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Fréedericksz transition under twist deformation in a nematic layer is discussed when the magnetic
field has a random component. A dynamical model which includes the thermal fluctuations of the
system is presented. The randomness of the field produces a shift of the instability point. Beyond
this instability point the time constant characteristic of the approach to the stationary stable state
decreases because of the field fluctuations. The opposite happens for fields smaller than the critical
one. The decay time of an unstable state, calculated as a mean first-passage time, is also decreased

by the field fluctuations.

I. INTRODUCTION

Dynamical instabilities occur in many different physi-
cal systems. It is known that mean-field theories have, in
general, a wider domain of applicability in the study of
these instabilities than in the analysis of equilibrium phase
transitions.! This fact greatly simplifies, in particular, the
analysis of dynamical properties. Global fluctuations are
usually modeled in a mean-field treatment by a space-
independent random term in a Langevin-type dynamical
model.! These fluctuations play a crucial role in the
description of several dynamical processes such as the de-
cay of unstable states.”~* On the other hand, the instabil-
ity occurs at some critical value of a control parameter of
the system. The effect of random fluctuations of the con-
trol parameter in such transitions has also been con-
sidered.”> The modeling of this “external noise” situation
introduces an additional random term in the dynamical
model.

There exist very interesting features common to classes
of instabilities and nonequilibrium transitions. This is
still true in the case of random control parameters. But
there also exist peculiarities of each individual physical
system under consideration. A proper understanding of
these transitions, and especially of the effect of external
noise, requires a detailed study of concrete systems. In
this context an interesting possibility is the study of insta-
bilities in nematic liquid crystals.5~® Experimental stud-
ies of their electrohydrodynamic instabilities, in which the
electric field has a random component, have already been
carried out.” The external noise in these experiments is
the random part superposed to the electrical field. In this
context it has been recently suggested by Horsthemke
et al.>'0 that the study of the Fréedericksz instability has
certain advantages, namely, it admits a relatively simple
theoretical description, and it is easily accessible to exper-
imentation. In this transition an applied magnetic field
larger than a critical one changes the preferred orientation
of the molecules. The fluctuations of the control parame-
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ter (external noise) correspond here to some imposed ran-
dom time dependence of the magnetic field. The purpose
of this paper is to elucidate the changes induced by a ran-
dom magnetic field in the Fréedericksz transition. We
only consider here the simplest case of twist deforma-
tion.>~% Horsthemke et al.>!° have discussed the effect
of the field fluctuations in the stationary state and in the
location of the instability point. Here, on the contrary, we
focus primarily on dynamical properties such as relaxa-
tion times and the decay of unstable states, which have
not yet been considered. In the case of a nonrandom field,
these properties have been experimentally studied some
time ago.!'™!* Even in this case there is no stochastic
dynamical theory reported so far which takes consistently
into account the thermal fluctuations of the system. Such
fluctuations have also been neglected in Refs. 5 and 10.
Their consideration is necessary to study the decay of un-
stable states. In general it permits a more complete
description of the system. In this paper we introduce a
dynamical model which includes the internal (thermal)
fluctuations and also the external noise associated with
the field. This is a mean-field model represented by a sto-
chastic equation for an averaged amplitude of the most
unstable mode. This description is equivalent to suppos-
ing that the molecules rotate in planes parallel to the
plates containing the sample and the layer remains spa-
tially homogeneous in any of these planes. In the limit of
a nonrandom field, and neglecting thermal fluctuations,
we recover the statical and dynamical descriptions associ-
ated with the standard Fréedericksz transition.6—%1113
From the point of view of the external-noise problem, the
most significant feature is that the dynamical model is
nonlinear (quadratic) in the magnetic field. This fact pre-
cludes the use of the simplest Gaussian white-noise as-
sumption for the field fluctuations. In this paper we
present a first study of dynamical properties in the pres-
ence of nonlinear external noise including a calculation of
mean first-passage times associated with decay processes.
We calculate the dependence of different relaxation times
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on the noise parameters.

