PHYSICAL REVIEW A

VOLUME 32, NUMBER 3

SEPTEMBER 1985

Channel-interaction theory in a finite volume

Chris H. Greene
Department of Physics and Astronomy, Louisiana State University,
Baton Rouge, Louisiana 70803-4001
(Received 17 April 1985)

The power and scope of configuration-interaction studies can be greatly extended by limiting the varia-
tional calculation to a finite volume of configuration space. The energy levels and wave functions of an
electron which escapes from that volume are then accurately described by quantum-defect theory. Adapta-
tion of standard multiconfiguration Hartree-Fock procedures to the variational calculation of R matrices is
accomplished easily, giving a simple, fast, and efficient tool for investigating channel-coupling mechanisms

over broad ranges of energy.

Recently a new eigenchannel formulation of R-matrix
theory was developed to treat atomic photoionization in the
presence of a magnetic field.! Presented as a tentative alter-
native to a method developed by Fano and Lee,? it simpli-
fied and streamlined their approach while retaining its main
insight—the strong dominance of a few scattering eigen-
modes in many problems.? Since the limited application of
Ref. 1 was published, the approach has been extended to
study doubly excited P and D states of Be, Mg, and Al,*
giving an excellent description of the atomic dynamics and
with unexpected ease. A parallel development in molecular
physics’ has produced reliable data on some doubly excited
ungerade states of H,.%

The small scale of the numerical efforts required to per-
form such calculations and the ease of extracting correlated
wave functions for analysis and dissection suggest that we
are now on the verge of being able to unravel coupling
mechanisms governing atomic spectra throughout the
periodic system. This development has implications far
beyond an improved technical ability to calculate energy lev-
els for comparison with experiment. Rather, the main pro-
gress seems to lie in an improved facility for detailing the
evolution of electron correlations over broad ranges of ener-
gy (typically > 10 eV) and for different atoms in a column
of the periodic system. O’Mahony® has quite recently
shown how a similar orbital hybridization governs sd-p?
mixing in Mg and Al, indicating that the analysis lends itself
to a study of trends across a row of the periodic system
without much additional complexity. This study offers a
glimpse into the nature of channel coupling which should
have relevance to even heavier systems such as the transi-
tion metals.

The canonical method for studying atomic spectra starts
from an independent electron model. The Hartree-Slater
treatment represents its simplest form: each electron is
presumed to move in the same local potential due to the
nucleus and the other electrons.? The somewhat more real-
istic Hartree-Fock approach!® allows for a nonlocal electronic
potential operator. These formulations can only provide an
accurate quantitative description of a single electron outside
a closed-shell core, but represent nevertheless many physi-
cal properties of atoms, such as sizes, ionization potentials,
and potential barrier effects!! correctly on a qualitative and
semiquantitative level. A superposition of these indepen-
dent electron configurations, determined variationally as in
the multiconfiguration Hartree-Fock (MCHF) approach,!®
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gives a solid quantitative description of perturbed, low-lying
atomic spectra.

On the other hand, the classification of channel coupling
mechanisms can be aided by plots of potential-energy curves
in hyperspherical coordinates.>%12 These plots identify the
regions in configuration space and in energy where inelasti-
city originates. They also permit a rapid estimation of chan-
nel coupling strength, even though the hyperspherical for-
mulation has not achieved state-of-the-art accuracy for the
quantitative calculation of autoionization profiles, discrete
level perturbations, or other related properties.

The motion of interacting electrons is generally complicat-
ed by correlations and exchange only within a small reaction
volume Q of configuration space. This important dynami-
cal simplification is not effectively utilized by the MCHF ap-
proach. R-matrix theories can exploit it by solving the full,
many-electron Schrédinger equation within this reaction
volume only (but past procedures have often led to overex-
tended volumes).!3-1® Escape of a single electron beyond
this volume is then described accurately by quantum-defect
theory.!!® That is, the electron wave function and its nor-
mal derivative are matched on the reaction surface 3 to a
channel expansion with regular and irregular radial solutions
(f,,g) in each channel i (See Ref. 4 for details.) The
reaction-matrix eigenvalues tan(wu,) and eigenvectors Uy,
thus obtained vary quite slowly with the energy. These
parameters are, accordingly, the best suited for studying the
interesting short-range physics in successive atoms as a func-
tion of energy. The point-by-point calculation of scattering
or photoabsorption cross sections requires instead a much
finer energy mesh, but it involves very little time since it is
handled by algebraic quantum-defect procedures.

