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Filamentation instability of beat waves in a hot magnetized plasma
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A large-amplitude longitudinal electrostatic electron plasma wave excited at the beat frequency of
two laser beams is shown to be strongly unstable against the filamentation instability for arbitrary
short-wavelength perturbations in the presence of an external transverse magnetic field. The Vlasov
equation in terms of guiding-center coordinates has been employed to obtain the nonlinear response
of electrons in the plasma. It is concluded that a strong static magnetic field efficiently reduces the
growth rate of the filamentation instabilty of the excited electron plasma wave.

I. INTRODUCTION

In recent years there has been considerable interest in
the excitation of a large-amplitude longitudinal electron
plasma wave at the beat frequency of two parallel intense
laser beams shone on a plasma in the application to laser-
plasma beat-wave accelerators. ' The coherent large
electrostatic field propagating with phase velocity close to
the velocity of light will trap and accelerate the plasma
particles to high energy in large flux. However, the excit-
ed electron plasma wave may couple with low-frequency
perturbations present in the hot plasma to create various
possible instabilities. The filamentation instability is one
of such undesirable instabilities which prevents the excited
electron plasma wave from accelerating particles uniform-
ly.

Recently, Katsouleas and Dawson have shown that the
use of an external static magnetic field transverse to the
excited electron plasma waves eliminates the upper limit
of the maximum energy gain of plasma particles in laser-
plasma accelerators. The various possible instabilities due
to the excited large-amplitude electron plasma wave may
be drastically affected by this magnetic field. In this pa-
per we have investigated the effect of an external trans-
verse magnetic field on the filamentation instability of the
excited electron plasma wave at the difference frequency
of two uniform laser beams in a hot collisionless plasma.

In Sec. II we have solved the nonlinear Vlasov equation
expressed in terms of the guiding-center coordinates to ob-
tain the nonlinear response of electrons at the low-
frequency ion-acoustic perturbation and two high-
frequency scattered electron plasma waves in the presence
of a transverse external static magnetic field in a hot, col-
lisionless and homogeneous plasma. Using Poisson's
equation we have derived the nonlinear dispersion relation
for the low-frequency perturbation mode. The dispersion
relation is then solved to obtain the growth rates of the
filamentation instability of the excited electron plasma
wave at the difference frequency of two laser beams in
Sec. III. Finally, a brief discussion of the results is
presented in Sec. IV.

II. KINETIC ANALYSIS
FOR DISPERSION RELATION
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coI 2 and k't 2 are the angular frequencies and wave num-
bers of the two-incident-laser radiation, co~=(4tre np/
m)'~ is the electron plasma frequency, and co, =eB,/mc
is the electron gyrofrequency; —e, m, n, o, and c being the
electronic charge, mass, unperturbed equilibrium electron
density, and the speed of light in a vacuum, respectively.
On account of the nonlinear interaction of the incident
electromagnetic ~aves in the plasma, a longitudinal elec-
trostatic electron plasma wave

Ep(kp cop) = xikpPpexp[ —i (copt kp—x )]—
is excited at the difference frequency through the optical
mixing or forward Raman-scattering mechanism, where
kp ——k& —k2, cop ——co& —co2, and Pp is the amplitude of the
electrostatic potential of the generated wave. A small
amount of the energy of the incident waves may also be
up-converted into the sum frequency generation, which
we neglect in this work. The linear dispersion relation of
the excited electron plasma wave at the difference fre-
quency can be written as

2 2 2 2
coo ——HUH+ 3k OU th,

where coUH ——(co& +co, )
' and v, h ——( T, /m )

' are the
upper-hybrid frequency and the thermal speed of electrons

I.et us consider the propagation of two beams of large-
amplitude upper-hybrid-laser radiation along the same
direction (k', ~~kq~~x) in a hot, collisionless, and homo-
geneous plasma immersed in an external static magnetic
field in the transverse direction (8,

~
~z):

E'& z
——EI'@exp[ i (co', 2t —kI 2x )]—,

where
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in the magnetized plasma; T, being the-electron tempera-
ture expressed in units of the Boltzmann constant. We
consider this excited longitudinal electrostatic electron
plasma wave at the difference frequency of two laser
beams as the pump wave (kp, cop) which couples parametri-
cally with a low-frequency density perturbation present
in the plasma due to a variety of reasons, such as an ion-
acoustic mode (k, ~o) in the plasma and generates two
high-frequency (Stokes and anti-Stokes) scattered side-
band modes (k~ z,co~ z):

k) 2 ——@0+k,
(5)

~1,2 —~0+CO .
The nonlinear growth of the ion-acoustic mode in the
transverse direction will lead to the filamentation of the
initially uniform electron plasma wave.

