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Variational calculation of the two-dimensional H2 molecule
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The ground-state energy of the two-dimensional (2D) hydrogen molecule has been calculated using a
Heitler-London-Rosen-type variational calculation. The value of the dissociation energy is found to be 2.5
Ry. For the interatomic distance R =0, the variational parameter o. 0=1.7055, corresponding to a 20 He
atom. For the sake of comparison, the results of the 30 case are also recalculated. Special interest arises
from the Slater integrals, which are rather difficult to obtain in the 2D case.

The problem of the hydrogen molecule has given rise to
considerable interest in a large number of theoretical stud-
ies, mainly to obtain the best ground-state energy. Many of
these studies use the well-known three-dimensional (3D)
Slater integrals such integrals take into account in an ex-
plicit way some features of the electron-correlation effects.
Besides the intrinsic interest of the H2 molecule in molecu-
lar physics, as well as in doped semiconductors2 (in this case
forming a H2-like impurity molecule), it is also a subject of
investigation in problems connected to two-dimensional
(2D) systems, like impurities in inversion layer in metal-
oxide-semiconductor (MOS) structures. 3 The change in the
dimensionality of such systems leads to the very poorly un-
derstood nature of the electronic states in the 2D systems. 4

In this context, a natural interest arises in doing some of
the traditional computations of the 3D molecular systems
for their 2D counterparts. We report here, briefly, the
results of a Heitler-London-Rosen-type' calculation for the
ground-state energy of the 2D H2'molecule.

The Hamiltonian for the Hq molecule is taken to have the
form
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the subscripts 1,2 designate the two electrons and the sub-
scripts a and b designate the two nuclei. Energy is mea-
sured in units of e2/2ap rydberg and length 1n units of
aq=0. 529 A. The Heitler-London two-particle wave func-
tion of the H2 molecule is written as
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molecule

E(n, R,b) = (Q+ (ab, rt, r2a) IHIP'+ (ab, rt, r2t )) (4)

can be expressed in terms of the modified Slater integrals'
S, K, J, J', andK',

where

S = 2(nR ) [Ep(2nR ) + Kt(2nR )/aR ]

E = —8nRKt(2nR )

J= —4n [1—4nRJt(2aR )Kp(2nR ) ]

J' = n [1/nR —exp(2. 36nR ) )

x [1/nR —3.1aR + 1.1(nR )' —0.3(aR )3]
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where $(rt, ) is the ground-state wave function of the hy-
drogen atom. In two dimensions it is written as

t 1/2

y(rt, ) = — n exp( —2nrt, )
8
17

J
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where rt, = Irt —R, l, and n(1/ap) is treated as a variation-
al parameter in a Rosen-type calculation. 5 In (2) S
= ($(rt, ) lg(rta)) is the overlap integral.

In two dimensions the lowest-energy state of the H2

(b)
FIG. 1. Energies of the hydrogen molecule, as determined by the

variational method, for two dimensions (a), and three dimensions
(b),
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FIG. 2. The variation of the parameter n for 2D and 3D cases of
the H2 molecule.
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The integrals K and K' represent, respectively, the
electron-hopping energy and exchange effects, and J'
represents the electron-correlation effect. Ko and K~ are
the modified Bessel functions of zero and first order,
respectively. J~ is the Bessel function of first order. Equa-
tions (6), (7), and (8) are the analytical expressions of the
modified Slater integrals S, K, and J, respectively, while
Eqs. (9) and (10) (Ref. 7) correspond to the best-fitted
analytical curves of the numerical values of the integrals J'
and K'.

All the above 2D energy integrals as well as overlap are
much reduced for 8 ) 2 and substantially enhanced for
8 & 2, compared with their values in 3D. The ground-state
energy, the equilibrium distance, and the optimum value of
~, of the H2 molecule, are found by a minimization of the
energy BE(a,R)/Bu =0, as in the Rosen variational calcula-
tion. 5 In a 2'D system, the energy of a neutral hydrogen
atom is —4.0 Ry, 3 6 while for the 3D system it is —1.0 Ry.
The 2D H2-molecule energy is shown in Fig. 1(a) together
with the 3D one [Fig. 1(b)] for the sake of comparison. At
the equilibrium distance (80= 0.37), E2+ = —10.5 Ry (for
the simple Heitler-London calculation, i.e., n = 1, 80=0.45,
and E2o= —10 Ry). For R ~, E'o= —8.0 Ry, corre-
sponding to two isolated 2D hydrogen atoms. Thus, we ob-
tain for the dissociation energy the value D, =2.5 Ry. For
comparison, in three dimensions, varying o., Ro = 1.41,
E3o = —2.28 Ry, and D, = 0.28 Ry (for n = 1, Ro = I.64,
and E3n= —2.24 Ry). Rosen's5 calculation, which also in-
cludes a polarization term in (3), gives D, =0.296 Ry.

The variation of the parameter 0|, to minimize the energy,
is shown in Fig. 2, for 2D and 3D cases. For the latter, the
wave function used was $(rt, ) = (a3/m)t 2exp( —~rt, )
For large .separation (R ~) both problems reduce to
n = 1 (isolated hydrogen atoms), and for R =0 (correspond-
ing to a helium atom in this approximation) we have

(b)

FIG. 3. The electronic energies EL of the H2 molecule for two
dimensions (a), and three dimensions (b), varying n (n„) and tak-

ing n = 1 (a~).

n 0 = 1.7056 and n = 1.6875, respectively.
The excited state of the H2 molecule corresponds to the

minus sign in Eq. (2); it was also calculated. As in three
dimensions, no minimum of energy appears in such state.
In Figs. 3(a) and 3(b), we show the electronic energies
Er, [E(a,R) —2/R] for the 2D and 3D capes, respectively,
for a = 1 (nt) and varying n (o.„). In both cases the differ-
ence in energy, at very small interatomic distance 8, for n~

and o.„, is very accentuated, which represents an error of
about one-third of the electronic energy. In three dimen-
sions, the variation of the electronic energy with R, in this
Rosen-type calculation, follows closely the experimental
behavior. '
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