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Laser photodetachment measurement of the electron affinity of atomic oxygen
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The electron affinity of atomic oxygen, an important calibration standard in negative-ion photoelectron
spectroscopy, has been determined by tunable-laser photodetachment in a coaxial laser-ion-beam spectrom-
eter to be 11784.645 0.006 cm . In addition, the spin-orbit splitting between the P3~~2 and P~~~2 states
of 0 was found to be 177.13 +0,05 cm

We have determined the electron affinity of atomic oxy-
gen by threshold photodetachment of 0 in a coaxial
laser-ion-beam spectrometer, resulting in an improved ac-
curacy of approximately three orders of magnitude. Since
0 is generally used as a calibration standard in. negative-
ion photoelectron-spectroscopy experiments, ' most elec-
tron affinities determined by this technique depend on the
accepted value of the electron affinity of oxygen. This
quantity has been measured previously by photodetachment
of 0 with broad-band ( ~ 100'A) light sources, radiative
capture of electrons by 0 atoms, s and photoionization mea-
surements of the threshold for ion-pair formation from 02.
The currently accepted value of 1.462+0.003 eV has been
derived from a comparison of these and other experimental
results. ' Several atomic electron affinities have been deter-
mined to considerably better than 1 meV accuracy by
threshold photodetachment with a tunable dye laser,
but 0 has not been studied previously with this technique
as the infrared (ir) dyes needed to probe the threshold re-
gion were unavailable. The combination of a cw infrared
dye laser with the greatly reduced Doppler widths obtained
in a coaxial ion-beam spectrometer 3 permits the determina-
tion of the electron affinity EFA(O) to p, eV accuracy. [Note
that EE~(O) here is equivalent to the previously used nota-
tion EA(O). ] We have used this approach to obtain an ac-
curate value for EE&(O), as well as an improved value for
the 'P3~~2 —'P&~2 splitting in 0

The coaxial ion-beam spectrometer used in this work has
been described in detail elsewhere. ' The negative-ion beam
and laser interacted collinearly over 30 cm, and both the
neutrals and electrons resulting from photodetachment were
detected. The 10-nA 0 beam was generated from N20 in
a hot-discharge source and was injected into the interaction
region at 3.2 keV. The dye laser could be configured' as a
standing-wave cavity for broad-band scans and as a ring cav-
ity for single-mode scans. In the standing-wave configura-
tion, the laser linewidth was approximately 0.5 cm with a
birefringent tuner (BRT) as the sole tuning element. The
addition of a thin etalon narrowed the linewidth to 0.05
cm '. In the ring configuration, the laser was tuned by ro-
tating a Brewster plate. An intracavity Mach-Zehnder inter-
ferometer' was locked to the cavity mode to prevent mode
hopping while scanning. The ring-laser frequency drifted by
about 1 MHz/sec unless it was stabilized by an external
reference cavity. However, based on other photodetach-
ment studies in which narrow autodetachment resonances
were observed, the residual Doppler width in the ion beam
is known to be 10-30 MHz, depending on the ion-source

conditions. ' ' ' With this intrinsic resolution, locking the
ring laser to an external cavity was considered unnecessary.
The dye used was LDS 821 (Exciton) pumped with all lines
of an Ar+ laser. With 7 W of pump power, typical outputs
were 500 mW with the BRT only and 100 mW in single
mode. The ir-laser wavelength was measured with a wave
meter which included a polarization-stabilized single-mode
He-Ne reference laser. This laser was in turn calibrated by
heterodyning it with another single-mode He-Ne laser which
could be locked to a series of accurately known I2 transi-
tions. " Since the wave meter measured the ratio of the ir
and He-Ne wavelengths in air, it was necessary to account
for the different refractive index of air at the two
wavelengths and the local atmospheric pressure in convert-
ing the ir wavelength to vacuum wave numbers.

Figure 1 shows the 0 photoelectron signal as a function
of laser frequency with the laser operating in the broad-band
mode using only the BRT. Six thresholds can be seen,
resulting from the fine-structure transitions 0 ( P3/2 f/2)

O(3P2, . ],p) + e . The ordering of the fine-structure lev-
els is shown in Fig. 1. The neutral fine-structure splittings
have been measured to extremely high precision ( ( 10
cm ') in laser magnetic-resonance experiments, '3'4 and the
0 splitting was previously found to be 177.4+1.6 cm
by photoelectron spectroscopy. All six transitions primarily
involve s-wave detachment, and the photodetachment cross
section near each threshold should follow the Wigner law,

o.~ (E E,h)'/'— (1)

The P3y2 3P2 threshold energy corresponds to the elec-
tron affinity since these are the ground states for 0 and 0,
respectively. Figure 1 was constructed from five 100-cm
frequency scans. Since the laser frequency was measured
only at the endpoints of each scan, the uncertainty in the
frequency axis in Fig. 1 can be as high as several cm ', due
to the nonlinearity of the BRT. In order to determine the
electron affinity and 0 spin-orbit splitting more accurately,
considerably shorter scans were taken at higher resolution
near the appropriate thresholds.