For the hot magnetized plasma the Larmor radius of
electrons may be larger than any of the wavelengths of the
decay waves involved, kzp„k~zp„k2&p, ) 1 where

p, =u,h/co, . Hence, the fluid model of plasmas breaks
down and one has to solve the full Vlasov equation for the
nonlinear response of electrons in the plasma, correspond-
ing to the decay waves.

To describe the nonlinear response of electrons to the
four-wave parametric process in the magnetized collision-
less plasma, we express the Vlasov equation in its
equivalent form in terms of the guiding-center coordinates
xg, the magnetic moment p, the polar angle 0 of the per-
pendicular velocity (i.e., the angle vz makes with the x
axis), and the parallel momentum p„

aF . aF aF, aF
+xs +p +8 eE,' =0—, (6)

where

F=fo+fp(kp~top)+f(k, to) +f&(k&,co|)+fz(kz, co&),

the overdot denoting the derivative of the quantity in-
volved with respect to time. As (p, 8), (xg,yg), and (p„z)
constitute the canonical set of variables, , Eq. (6) follows
directly from the continuity equation of electron density
in the six-dimensional space of the new variables. In Eq.
(9) fp is the unperturbed equilibrium distribution func-
tion, taken to be Maxwellian at temperature T„.fp, f&,
and fq are the high-frequency responses to the pump and
the two scattered sidebands and f is the response of the
low-frequency perturbation mode. Using the equation of
motion for electrons we can write

e
(Eq vj)=— (10)

8= =to, + (E„sin8—E~cos8),
aa e

Bp 61U j

e
Xg =

2 Ey +CO~
mco,

(12)

H =pa), +p, /2m —e4',

where the superscript t refers to the total field and
N'=@p(kp, cop)+4&(k, co)+4)(k),co))+Nq(kp, coq) is the to-
tal potential of the four electrostatic waves involved. Us-
ing the identity

exp[ —i(cot —k.x) ]=exp[ i (cot —k—.xs )]

Xg exp[in(8 5)]J„(—kzp), (14)

xg ——x—vj &&to, /~, ,
2

p =7llUg /26)2

(7)
where J„ is the Bessel function of order n and p=v|/co,
we can express

E = ikpp—pexp[ i(copt —kpxg)]—g exp(in8)J„ik—/exp[ i(tot —k—x )]g exp[in(8 —5)]J„

—ik~P~exp[ i(co, t —k—~.xs)] g exp[in(8 5, )]J„'——ikzPzexp[ —i(cozt —kz xg)] g exp[in(8 —5z)]J„, (15)

F=np(m /2m T, ) exp( —mU /2T, )+exp[ i(capt —
kpxg )]—g exp(in8)f„+exp[ i(tot —k —xg)1 g exp[in(8 —5)]f„

+exp[ —i(~it —ki'xg )1g exp[in(8 —5i)]fr+exp[ —i(~oat —kz'xs)] g exp[in(8 —5z)]f~ . (16)

In Eqs. (15) and (16) P's are the amplitudes of the electrostatic potentials, J„=J„(k|p), J„=J„(kpp), J„'=J„(k&zp),J„=J„(kzip), and 5, 5~, and 5q are the angles between the x axis and kj, k&z, and kqj, respectively. Using Eqs. (15) and
(16) we can write

p =iePpexp[ i(topt —kpxs)—] g n exp(in8)J„+ieP exp[ i(tot k xg)—] g n —exp.[in(8 5)]J„—
n n