A general analysis of a quadratic-noise situation shows
that the main effect of the noise is a systematic (nonran-
dom) contribution in the dynamical equation.!*!> Such a
systematic main contribution can be understood in terms
of a modified potential which in turn explains our main
findings. These findings refer to the modifications pro-
duced by the field fluctuations in the characteristic times
associated with the different relaxation processes: We
find that beyond a shifted instability point, the time con-
stant associated with the approach to the stationary stable
state is decreased. The opposite happens in the relaxation
process with fields smaller than the critical one. We also
find that the decay time, needed by the system to leave an
unstable state (produced by switching on the field to a
value beyond the instability point), is reduced by the field
fluctuations. Estimates for the different characteristic
times and their modifications are given below. For typi-
cal values, these modifications are of the order of 10%.
These predictions on the effect of external noise on a
well-defined system should be very helpful to check the
validity of the standard modeling of external-noise situa-
tions.> This modeling consists normally in introducing
random parameters in phenomenological dynamical equa-
tions.

The outline of this paper is as follows. In Sec. II we in-
troduce our dynamical model. Its stationary solution is
briefly discussed and a shift of the instability point is
found. Section III is devoted to the dynamical properties.
We first calculate by a linearization procedure the time
constants (differential relaxation times) associated with
the late stages of any relaxation towards the stationary
stable state. Secondly we make a mean first-passage time
calculation!®!” of the decay time of an unstable state.
Section IV contains a summary of results and conclusions.
Details of the derivation of the stochastic model are given
in the Appendix.

II. DYNAMICAL MODEL AND STATIONARY
SOLUTION

The excess free-energy density of a nematic liquid crys-
tal in its nematic state due to local deformations, with
respect to the state of uniform orientation, is given by a
distortion-free energy®—%18

Sfaln(n)]= %K”(V‘n)z-}- %KZZ(H'VXn)Z
+1Ku[nx(VXm]?, @.1)

where n(r) is the director giving the preferred orientation
at point r. The three elastic constants Ky;, Ky, and K33
are respectively associated with splay, twist, and bend de-
formations. In the presence of a magnetic field H, there
is an additional free-energy density which, except for con-
stant terms, is®~%18

Fuln(r)]=—1X,(n-H)?, ' 2.2)

where X, =X —X, is the anisotropic part of the magnetic
susceptibility. Torques exerted by the magnetic field on
the molecules are opposed by elastic torques which tend to
maintain a preferred direction fixed by boundary condi-

tions. Fréedericksz transition occurs at a critical value of
the field H, beyond which the molecules in the bulk turn
in the direction of H. The stationary configurations and
the value of H, can be determined, for a given geometry,
by minimizing the free energy®®

Flam]= [ dr{fsln(n]+fa[nn]} . 2.3)

We are mainly interested here in the dynamics of this
transition in the case in which the magnetic field takes
random values in time. We first consider the case of a
nonrandom field H. In a general situation the dynamics
are quite complex because the evolution of n(r,?) is cou-
pled to a velocity field v(r,#), and hydrodynamic effects
are important.®—® Nevertheless, for a pure twist deforma-
tion there is no hydrodynamic flow: There is no transla-
tional motion of molecules caused by the magnetic field
and so there is no coupling of n(r,?) with the velocity
field.>®!° 1In this case and neglecting director inertia, a
simple dynamical relaxational model of the time-
dependent Ginzburg-Landau (TDGL) type seems ap-
propriate. We choose a geometry in which the plates con-
taining the sample are perpendicular to the z axis and are
separated a distance d. The molecules are initially aligned
along the x axis, and a magnetic field is applied along the
y axis. We make the ordinary assumption that the direc-
tor remains in the x-y plane.>®!> We also assume that
the system remains homogeneous in the x-y plane. (See
the Appendix for a discussion of this last assumption.)’
The director is then written as