The result of a single-mode scan near the electron-affinity
threshold is shown in Fig. 2. The interval between the
points was 0.001 cm, and the signal acquisition time was
10 sec/point. Wave-meter readings were taken at the begin-
ning and end of the scan, which was assumed to be linear in
frequency. Although tuning the laser by Brewster-plate ro-
tation resulted in a slightly nonlinear dependence of the
laser frequency on the angle of rotation, the maximum de-
viation from linearity was less than 0.001 cm ' for the scan
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FIG. 1. Low-resolution photodetachment spectrum of 0 . The numbered thresholds are from the transitions 0 ( P3p ~p)
0( P~ ~ 0) +e . The 0 and 0 fine-structure levels are shown at left.

shown in Fig. 2 and was therefore ignored. The data in Fig.
2 were taken with the laser propagation direction antiparallel
to the ion beam; a second scan was taken with the laser
direction reversed to account for the Doppler shift. This
procedure made it unnecessary to know the ion-beam velo-
city to high accuracy.

The data in Fig. 2 were fit to Eq. (1) using a nonlinear
least-squares program. This yielded Eti, = 11776.925
+0.006 cm ' for the photodetachment threshold. The

result of the scan in which the laser was parallel to the ion
beam was E~q =11792.376+0.006 cm '. These error bars
include the 95%-confidence limits as determined by the fit-
ting program and the uncertainty in the reproducibility of
the wave-meter readings; each contributed +0.003 cm
The electron affinity is obtained from the two thresholds by

t 2 1/t'2

EEA(O) = —(E;h + EL ) I—
2 t

C
(2)

where the relativistic term comes from the second-order
Doppler shift, which is 0.003 cm ' for a beam energy of 3.2
keV. The result is

The spin-orbit splitting, Eso, can be obtained from

ESO EEA(O) E1h( P1/2 P2) (3)

Note that nearly all the uncertainty in EEA(O) when ex-
pressed in eV is from the 2.6-ppm uncertainty in the con-
version between cm ' and eV.

To determine the spin-orbit splitting between the Pyq
and Pi~~q states of 0, the regions near the Pi~~~ P~ and

P~~~ Pi thresholds in Fig. 1 were scanned using a thin
etalon in the standing-wave cavity (Av =0.05 cm '). These
thresholds were less distinct than the electron-affinity
threshold. This was expected, since the 0 ( P1/2) popula-
tion in the ion beam should be somewhat less than
0 ( P3/2). In addition, the 0 ('P1/2) photodetachment
cross sections near threshold are predicted to be smaller
than the 0 ('P3/2) cross section near the electron-affinity
threshold. 2~ The two 0 ('P1/2) thresholds were measured
with the laser antiparallel to the ion-beam and corrected
only for the first-order Doppler shift. The results were

E,„( P1/2~ P2) = 11607.53 + 0.05 cm

E1h( P1/2 P1) = 11765.81 +0.05 cm

EE„(O)=11784.645+0.006 cm
or

ESO EEA(O) + Eso( Pl~ P2) Eth( Pl/2 Pl) i (4)

125

110

= 1.461 122 +0.000003 eV

4 ~

~ ~~ ~ ~~

where Eso( P1, P2), the splitting between the oxygen P1
and Pq states, is known from laser magnetic-resonance
studies to be 158.303 cm '.2' The results from (3) and (4)
are 177.12 cm ' and 177.14 cm ', respectively. Our final
value from averaging these two is 177.13 +0.05 cm '. This
can be compared to the photoelectron-spectroscopy value
(177.4+1.6 cm ', Ref. 25) and an earlier value of 181 +4
cm ' obtained by isoelectronic extrapolation. s %e therefore
observe that, for both the electron affinity and 0 spin-
orbit splitting, our more precise measurements are well
within the error bars of the previous best values.
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FIG. 2. High-resolution scan of the Py& P& (electron-
affinity) threshold. Solid line shows computer-generated fit to Eq.
(1).
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