+ieP~exp[ i(co~t —k&.xg—)]g n exp[in(8 —5&)]J„'+iePzexp[ i(tozt kz xg)] g—n exp[—in(8 —5q)]J„, (17)
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egoko elk~
8=co, — exp[ i—(coot —koxg)] g exp(in8)J„— exp[ i—(tot l—t xg)] +exp[in(8 —5)]J„'

mUZ PlUy

eP)k)q &42kz~
exp[ —i (co&t —k& xg. )]g exp[in(8 5—~)]J„—

mUZ
exp[ i(~2t ~2 xg )]g exp[in(8 —52)]J'

Xg =— I',e
m COc

king

sin5 exp[ i (tot——k xg )]g exp[in(8 —5)]J„+k
&& P&sin5, exp[ i—(to, t —k& xg )]g exp[in(8 5—, )]J„

+k2J $2sin52exp[ i (cozt——k2 xg )]g exp[in (8—52) ]J„ (19)

Ee

toe
kogoexp[ i (too—t koxg—)]g exp( in 8)J„+k ~ P cos5 exp [ i (cot —kxg )]—g exp[in ( 8—5)]J„

+ki&4icos5iexp[ i(co—i &i xg)]'g xp[i (8 5i)] n

+k2l4'2cos52exp[ —i(~2t 1~2 xg )]g exp[in (8—52)] n (20)

zg =p, /m, (21)

where the prime denotes derivative with respect to its ar-
gument.

Now, since the maximum growing modes propagate in
the plane perpendicular to the external magnetic field, we
take k, =0. Using Eqs. (15)—(20) in the Vlasov equation
(6) we obtain the following linear response of electrons:

eP~ neo,fi.=— J.fo
Te CO ~

—71 COc

0f2.= —
T J.fo .
Te 602 —7l COc

(24)

(25)

epp neo~
fo.=— J.fo

Te ~0 n~c

ep neo,f.=— J.f0
Te Cc) —Pl COc

(22)

(23)

Using Eqs. (22)—(25) in Eq. (6) we obtain the nonlinear
part of the distribution function for the low-frequency
mode as

exp(in 5) e4'I kll . }' p ekoko 0' le(n+l)exp(il5&)J~ f„+t+ (l n)e xp[i—(l —n)5&]J~ f~*„
CO —n 67c 2mUy 2' U j

eel . ~ dfn+t ego . 0 dfl n ieklkokly — . & oi exp(il5&)J~ + (exp[i(i n)5~]JI — + exp(il5&)Jt f„+t2 Bp 2 a

iegokokly 0,+ eg2k2J 2' Oeexp[i(l —n )5,]J,f, *„+ (i —n )exp( —i&52)Jt f(
2m chic 2' Uy

egoko O 2 , dfr .
(n + i )exp [—i (n + l )52]Jt f„+I + I exp( il52)Jt-

2Pl Ug
"+ 2 Bp

eA) 0 ~fn+i &'&4'2kok2y
l exp[ —i(n+l)5z]Jt + exp( il52)J~f~—

2 Bp 2m wc

iegokpk2y 0 2exp[ —i (n +1)52]Jt f„+t
ma)c

(26)

where the asterisk denotes the complex conjugate of the quantity involved. We can obtain the linear and nonlinear densi-
ty perturbations associated with the low-frequency mode (k, co) from the relation
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n(k, co) =2m exp[ i—(cot —k x)]g f f f„J„u~du~ dv, .

Now, it is noticed that n =0 for a dipole pump (ko ——0). In the next approximation considering the first-order effect of
small ko in Eq. (27), we obtain the following expression for the nonlinear density fluctuation at (k, co):

noe exp(i5)
n"'=exp[ —i(cot —k x)]

mro,'goy, exp(is, } ikoklykod 1

[Io(bo )exp( —bo) —1)— Io(b & )exp( —b ] )
2 Te ( co ) —coq ) COp —Mc

ikok)yPoP)exp(i 5)) m co, PoPqexp( i 5—q)+ Io(bo )exp( bo )—+ [Io(bo)exp( —bo ) —1]
Q)~ —M 2'(cop —coq )

ikokzyyoyz I (ob p )exp( —b p ) + ikokzyPoPzexp( i 5—z)
Io(bo)exp( bo)—

COP —COc

=A 0o0i+Bkodz, (28)

where

inoe kok)yexp[i(5+5, )]
Io(bo)exp( —bo),

2mTe(co —coq )(co) —cga )
(29)

inoe kokzyexp[i(5 —5z)]B= Io(bo)exp( —bo)
2m T, (co co, )(coq ——co, )

