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We calculate the interaction and excess free energies of the electron system at finite temperatures on the
basis of the Singwi-Tosi-Land-Sjdlander approximation [Phys. Rev. 176, 589 (1968)]. The results are
parametrized in the form of analytic formulas, which adequately describe the equation of state for homo-
geneous, paramagnetic electron liquids over a wide range of the density and temperature parameters.

r, = ame2/it2=1 1)/2a2 (2)

where n = (4/9m ) ' s. The r, parameter measures the
strength of Coulomb coupling in such a degenerate electron
system. '

In the limit of complete Fermi degeneracy (8 0), the
ground-state energy of the electron liquid has been accurate-
ly calculated through the Green's-function Monte Carlo
(GFMC) method by Ceperley and Alder2 for several values
of r, up to 100. Vosko, Wilk, and Nusair then derived an
interpolation formula for those data through a Pade-
approximant technique. In the classical limit (t) ~), ex-
tensive Monte Carlo (MC) studies have been performed"
and accurate formulas for the internal and free energies are
available over the domain 1 ~ I ~ 170 for the OCP in the
fluid state.

In many of the actual plasmas, however, the state of the
electrons is found to be in neither of those limiting cases.
Examples include the stellar interiors, the heavy planets
such as Jupiter, those plasmas in the projected inertial-
confinement fusion experiments, and the liquid metals. A
theoretical study of such an electron system offers a com-
plex problem, because it now involves two parameters I
and 8, describing an interplay between the strong
Coulomb-coupling effect and the degrees of Fermi degen-
eracy. For the analysis of thermodynamic properties of
dense plasmas it is essentia1 to have a reliable equation of
state for the electron system covering a wide range of densi-
ty and temperature parameters.

We are motivated to derive such an equation of state in

The electron liquid is a one-component plasma (OCP) of
the electrons embedded in a uniform neutralizing back-
ground of positive charges. The system is characterized ba-
sically by two dimensionless parameters,

r=e/aksT, ()=ksT/EF,

where a = (3/4m n)' 3 and Et: =/f2(3n 2n)2 3/2m for the elec-
trons with mass m, number density n, and temperature T.
The parameter I refers to the Coulomb coupling constant
for the classical OCP, ' and 8 is the Fermi-degeneracy
parameter. The usual r, parameter for a degenerate electron
liquid is then expressed as

view of another theoretical utility as we11. Recently, quan-
tum MC simulations of fermion systems have been under-
taken to include the finite-temperature effects. In such a
simulation one is faced with difficulties inherent in a fer-
mion system, associated with possible negativities in the
weight functions; a method of quantum simu1ation with
proven accuracy is yet to be established in those cases. We
thus consider that an equation of state derived independent-
ly by purely analytic means will provide a useful guide1ine
for a construction of such a simulation procedure.

In this Brief Report we wish to report the results of a
theoretical study for such an equation of state on the basis
of the Singwi-Tosi-Land-Sjolander (STLS) approximation. '
For practical utilities, the calculated results are pa'rametrized
in the form of analytic formulas for the interaction and ex-
cess free energies, which are applicable over a wide range of
parameters as long as the electrons are in a paramagnetic
fluid state.

There exist a number of theoretical schemes, such as the
convolution approximation' and the hypernetted-chain
(HNC)' schemes, that command better overall accuracies
than the STLS scheme in describing the correlation proper-
ties in the OCP. Nevertheless, we adopt the STLS scheme,
because it offers the best compromise between simplicity
and accuracy. As Eq. (4) below illustrates, the local-field
correction (LFC) describing the strong-coupling effects
beyond the random-phase approximationto (RPA) is ex-
pressed in terms of the integration over a single variable in
the STLS scheme. Such a simplicity is valuable particularly
when iterative solutions to the resulting integral equations
are to be obtained over numerous combinations of I and 0.
As for the accuracy of the STLS scheme, we recall that it
has predicted the values of the correlation energy close to
those obtained in the GFMC method2 for the degenerate
electron liquids (see Table I for comparison). This accuracy
results from the fact that the STLS scheme takes a correct
account of the long-range part of the repulsive Coulomb
hole in the correlation functions. In the classical limit,
where the problem involves only a single parameter I, we
shall use the solutions to the HNC equations for the OCP
equation of state, which are known' to be superior to the
STLS scheme.