ny =cosg(z,t'), n, =sin¢(é,t') 2.4)

and the free energy (2.3) becomes®—%11—13

d/2
Flp@]=(5/2) [, dz[K»(8,4)'—X H’sin$] ,

(2.5)
where S is the area of the sample in the plane x-y. In
equilibrium at a given temperature, e —Fle@1/ksT gives the

probability density of a configuration ¢(z). We introduce
a TDGL-type model as

, 1 8F[¢(2)] , 2. .
a: y = — - .
r(z,t") Sy bzt +&(zt"), (2.6)

where v is the twist viscosity and E(z,t') is a Gaussian
white noise of zero mean which accounts for the internal
fluctuations of the system. It satisfies the following
fluctuation-dissipation relation:

(Elz,t))E(z ,ty)) =288(t) —15)8(z —2") , 2.7)
kT

where kp is the Boltzmann constant and T the absolute
temperature. Equation (2.8) guarantees that the stationary
distribution 'of the configurations ¢(z) associated with
(2.6) is the canonical distribution

__F[¢(2)]

Pul8)=rexp | = EE

(2.9

with .#" a normalization constant.
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The dynamical model (2.6) reduces, in the absence of
fluctuations (€=0), to the one considered in Refs. 6, 8, 11,
and 13. The stochastic model gives a pure relaxational
dynamics to the equilibrium solution (2.9). This model is
of the standard form used with great success in the study
of critical dynamies?® and nonequilibrium dynamics asso-
ciated with phase transitions.?! Models of this sort have
been used in the context of nematodynamics, for instance,
in Ref. 22. The rationale behind these semiphenomeno-
logical equations is that in a dynamical description in
terms of the macroscopic variable ¢, many microscopic
degrees of freedom have been averaged out. The effect of
these microscopic variables is taken into account by a heat
bath modeled by the random force E. The assumptlons on
g are justified by the large number of averaged microscop-
ic variables (Gaussian) and their evolution in a much fas-
ter time scale than ¢(z) (white noise). The stochastic
model (2.6) can also be considered as an example of hy-
drodynamic (i.e., semimacroscopic) equations with fluc-
tuating forces.?

According to (2.5) the explicit form of (2.6) is

2
3, =—I§j—za§¢+ XoH sing cos¢ +& . (2.10)
¢(z,t') can be analyzed in its Fourier modes. For a sam-
ple with boundary conditions ¢(z = +d /2,t')=0, only the
lowest mode 6'(¢')cos(wz/d) is unstable for fields
3H.>H > H, where H,=[(K»m?)/(X,d*)]'* (Ref. 5).
In these circumstances only the amplitude of the lowest
mode shows a macroscopic variation with time, while
fluctuations of the other modes arée damped out. We can
then neglect the coupling of the unstable modes to the
stable one, and an equation for the amplitude 6'(¢') fol-
lows from (2.10). Following the usual approxima-
tion®® 101113 e expand sing cos¢ for small fluctuations
in powers of ¢. We obtain

’ ’ 1 'H2 ’ ’ 912(tl) ’
00" (t')=—14 O'(t')+75 er(t)ll_T +&(t),
2.11)
where
To= yd” __L_Z (2.12)
K227T X H

is the natural time scale and £’(¢’) represents the internal
fluctuations acting on the amphtude variable 6'(¢'). Itis a
Guassian white noise, with zero mean and correlation

(E(t1)E(25)) =2€'8(t] —15) , (2.13)
) € kgT
e—d/2 =2 oV (2.14)

A more detailed derivation of (2.11) can be given allowing
first for a dependence of the angle ¢ on the spatial coordi-
nates x and y. Equation (2.11) is then obtained as a strict
mean-field theory for the most unstable mode of a quanti-
ty spatially averaged in the x-y plane (see the Appendix).
Introducing a dimensionless time ¢ =73 '#’, (2.11) can be
written as