(30)

Io is the zeroth-order modified Bessel function of first kind, bo ——kou, z/co, &&1 for the usual plasma parameters but
b& q

——k~ zu, q/co, &&1 for short-wavelength perturbation. In deriving Eq. (28) we have retained only the dominating
terms having resonant denominators, viz. , (co —co, ).

In a similar way, using the guiding-center coordinates the nonlinear response at the high-frequency sidebands are given
by

exp(in 5~ )f i'. =
CO~ —7f CO

ek~ P* , o ey* . df'+I e0oko pl
(n +l)ex (pil5) Jfl„+—I l exp(il5)JI + (i n)exp[—i(1 n)5]J~ —f~* „

2mUy
7l + Bp 2mUg

ego de .+ i exp[i(i n)5]J—I2 Bp

iePokoky o „ ieP" koky
exp[i(l —n)5]J& f&* „+ exp(il5)J&f„+&

cue m doc

(31)

exp(in5z)

eking

eP df'fz~„= g — (n i)exp( il5—)J/ f„—I+ i exp( il5)JI—
co& —n coc I 2mU

7f-
Bp

eyoko o ego o ~f.-I
(n —i )exp[ i (n —i )5—]J~ f„~+ i exp[ i (n —l)5]J~-

2mUy Bp

ieyokoky iePkoky
exp[ —i (n i)5]J~f„~— —exp( ii5)J~f„—

m coc 2m~c
(32}

Thus the nonlinear density perturbations at the high-
frequency sidebands are given by

in oe'koky exp[ —i(5—5p) ]
Io(bo )exp( —bo )

2m T, (co co, )(cop —co,—)
n ",'=Cool*,
n z'-—Ddo4

where

(33)

(34)

(36)

Using Eqs. (28), (33), and (34) in Poisson's equation we
obtain the following nonlinear coupled equations:

inoe koky exp[i(5+5))]
Io(bo)exp( —bo»

2m Te (co —co~ )(co ~
—co~ )

. (35)
eP= —(4ne/k )(Agog)+Bgogq),

e(P) —— (4m.elk ) —)Cg*go,

(37)

(38)
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e2ttt2 ———(4m.e /k 2 )Dpro,
where the linear dielectric functions are given by

(39)

2

k Vth n

2
COpe1=1—
2 2 X

n

2
COp

e,=l-
k2vth n

co —neo C
J

ncoc

co& —n coc

ncoc

~2 —n co

I„(b )exp( b—),

I„(b1)exp( b1)—,

I„(b2 )exp( —b2)

(40)

(41)

(42)

where

P2+
E'1 62

(43)

I vo/Ut
I

copt'oosln5 sln51
pI = [Io(bo)exp( bo)]-

4kk1uth(CO —tOc ) (tOI —tOc )

(44)

Eliminating t)t, $1, and $2 from Eqs. (37)—(39) we obtain
the following nonlinear dispersion relation for the low-
frequency electrostatic mode:

mm

Sm;

3/2

kC, +
C

Te
exp — 3 +

2 T/

1/2

3 exp
2k) 2AD

1 3

2k ) 2AD
(49)

A,D
——v,h/co~, C, is the ion-acoustic velocity, and T; is the

temperature of the ions in the plasma. Substituting the
expansions, Eqs. (47), in the dispersion relation, Eq. (43),
we obtain the growth rate of the decay waves from the
following relation:

r= '= — 1 p] P2"'+"'="= B,/B. B.,/B, + B.,/B,
(50)

CO=A)+Lg,

e=i (y+ I )Be/BoI,

e1,2—I (y+ ~1,2)Be1,2/Bto1, 2

where I, I &, and I 2 are the linear damping rates of the
decay waves

I vo/vth I
'~ o12o»»»»2

p2 —— [I (b )exp( —b )]
4kk2uth(IO —&c ) (&2—&c )

I uo I
'=e'PoPoko/m'OIo .

