliers which are the eigen-
values of the linearized map 7. The matrix T is real and
has determinant equal to unity. In two dimensions, this
condition restricts the eigenvalues of 7 to be conjugate
points e’ and e~ on the unit circle, or reciprocal points p
and p~! on the real axis. The former case corresponds to
stable orbits; the latter case, unstable orbits. Hence, the
parameter that determines the stability of a two-dimensional
periodic orbit is the trace of 7. The generalization of this
condition to four dimensions has been worked out.” In this
case, the eigenvalues of the matrix T are of the form pe'?,
pe~® p=le® and p—le~ The stability regime is bounded
by the following curve in the (Tr T, Tr Ty;) plane:

2
B= —2424, B=—2-24, Bs—’i—+2, 6)
where
A=TrT=3 N, B=TrT; =3 N\, . @)
i i<j

Here, \’s are the eigenvalues of the matrix 7. Typically,
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period doubling takes place when a pair of eigenvalues
passes through — 1. This condition is satisfied along a line
2Tr+ TrT1,+2=0 in the stability region.

We have carried out a two-parameter search for period-
doubling sequences by simultaneously varying a and b.
Hence, both pairs of eigenvalues can be moved indepen-
dently on the unit circle. The period-doubling parameters
are determined when the two pairs of eigenvalues pass
through — 1 and 1, corresponding to 4 =0. Results for the
map corresponding to f,(x)=1— ax? are shown in Table 1.
At first sight the period-doubling parameter values did not
seem to exhibit any scaling property in an obvious fashion.
To unravel a possible underlining self-similar structure, we
will use a general method of testing for scaling developed by
Guckenheimer, Hu, and Rudnick.?

Let Aa1= a;— aj—q, Ab,'= bi— b[._], and define

(Aa;, Ab) =5(Aa; 41, Abi+1) . (€))

The matrix 8 was found to converge rapidly; moreover, its
eigenvalues §; and &, were seen to obey very nice.scaling re-
lations (see Table II). The exponent §;=238.7210972 is the
same as the two-dimensional case, whereas 8,= —15.0786
is new and signifies the existence of another unstable direc-
tion. [As a matter of fact, if we apply this scaling-matrix
method to analyze the data presented in Table III(a) of Ref.
9(b), we obtain the same &, and §,, despite the fact that the
form of the maps is completely different.]

To calculate the orbital scaling factors, we make the fol-
lowing coordinate change: ’

X—2X, Y—2Y-F(X) , ©

so that Eq. (1) is transformed to the generalized DeVo-
gelare map

Xip1=— Y+ F(X), Yie1=X—F(X;41) (10)

The usefulness of this form of the map comes from the fact
that Y=0 is the dominant symmetry surface. Hence, the
orbital scaling matrix S is decoupled:
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TABLE 1. Convergence of the period-doubling parameters a and

b for a four-dimensional symplectic map with f,(x)=1—ax2

2

Period=2"

n a b

1 1.551052531382147 0.884 566136193 24
2 3.154929859908 943 0.286068 854 598 49
3 3.310106308833 480 0.244813 62978080
4 3.302711501079377 0.249186 67324767
5 3.303272425207032 0.24915805515425
6 3.303252894 478 886 0.249185866 13081
7 3.303256133362466 0.249187 02255987
8 3.303256140697 924 0.24918729016715
9 3.303256 165659 491 0.24918731190723
10 3.303256166921 683 0.24918731499339
11 3.303256167172515 0.24918731530792
12 3.303256167 194420 0.249187315346 59
13 3.303256167197197 0.24918731535086
14 3.303256167197 506 0.24918731535136
15 3.303256167197 543 0.24919731535141
16 3.303256167197 547 0.24918731535142

where & and B are 2X2 matrices describing, respectively,
the self-similarity along and across the dominant symmetry
surface. They are defined as
(Xb— Xip) =X —X{5D), Yie=BYiE . (2)
Here (X, Yo), (X2, Y1/2), and (X4, Y1/4) are, respectively,
the initial, halfway, and quarterway points of a limit cycle.
This definition is the same as that used for two-dimensional
area-preserving maps.”¢ The scaling exponents ay, a; and
B1, B, are the eigenvalues of the matrices & and 83, respec-
tively. Again we notice that the exponents «; and B; are
the same as those for the two-dimensional area-preserving
case, whereas a; and B, are new. We have computed the
exponents for various functions f,, and universality is seen
to be well obeyed.
In sum, we have succeeded in finding a complete period-
doubling sequence in four-dimensional symplectic maps.

TABLE II. Period-doubling bifurcation rates 8; and 8,, and orbital scaling factors «ay,8; and «,, 8, along
and across the dominant symmetry surface, respectively.

Period = 2"
n 3 ) ay ay B B
3 6.3357300 —13.872058 —0.016 689 —0.0033172 0.000.005 —0.000004 3
4 8.4554129 8.455412 0.006 529 0.006 529 3 0.012851 0.0128518
5 9.3949690 ~ —17.738353 —19.326037 —4.727903 4 6.206 889 6.206 8898
6 8.8476256 —16.842358 16.965790 —4.030998 8 13.169810 13.1698109
7 8.7235430 —15.303906 15.955490 —4.0173474 15.579237 —8.7437037
8 8.72228717 —15.049 664 16.183370 —4.0182637 15.876 244 —7.6938431
9 8.7211000 —15.092972 16.135221 —4.018066 8 16.214 081 —17.5395003
10 8.7211097 —15.075200 16.148114 —4.0180792 16.261 098 —7.5457527
11 8.721096 6 —15.079738 16.143 809 —4.018076 5 16.314274 —7.5380131
12 8.7210972 —15.078419 16.145397 —4.0180767 16.335769 —7.5398380
13 8.7210972 —15.078773 16.144747 —4.0180767 16.349052 —7.5392112
14 8.7210972 —15.078672 16.145025 —4.0180767 16.355799 —7.5393900
15 8.7210972 —15.078 641 16.144 902 —4.0180767 16.359 544 —17.5393368
16 8.7210972 —15.078659 16.144 957 —4.0180767 16.361 541 —7.5393520
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There exist two universal bifurcation rates 8; and §,, which
imply that the fixed-point function has two relevant eigen-
values under the renormalization transformation. Within
numerical precision, we also found a;=af and 8,=28,.
The relation a}= «; is similar to the two-dimensional cases,?
where o? rescaling emerges due to the curvature of the sym-
metry line. However, we have no clue as to why &,=28,.
In the future, we would like to understand the universali-
ty of period doubling in four-dimensional symplectic maps
by studying the fixed points of the renormalization transfor-

mation. Perhaps this study would shed more light on such
new features as the existence of a new unstable direction,
the commonality of exponents between two and four
dimensions, and the relations among the exponents.
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