3,0()=—U'(0)+E)=f(0)+h’g(O)+E(), (2.15)

2 2
vey=1=1) go B g (2.16)

2 8
f(O)=—06, g(0)=06(1—-6/2), 2.17)
where 0(¢)=60"(1ot), h =H/H,, and &(t)=7,£'(¢') has a

dimensionless noise intensity e=¢€'To=270kgT/YV
=2kpT/X,H2V. For MBBA [4-methoxybenzylidene-4'-
(n- butyl)amlme], at room temperature (y~1P,
K3, ~107% dyn),** and for a sample of width d ~ 100 um,
the order of magnitude of the time scale 7y is 79~ 10 sec,
and the internal noise intensity € ~8x 1071,

The Langevin equation (2.15) exhibits, in the limit of
vanishing fluctuations, a dynamical instability (Fréed-
ericksz transition) at A=1. For h <1, 6=0 is the station-
ary stable state. It corresponds to the single minimum of
the potential U. For h>1, 6=0 is a stationary unstable
state and two new stable stationary states

+=71[2(1—1/h*)]'/? appear. These two states are the
two-equivalent minima of U(6). They correspond to the
two possible alignments of the molecules for H > H,.
When the fluctuations of the system are taken into ac-
count, the instability is described by the behavior of the
stationary distribution P (60) associated with (2.15). The
Fokker-Planck equation for the probability distribution
P, (0) equivalent to (2.15) is

a,P(0,1)=ag[U'(@)P(G,t)]-i—Ga%P(G,t) . (2.18)
The stationary solution of (2.18) is
Po(0)=exp | — —Uiﬁ (2.19)

It has a single peak at 6=0 for h<1. For A>1, P,(6) is
a symmetric distribution with two maxima at 6=0,.

We now consider the effect of external fluctuations in
the magnetic field. The experimental situation that we
envisage is similar to the one considered by Kai et al. and
Kawakubo et al.® for an electrohydrodynamic transition:
The magnetic field has a constant mean value and a ran-
dom part w'(¢') produced by an appropriate noise genera-
tor. The modeling of the random part w’(¢') cannot be
made by a Gaussian white noise. On the one hand, it is
not always realistic. On the other hand, it is mathemati-
cally ill-defined. Indeed, replacing H by H+w'(t') in
(2.11) we obtain a stochastic differential equation involv-
ing w'*(¢') which makes no sense if w’(') is a white noise.
Here we model w’(¢’) by an Ornstein-Uhlenbeck process,
that is, a Gaussian process with zero mean and correlation

(w'(t])w'(ty))=(D'/7")exp(— |t} —t5 | /7) (2.20)

The process w'(t’) is characterized by two independent
parameters: noise intensity D’ and correlation time 7.
These two parameters can be controlled experimentally
(see, for example, Refs. 9 and 25). The correlation time 7
is given by the inverse of the cutoff frequéncy of the
power spectrum of the noise. For a typical value of 5
kHz, 7' ~2x10~* sec. In our case the value of D'/7 is
restricted by the requirement that only the lowest mode in
(2.10) becomes unstable. It has been estimated® that for
D'/7' <5X1072H? this requirement is fulfilled. For an
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applied magnetic field H ~H, this allows fluctuations in
H? of the order of 5%. In the dimensionless time of
(2.15), the stochastic differential equation for 6(z) is

3,0(1)=f(0)+[h+w(t)]’g () +£&(2),

where h=H /H,, and w(t)=H;.'w'(ry) is an Ornstein-
Uhlenbeck process characterlzed by a dimensionless noise
intensity D =D’ /(1,H?2), and a dimensionless correlation
time 7=71;, 1. With the above estimates for D’ and 7',
we have 7~2X 107> and D ~1075.