The version of R-matrix theory used most widely in
atomic and molecular problems!® diagonalizes the small-7
Hamiltonian H in an orthonormal basis of functions y; hav-
ing a common normal logarithmic derivative (— 5°) on the
surface 3 of the reaction volume:

%{’1‘—+ b°y, =0, on surface 3 . (¢))
Because the exact wave function at an arbitrary energy £
does not itself satisfy (1), however, the expansion of the
logarithmic derivative using the basis set y;, does not con-
verge uniformly. This extremely slow convergence can be
speeded up somewhat using the Buttle correction!® or a vari-
ational correction,?’ but it remains a difficulty of the ap-
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proach. A second version of the R-matrix theory used less
extensively to date, the eigenchannel method, has been ap-
plied to nuclear problems by Danos and Greiner?! and to
atomic problems by Lee and Fano.2 This version diagonal-
izes H using basis functions y; having the same logarithmic
derivative on. the reaction surface as the exact wave func-
tion ¢:

i)X"—+by,,=0, 9y by =0, on surface 3 . )
on dn

This expansion converges uniformly, but since b is not
known in advance the Hamiltonian must be diagonalized
iteratively as a function of b until one of the resulting ener-
gy eigenvalues Eg coincides with the desired total energy E.
Iterative diagonalization can be time consuming and incon-
venient, and therefore much of the appeal of the R-matrix
method is lost in the eigenchannel version, in contrast with
the approach of Ref. 13, which requires only one diagonali-
zation to determine bg at all energies.

The point of the noniterative reformulation of the eigen-
channel R-matrix method used in Refs. 1 and 4-8 is to
show how the eigenvalues bg of the R matrix can be deter-
mined without iteration, using a single diagonalization for
each desired energy E. The variational basis functions yy
need not have any particular logarithmic derivative 50 on
the boundary; in fact, the 52 should ideally span a range of
values. Moreover, the y; need not be orthogonal, allowing
great flexibility in their choice. This approach is similar in
spirit to the variational formulation of R-matrix theory used
by Lane and Robson?? and applied by Purcell,?> Chatwin,?
Oberoi and Nesbet,?” and Nesbet,2 also using nonorthogo-
nal bases. It is a close relative of the Kohn variational prin-
ciple.?"28 In contrast with Refs. 22-26, though, the present
approach does not involve the inversion of a nearly singular
matrix, which caused some numerical difficulties in applica-
tions.

As derived in Ref. 1, the noniterative eigenchannel treat-
ment rests on a variational principle for an eigenvalue b of
the R matrix:

, S =V o+ 20" (E~ V)yldo
Svdo

In this stationary expression for b, dw is the differential
volume element of configuration space and the integrals ex-
tend only over the reaction volume . The denominator is
an integral over the surface 3 of the reaction volume,
whose differential area element is denoted do. In the
numerator V indicates the total potential energy of the sys-
tem and V represents a 3N-dimensional gradient operator
for the N-electron system. It is important to recognize that
no constraint needs to be imposed on the trial functions in
showing that (3) is variational, that is, that 86=0. In par-
ticular, the trial functions need not have any specified loga-
rithmic derivative on the reaction surface 3. [Equation (3)
is easily obtained using the general approach of Gerjuoy,
Rau, and Spruch,? as detailed by Raseev.?]

The variational principle (3) is usually reduced to a
homogeneous linear system by introducing a set of basis
functions y, in the expression

Y= % Ve - 4

(3)

The stationary values of & in Eq. (3) are then the eigen-
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values of a generalized eigenvalue problem,
Le=bAc , )
where the Hermitian matrices I’ and A are defined by

Fkl=fn [=Vy - Vy+ 208 (E— Vylde

=2fnyk*(E—H)y,dw—fzyk*(am/an)da' 6)
and

Ak1=f2J7k*yld0' . @)