The basis STLS set of equations for the static structure
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TABLE I. Negative correlation energies (mRy) of electron
liquids at T=0. GFMC refers to the results in Ref. 2; STLS, in
Ref. 7; and Eq. (15), the present parametrization.

frequency variables,

4(x, I) = dy
2x && exp [(y'/e) —
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GFMC

119
90.2
56.3
37.22
23.00
11.40
6.379

STLS

124
92
56
36
22

Eq. (15)

125.6
91.99
56.42
36.34
22.05
10.54
5.762
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exp(z —p, ) + 1
(6)

Equation (3) represents the fluctuation-dissipation theorem
applied to the density-density response function; Eq. (4) is
the STLS expression for the LFC. The interaction energy
E;„t and the excess free energy F,„are then calculated as

(2n ie)'+ (x'+ 2xy)'
xln

(2+I e)'+ (x' —2xy)'

is the dimensionless free-electron polarizability, and the
chemical potential iu, (in units of ksT) is to be determined
through the normalization

e(x, l)S(x) = —', e
I + (2r e/~~x') [I —G (x) ]e(x,I)

(3)

fO OO X y X+y
G(x) = —

4 J~ dyy'[S(y) —1] 1+ ln
0 2xy ' x

(4)

Here x and I are normalized wave-number and imaginary-

dx [S(x) —1]
Nk&T mo. ~ 0

~ex
~

d I Eint

Xk, T ~0 r Wk, T, '

where X is the total number of the electrons; in the
coupling-constant integration of Eq. (g), e is kept constant.

To ensure accuracy of the numerical solution we find it
useful to rewrite Eq. (3) in the form,

r

3I 8 2 x 28 xS(x) =SHF(x) —
2 [1—G(x)] z

csch' +
2

coth + g P(x, l)
mo;X 9g 29 x 2g

Here

(9)

3e 1+exp [lu, —(y —x)2/e]
SHF(x) = 1 — dy ln

4x "o exp[(y2/e) —p, ]+ I I+exp[@,—(y+x) /e]

is the structure factor in the Hartree-Fock approximation,

[4(x 0 ]' —[3 (x I) ]2 {I + (21 e/m nx') [I —G (x) ]4(x I)}P(x, i) =
I+ (2re/~~x') [I—G (x) ]e(x,I)

and A (x, t) = ( 3 )x /[(2mle) +x ]. We then note that the

function P(x, l) decays as quickly as x or I 6 for large x
or I.

We have solved Eqs. (4) and (9) for S(x) and G(x) by
numerical iteration with the aid of the fast-converging extra-
polation procedure due to Ng. " Since the most pressing
area to look for new information is in the domain of inter-
mediate Fermi degeneracy 0 = 1, we have chosen 70 com-
binations of the density and temperature parameters, in the
range of 0.001~1 «300 and 0=0.1, 1, and 5. The y in-
tegration in Eq. (4) was carried out up to 216; the I summa-
tion in Eq. (9) was performed up to ~l ~

=1000 for e= 1 and
to ~I ~

=300 for e=0.1 and 5. The convergence criterion
which we have adopted is

t 1/2

&10 "Idx i G,„,(x) —G;„(x)i' (12)

where G;„(x) and G,„,(x) are the input and output values
of the LFC at a given step of the iteration. All the 70 cases
studied satisfy I 0 ~ 40; for I"0 & 40 we found that the itera-
tion did not converge at any 0. Some of the computed
values of the interaction energy for 9= 1 are listed in Table

II, together with the corresponding RPA values which are
obtained by setting G (x) = 0 in Eqs. (9) and (11).

We derive an analytic expression for the interaction ener-
gy parametrizing the values obtained for the 70 cases men-
tioned above and satisfying the STLS and HNC boundary

rS STLS RPA

0.01
0.1
0.5
1.0
2.0
5.0

10.0
20.0
40.0

1.842 x 10
0.1842
0.9208
1.842
3.683
9.208

18.42
36.83
73.66

2.320x10 3

3.389x 10-2

0.2390
0.5488
1.234
3.454
7.298

15.12
30.93

2.327 x 10
3.456 x 10
0.2560
0.6138
1.469
4.616

10.90

TABLE II. Values of — E/Nm&Tkcalculated in the STLS and
RPA schemes at 0=1. (9 out of the total 23 cases calculated are
shown here. )
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conditions at 0 0 and 9~ ~, respectively. ' The result is

E;„, a (8) + b (8)r"'+ c (8)I'
I NksT I++(8)I"'~ + p(8)1' (13)

where

1 0.75+ 3.043 638~ —0.0922708~+ 1.703 5084
h 1a 8 4' tanh—

7P CX 1+8.31051'~+ 5.110Sg4 0
(14a)

8) 8tyg 0.323 119+0.005 3488'~~+ 3.490438~~~

1+0.000 8360+ 4.030 400
(14b)

0.514 517 + 0.436 5028+ 0.711 6448~

1+1.86096' + 0.538 374'
(14c)

&i& 0.549 860+ 0.565 9678'~ —1.158 908+ 1.356 638~~~

1 —0.651 9318+8
(14d)

0.636 274+ 0.487 8408+ 1.615 928
1+2.36797g +1.09010' (14e)

Those formulas reproduce the computed values of E;„, for
all the 70 cases with relative errors less than 0.6%. In the
classical limit, they agree with the HNC values computed by
Springer, Pokrant, and Stevens, Jr. ' for 0.05~ I ~ 10 with
digressions of less than 0.4/o. Finally, in the limit of strong
Fermi degeneracy, Eqs. (13) and (14) agree with the values
of E;„, computed by STLS themselves for the eight cases
ranging 1 ~ r, ~ 20 within relative errors of 0.1%.