In order to discuss the effect of the stochastic fluctua-
tions of the magnetic field, a first problem is to find the
equation for the probability distribution P(60,¢) associated
with (2.21). The difficulty comes from the nonlinearity of
(2.21) in w(z). An approximate Fokker-Planck equation
which accounts for the main effects of the nonlinear noise
can be obtained in the limit D << 1, 7<<1 with D /7 fin-
ite. This approximation corresponds to the ordinary situ-
ation in which the noise evolves in a fast time scale 7 << 1,
but has a finite strength measured by the integral of the
spectral density S(w): D /7= fo dw S (w).?% In this ap-
proximation we only retain contributions of zeroth
(D /7)7° and first [(D /7)1, (D /7)*r] order in 7.'%15 In
our situation this means keeping terms of an estimated or-
der of magnitude of 5x 1072, 1075 and 5Xx10~% The
first term neglected is of order (D /7)7*~2x 10!, This
procedure corresponds to a consistent Markovian limit in
which 7(¢) defined by

W )=wt)+2hw(t)—D /T

is replaced by a Gaussian white noise of zero mean value
and with the same noise intensity D (Refs. 14 and 15)

(2.21)

(2.22)

D= [ dr{n(em(t))=D @&k >+D /7). (2.23)
In this approximation (2.21) becomes
3,0(1)=—TU"(0)+g(0)n(2)+£(2)
=f(6)+a’g(0)+g(0)n(1)+£(1) (2.24)

5(9)=U(0)+ 9
2 T

92 (1—(12)2 234
|t

(2.25)

a?=h*+D/7, (2.26)

where 4 is now replaced by % in U(6). According to the
Gaussian white-noise assumption for 7(z), the Fokker-
Planck equation, in the Stratonovich interpretation, asso-
ciated with (2.24) is

3,P(0,t)=03,[U (6 g (0)g'(0)]1P(6,1)

+33[Dg*(0)+€]P(6,1) . 2.27)

A comparison of (2.15), (2.16), and (2.18) with (2.24),
(2.25), and (2.27) shows that at this formal level there are
two different effects of the fluctuations of the magnetic
field. First, there is a systematic effect due to the nonvan-
ishing value of (w?(¢)). This effect is taken into account
by a modification of the potential U which is now re-
placed by U, or equivalently by the substitution of 4?2 by
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a’*=h2+D/7in (2.25). We remark that such a systemat-
ic effect is a peculiarity of the nonlinearity of the noise.'*
A second effect is the introduction of a multiplicative
(state-dependent) noise in (2.24).

The instability point is shifted by the randomness of the
magnetic field. We first consider the strict limit .D—0,
7—0, D /7 finite. Equation (2.24) exhibits in this limit an
instability at a®?=1, that is,

hi=1-D/r. (2.28)

For % > hp, the stable stationary states are given by the
two equivalent minima of U(6) located at

=+[2(1—1/a®)]'%. (2.29)

The shift in the critical value of the square of the field in
the amount D /7 is a consequence of the systematic effect
of the nonlinear noise. The location of the instability
point is further modified when taking into account the
multiplicative noise in (2.24). The instability can then be
described in terms of the stationary solution of (2.27):

P, (0)=+1DgX0)+€]~1"?

f(8)+a’g(0)

= (2.30)
Dg%0)+€

X exp f deo

According to (2.30) the position of the extrema of Py(6)
is given by

f(0)+h?g(0)=—(D/1)g(6)+Dg(6)g'(0) .

The right-hand side of (2.31) vanishes when the magnetic
field does not fluctuate. It shows the effect of the field
fluctuations in the position of the extrema. The first term
in the rhs originates in the systematic effect of the non-
linear noise. The second one is due to the multiplicative
character of 77(¢). Substituting the explicit expressions of
f(0) and g(0), (2.17), in (2.31) we have

(@*—1)0—+a?0*—DO(1—36%)(1—36%)=0.

(2.31)

(2.32)

This implies that 6=0 is always an extremum of Py(0).
When a?> 14D a pair of additional symmetric extrema
appear at

(4—a*/D)+[(24+a?/D)*—
2

12/D1'7?