The second form in Eq. (6) is usually more convenient, in
terms of a non-Hermitian Hamiltonian matrix element and
of a surface term which makes I’ Hermitian. Each eigen-
value bg corresponds to an eigenmode of the short-range
Hamiltonian, whose wave function is easily reconstructed
from the associated eigenvector. Graphs of these eigen-
modes often point immediately to the dominant mechan-
isms of channel coupling.*

In applications to atomic dynamics, a ‘‘Cartesian’’ reac-
tion surface 3, defined by

...)=r0, (8)

is most convenient for matching onto asymptotic channel
states representing one-electron escape. Moreover the gen-
eral success of the independent-electron model suggests that
the basis functions y; be represented as Slater determinantal
wave functions, e.g., for two electrons,

ynlnz(l'bl'z)=d¢n1(r1)Fn2(r2) . 9)

max(ry,r,,

In Eq. (9), o denotes antisymmetrization and ¢, (1)) is a
wave function of the (N-1)-electron system which vanishes
at r;=ry. Instead, the orbital F,,z(rz) has been chosen in
Refs. 4—6 to be a numerical, independent-electron orbital of
the N-electron system. That is, F,,z(rz) is an eigenstate of a

different one-electron Hamiltonian than ¢n1(l’1), and accord-
ingly is not orthogonal to the ¢, » unless their angular wave
functions differ. Moreover, the F,,z(rz) do not all vanish at

ry=rq (except for strongly closed channels), and their loga-
rithmic derivatives span a range of values.

These numerical trial wave functions y, are generally the
same for a fairly large range of energies, up to a sizable frac-
tion of one atomic energy unit. The most time-consuming
part of the calculation, the numerical evaluation of 1/r; ma-
trix elements, needs then to be performed only once. The
rapid convergence of these finite-volume basis expansions
enables even multiple excited states to be handled with
surprisingly small-scale calculations. Basis sets consisting of
20 to 30 (y,) were used in Refs. 4-6, and tests showed
them to be accurately converged. The entire calculation for
a given symmetry of an atom, including construction of nu-
merical basis functions and matrix elements, solution of the
eigensystem (5), matching to Coulomb wave functions at
the reaction surface, and the use of quantum-defect theory
to find energy levels and oscillator strengths, required some-
what less than 10 min of CPU (central processing unit) time
on a Digital Equipment Corporation VAX11/780 computer
or RIDGE 32 computer for Be, for Mg, and even for Al
Moreover, the computer code implementation is sufficiently
simple that development of a large general problem seems
unnecessary.
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O’Mahony’s results for Al 2D¢ quantum defects below
and above the ionization threshold are shown in Fig. 1.5 In
this problem the 3s’nd Rydberg levels converging to the
lowest level of Al*(3s21S) interact strongly with a per-
turber 3s3p? which is distributed along the entire series of
3s2nd Rydberg levels and even into the 3s%ed continuum.
Its presence is signaled by the slow rise of w by roughly uni-
ty in Fig. 1 as the energy increases from —0.1 to 0.05 Ry.
The experimental quantum defects®® marked on the figure
clearly reflect this energy dependence, agreeing nicely with
the calculation except for an overall shift of about 0.05,
which is probably related to the use of a too-simple model
potential (Hartree-Slater) to represent the e~ -AP* interac-
tion. Figure 1 illustrates a common example of strong,
nonperturbative channel interactions which would be diffi-
cult to describe by MCHF programs treating all of confi-
guration space at once. The channel mixing poses no partic-
ular difficulty, however, if the configuration-interaction cal-
culation is limited to a finite volume, e.g., ro=11 a.u. for Al
2pe states in the energy range of Fig. 1.

This program of study now appears ripe for investigating
more complicated open-shell systems. Its aim is not just to
determine energy levels and oscillator strengths, but also to
identify major trends in the few-electron dynamics which
extend across rows and down columns of the periodic table.
Initial indications are that nonperturbative multiphoton in-
teractions with whole subshells of atomic electrons will also
be accessible to this type of formulation, since the strong
coupling still remains confined within a compact volume.“
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FIG. 1. O’Mahony’s (Ref. 6) calculated quantum defect for the
3s2ed channel of Al is shown as a function of the energy relative to
the ionization threshold. The experimental quantum defects (Ref.
30) of six levels below threshold are also shown for comparison.
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