Several remarks are in order concerning Eqs. (13) and
(14): (i) E;„,/NksT given by Eq. (13) takes a form propor-
tional to I' both in the weak-coupling limit (I « 1) and in
the strong-coupling limit (I » 1). The former is the
Hartree-Fock exchange energy; the latter is a Madelung-like
contribution. (ii) The form of the Hartree-Fock term, Eq.
(14a), is exactly the same as that derived originally by Per-

I

l

rot and Dharma-wardana. '4 (iii) In the classical limit, a (8)
vanishes; in the weak-coupling limit, the Debye-Huckel
value —431'~'/2 then becomes the leading contribution to
E;„t/Nks T. (iv) In the classical, strong-coupling limit,
E;„,/Nks T approaches —0.891 713 I'. This value differs
slightly from —0.897 744 I in the MC fitting5 or
—0.900470I in the HNC fitting. ' Correspondingly, the
forms of the I dependence in the rest of the terms are dif-
ferent. (v) The functions b(8), c(8), d(8), and e(8) in-
crease monotonically as functions of 8. At 8=0, they all
vanish in such a way that Eq. (13) becomes a function of
r 1/2

S

The excess free energy is then obtained by performing the
I' integration as prescribed in Eq. (8);

r r r

~cx c 2 cd q q 1 c d cd,= —I + —b ——r ' + — a ————b — In~er+ei ' +I~12
Nk~ T e e e e, e e e

~

r r r

e(4e —d )' e e e (4e —d )'
—tan

(4e —d )' (15)

The condition that 4e —d & 0 is satisfied for any 0.
Although we have parametrized E;„t/Nks T quite accurately
in Eq. (13), we presume that the parametrization errors in

Eq. (15) may have increased on the order of 1'/o, because of
the coupling-constant integration involved. This feature is
seen in the comparison between Eq. (15) and the STLS
correlation energy listed in Table I ~

Taking account of the errors inherent in the STLS ap-
proximation, we expect that the equation of state derived
from the parametrized expression Eq. (15) may remain
close to the true value within a maximum error of 5%, say,
over the entire density and temperature domain, where the
electrons are in a paramagnetic fluid state. We remark in
this connection that Eq. (15) cannot be used for the analysis
of transition between the fluid and crystalline states (Wigner
crystallization), because an accurate determination of such a

transition condition would call for an extremely accurate
evaluation of the free energies both in the fluid and crystal-
line states. ' For many other practical purposes, however,
Eq. (15) should give an adequate description of the equa-
tion of state for homogeneous, paramagnetic electron
liquids.

We thank M. Imada, H. Iyetomi, and X.-Z. Yan for use-
ful discussions on this and related problems. This work was
supported in part through the Grant-in-Aid for Scientific
Research Grant No. 59380001, provided by the Japanese
Ministry of Education, Science, and Culture. The final part
of this research by S. I. was supported by the National Sci-
ence Foundation under Grant No. PHY-82-17853, supple-
mented by funds from the U.S. National Aeronautics and
Space Administration.



32 BRIEF REPORTS 1899

S. Ichimaru, Rev. Mod. Phys. 54, 1017 (1982).
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

~S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200
{1980}.

4S. G. Brush, H. L. Sahlin, and E. Teller, J. Chem. Phys. 45, 2102
(1966); J. P. Hansen, Phys. Rev. A 8, 3096 (1973).

~W. L. Slattery, G. D. Doolen, and H. E. DeWitt, Phys. Rev. A 21,
2087 (1980); 26, 2255 (1982).

See e.g. , M. Imada and M. Takahashi, J. Phys. Soc. Jpn. 53, 3770
(1984), and references therein.

K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjolander, Phys. Rev.
176, 589 (1968).

S. Ichimaru, Phys. Rev. A 2, 494 (1970).
J. M. J. van Leeuwen, J. Groeneveld, and J. De Boer, Physica 25,

792 (1959); T. Morita, Prog. Theor. Phys. 23, 829 (1960).
See e.g. , A. L. Fetter and J. D. Walecka, Quantum Theory of
Many-Particle Systems (McGraw-Hill, New York, 1971).

"K.C. Ng, J. Chem. Phys. 61, 2680 (1974).
~~This procedure is different from, and superior to, the method fol-

lowed recently by W. Richert and W. Ebeling, Phys. Status Solidi
(b) 121, 633 (1984), in their treatment of a similar problem.
These authors undertook a Pade-approxirnant fitting by using
only the information obtained from the GFMC values at 0=0
and an expansion of Debye-Hockel type with quantum correc-
tions, applicable, therefore, in the domain 8 » 1 and I « 1; no
reliable information was included at 8 = 1 or for I & 1 at 8 » 1.

~~J. F. Springer, M. A. Pokrant, and F. A. Stevens, Jr. , J. Chem,
Phys. 58, 4863 (1973).
F. Perrot and M. W. C. Dharma-wardana, Phys. Rev. A 30, 2619
(1984).

H. E. DeWitt, Phys. Rev. A 14, 1290 (1976); this value, however,
appears to be superseded by —0.89961, in a recent study of the
HNC solutions [H. E. DeWitt (private communication)].