+
omax

(2.33)

The single extremum displayed at =0 when a’<1+Dis
a maximum, while the pau‘ (2.33) are maxima when
a’>1+D. In the latter regime 6= O corresponds_to a
minimum of P,(6). The extrema 0.« approach 0. as
D—0 with « fixed. If the position of the extrema are
taken as indicators of the nonequilibrium transition,’ the
above discussion implies that the threshold value % for
the Fréedericksz transition, including the effect of the
multiplicative noise, is given by a%=1+D, that is,

l—D/T+D /T
1—4D

Consistently with the approximation leading to (2.24) we
expand (2.34) in powers of 7. Keeping first-order contri-

hi (2.34)



32 DYNAMICS OF FREEDERICKSZ TRANSITION IN A . .. 1847

butions in D or 7 with D /7 finite,

h%=1-D/r+D(4—3D /7). (2.35)

As D—0 with D /7 finite we recover the previous result
(2.28).

The dominant contribution, —D /7 in (2.35) implies
that rapid (7 << 1) external quadratic noise destabilizes the
system lowering the threshold value of the Fréedericksz
instability. This instability shift is directly given by the
fluctuation of H? In our calculation it is of the order of
5%. The second contribution in (2.35) is common to any
problem with multiplicative noise. In our case it is es-
timated to be only of the order of 1074%. On these bases
we will only consider the systematic effect of the noise on
the dynamical properties discussed in the next section.

The result (2.34) has been independently obtained by
Horsthemke and Lefever in a model in which internal
fluctuations are neglected.>!° Although internal fluctua-
tions do not modify the threshold value (2.34), they are
crucial to describe the dynamical properties discussed in
Sec. III. Horsthemke, Lefever and collaborators'® have
also considered the case in which internal fluctuations are
neglected and w(¢) is a dichotomic Markov noise with
correlation function {w (H)w (¢')) =A%exp[ —Alt —¢')]. In
the limit A— oo, A? fixed, they have found % 2=1—A2
This coincides with (2.28) when the natural identifications
of parameters D/r=A? 7~ !=A is made. Beyond this
limit the results obtained with the dichotomic Markov
model and with an Ornstein-Uhlenbeck one do not coin-
cide. This fact is in agreement with the general discussion
of Ref. 15, where the two models for a noise entering qua-
dratically in a stochastic differential equation have been
compared.

III. RELAXATION TIMES

Dynamical properties of interest associated with the
Fréedericksz instability are the relaxation times.>%!13 In
principle one has to distinguish between the relaxation of
small fluctuations around the stationary stable states (dif-
ferential relaxation time), and the relaxation of the system
after a sudden change of the parameters in which the sys-
tem is driven through the instability point. In the first
case there is an exponential relaxation characterized by a
single well-defined time constant. In the second case the
dynamical evolution involves, in general, different stages.
In any case there is always a last stage with an exponential
relaxation which coincides with the relaxation of a small
fluctuation around the stationary stable state approached
by the system. This last stage is the only significant one
when a field larger than the critical field (and not too
large) is switched off: 6(¢) relaxes exponentially to 6=0.
We first discuss such exponential relaxations. The discus-
sion of the dynamical evolution of the system from the
unstable state created when a field larger than the critical

is switched on is postponed to Sec. III B. Earlier studies -

of these dynamical properties®®!!~13 have been based on
a pure deterministic analysis. A more consistent presenta-
tion is given here considering the internal fluctuations of
the system. As a new problem which has not been dis-
cussed so far we also consider random fluctuations of the

field. We have seen in the previous section that the dom-
inant effect of such fluctuations is taken into account re-
placing U(0) in (2.15) by a modified potential T(0) given
in (2.25). This is the only effect which survives in the
limit D—0, 7—0, D /7 finite. Here we study dynamical
properties only in this limit. Internal fluctuations must be
kept in our model because the decay of an unstable state
does not occur in their absence. Our stochastic descrip-
tion is thus given by (2.24) neglecting the multiplicative
noise of external origin