(45)

(46)

III. GROWTH RATES
OF FILAMENTATION INSTABILITY

When the low-frequency perturbation and the two
high-frequency sidebands are the normal modes, they
must satisfy @=0=@&——e2 in the linear limit. However,
on account of the nonlinear coupling in the presence of
the pump wave, the angular frequencies of the decay
waves get modified and we can have the following expan-
sions:

where yo is the growth rate of the instability in the ab-
sence of the linear damping of the decay waves. In writ-
ing Eq. (50) we have made an approximation, I I

——I 2—0.
Using Eqs. (40)—(42) one may obtain

2 2
CO~ 4~cCO

2 I 1(b)exp( b), —
CO k Uth (CO —COc )

a 2 2

2 I, (b, )exp( b1), —(51)
(I'OI —tOc )

Q7 4@7 Q)2
2 2

2 2 I, (b, )exp( —b, ),
k2Vth (&2 —Mc )

where we have kept dominating terms up to n =+1 only.
Hence, the growth rate of the four-wave parametric in-

stability in absence of the linear damping of the decay
waves is given by

(52)
I uo/vth I

kv thoIo(OI+tuc) sin&[Io(bo)exp( —bo)] kI(t'OI+OI. )'s1»1 k2(OI2+~c)»»2
64co, oI[II(b)exp( b)]- OI�III(b1)exp(

b1) OI2I—I (b2)exp( b2)—
When the low-frequency ion-acoustic mode (k, co) is

propagating in a direction transverse to the direction of
propagation of the excited electron plasma wave, the non-
linear growth of the perturbation (ion-acoustic) may lead
to the filamentation of the electron plasma wave. There-
fore, in order to find the growth rate of the filamentation
instability of the excited electron plasma wave at the
.difference frequency of two laser beams, we take 5=90.
For the short-wavelength low-frequency perturbation,
k &&ko, we have 6~—90'= —62 from the parametric con-
ditions k12 ——ko+k. Thus the expression for the growth

rate of the filamentation instability reduces to the simple
form for bo «1 «b, b~, b2

yo=Ir'
I
uo/vt

I
kkt vt OIo(oIc+OI)/4oIc . (53)

It is noticed from Eq. (53) that the growth rate of the
filamentation instability increases with

I
uo/u, h I, u,h, OIo,

co, and k, but decreases rapidly with increasing the exter-
nal static magnetic field in the plasma. The growth rate
is independent of the plasma density. From Eqs. (48) and
(49) it is observed that the linear damping rates of the de-
cay waves are small compared to the undamped growth
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rate for the usual plasma parameters. Hence the thresh-
old of the parametric process is quite low. For typical
plasma parameters in the laser-plasma beat-wave accelera-
tors coo—10' rads ', co, =10' rads ' (corresponding to
8,=100 ko), u, h

—10 cms ' (corresponding to T, =10
keV), and k=10 cm ', the undamped growth rate of the
filamentation instability turns out to be =10'

~
uo/u, h ~

Iad s

IV. DISCUSSION

A high-amplitude excited electrostatic electron plasma
wave at the difference frequency of two high-power ex-
traordinary laser beams is found to be strongly unstable
against the filamentation instability due to the nonlinear
coupling of the beat wave with low-frequency short-

wavelength ion-acoustic perturbation in a hot collisionless
plasma in the presence of an external static magnetic
field. However, the external magnetic field drastically
reduces the growth rate of the filamentation instability. It
is noticed that the growth rate of the instability is in-
dependent of the plasma density. Thus the external mag-
netic field which eliminates the upper limit of the energy
gain of the plasma particles reduces the filamentation in-
stability of the excited beat wave in the plasma, thus en-

abling the excited electrostatic electron plasma wave to
trap and accelerate the plasma particles to high energy
uniformly.
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