3,0(t)=—TU"(0)+£(1) . (3.1)

A. Differential relaxation times

The late stage of the relaxation of 0 towards the stable
stationary states =0 for h#2<1—D /7 and to §=0 for
%2> 1—D /7 can be studied linearizing (3.1) around these
points. In fact the quantity which is experimentally mea-
sured is a time-dependent heat conductivity which is pro-
portional to 6%(z).!* The equation for 6%(¢) follows from
(3.1)

9,0%(t) = —2(1—a?)0* —a*6* +20€(1) . (3.2)

Linearizing around 6?=0, the mean value {6?), satisifies
8,{0%),=—2(1—a*){(6?),+2¢ (3.3)

so that it reaches the equilibrium value €/(1 —a?) with a
time constant T;(h,D /1),

T,(h,D/7)=2[(1—a?)] '=[2(1—R2—D/7)]"!. (3.4

Setting D /7=0 in (3.4) we recover the relaxation time for
the case of a nonrandom field 4.%%113 The effect of the
field fluctuations is to slow down the relaxation process
subtracting a quantity 2D /7 to T{'. This linearization
procedure implies a critical slowing down at the shifted
instability point h2=h%=1—D/r. For a field
h=(+)"Y2H*=H?/2), and in the absence of external
noise T,=7¢~10 sec. For the estimated value of
D /7~5% 1072, the external noise increases the relaxation
time T'; in an amount of the order of 10%. B

In the case # 2> 1—D /7, we linearize (3.2) around 921,
and 86>=6%—83 satisfies

a,(sez},= —2a?—1){86%) +2¢
so that the time constant T,(k,D /1) for this process is

T,(A,D/7)=[2(a®>*—1)]"'=[2(R%*+D/7—1)]"'. (3.6)

(3.5)

The effect of the field fluctuations is now the opposite
one. The relaxation time is faster than in the case of a
nonrandom field. Now, for a field # =(3)2(H?*=$H}),
T,(D /T7=0)=7¢p~10 sec, and the external noise dimin-
ishes T', also by 10%.

If one studies the relaxation of @ instead of 62, in prin-
ciple one should consider the fact that the internal fluc-
tuations £(#) connect the two states 6, and 6_ for
h2>1—D /7. The relaxation towards one of these states
occurs with the same time constant T,. This is obtained

linearizing (3.1) around 6, or &_. The linearization
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makes sense because the equilibration between the two
states (which would yield {(8),—0 as t— ) only occurs
on a much longer time scale, except very close to the in-
stability point where 8, and O_ join each other. On the
other hand, the relaxation of 6 towards 6=0 for
% 2 <1—D /7 occurs with a time constant 2 T';.

B. Decay of an unstable state

We now turn our attention to the relaxation process in-
duced by switching on the field and its fluctuations from
h=0, D/T=0, to a value beyond the instability point
at=1. The system relaxes from the original stable steady
state at 6=0 towards 6=0,. Immediately after the
change of parameters, the system finds itself in an unsta-
ble steady state. The decay is initiated by the internal
fluctuations of the system. Previous studies!® of this re-
laxation process for a nonrandom field use a deterministic
description [(2.15) with £(¢)=0]. The decay of the unsta-
ble state is then made possible replacing the initial condi-
tion #2=0 by a mean value {6?)5£0. It is argued that the
distribution of initial conditions around 6=0 implied by
considering {6?) is caused by thermal fluctuations obey-
ing an equipartition theorem. In our formulation of the
problem such fluctuations are modeled by the random
term £(¢) in (2.15). The distribution of initial conditions
is given by the stationary distribution (2.19). Several sto-
chastic theories have been recently proposed to describe
the decay of an unstable state of a general system.’™*
From the point of view of the calculation of the relevant
time scales, an important quantity is the time that the sys-
tem takes to leave the unstable state. This is given by the
mean first-passage time (MFPT) to leave the immediate
vicinity of the unstable state.!®!” After this time lag the
process is essentially described by the exponential relaxa-
tion described previously.?’” Experimental evidence of
such time lags has been reported for the Fréedericksz
transition, in other geometries, in Refs. 11 and 13. Here
we present a calculation of the MFPT based on the sto-
chastic model (3.1). In the limit D/7=0 we obtain the
corresponding result for the nonrandom-field case.

The explicit form of (3.1) is

8,0()=(a®>—1)0— 3> +£(1) . (3.7)

We wish to calculate the MFPT, T, of 6*(t) through
0*=Q2 In this calculation we follow the method
developed by Haake et al.'” This method is expected to
give good results if for the final value of the control pa-
rameter a, =0 and 6=0,. are well separated in compar-
ison with the strength € of the fluctuations. In this case Q
is chosen as a point neither close to §=0 nor to §=0..
For small enough values of €, T turns out to be indepen-
dent of the precise value of (. The requirement of a
small value of € is safely satisified with our estimate of
€~8x107!1. The calculation is based on an asymptotic
solution of (3.7) given by its deterministic solution with a
random initial condition 6,. The randomness of 6, ac-
counts for the main dynamical effect of the thermal fluc-
tuations of the system

2 |
62,(£,80) = ZX& 1) pra—
—1
2
x63 | 2=V 2a-_pgz| | (38)
a
0o=000)+ [ " dre=@~Vig(r) . (3.9)

The same basic idea involving a deterministic mapping of
an initial random process is used in the quasideterministic
theory (QDT) of de Pasquale et al.* for the decay of an
unstable state. The MFPT is given by the average over an
asymptotic passage time distribution W (z),

T= fo dt tw (1) . (3.10)
W (t) is defined by (27 is the Heaviside’s function)
2 2 d »
W (t)=(8[0,(t,00) — Q157 ;Ee,,s(z,eo)
d » >
—05:(2,60) , (3.11)
X dt 0 (8

where the average is over the distribution Q(6,) of the
random variable 6,. This distribution includes the aver-
age over the different stochastic trajectories induced by
&(t) with a fixed initial condition and also the average
over the initial conditions 6(0). In the physical situation
under consideration the magnetic field and its fluctuations
are switched on at t=0, so that the distribution of 6(0) is
a Gaussian distribution given by (2.19) with A=0. The
distribution of the random variable f Ow dt e =@ =Vt(r) s
also a Gaussian of zero mean value and variance
e/(a’?—1). Therefore it follows from (3.9) that Q(6,) is
also a Gaussian distribution given by

2 —1/2 )
e e (3.12)
where )
a=(a?*—1)/a*. (3.13)

From (3.11) and (3.12), and following the same procedure
as in Ref. 17, we obtain

2 172
2((12—1) a QZe-—2<a — 1)t
W(t)= - —
( w2 26 1—[a?/2(a?—1)]Q2
a Qze—2<a2—1)z
X — A > (3-14)
P T 2e 1 (22— 1)]Q2
and
1 a 0? 1
=——>—|In|5- —%(5) |,
2ar—1) | | 2e 1——[a2/2(a2—1)]02J v ]

(3.15)

where 1 is the digamma function.?®

In the particular case of a nonrandom field, the MFPT
is given by (3.15) with a? replaced by k2. The effect of
the distribution of initial conditions 6(0) is contained in
the parameter a in (3.15). Setting 6(0)=0 for all trajec-
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tories O,(t), we obtain (3.15) with a replaced by a®—1.
The consideration of a distribution of initial conditions
obviously decreases the value of T with respect to the case
of fixed initial condition 6(0)=0. In practice the small-
ness of € dominates the actual value of T. In fact, for
asymptotically small values of € we obtain from (3.15)

T~[2(a®>—1)]"In(1/2¢)

=[2(A%24+D/r—1)]"In(1/2¢) (3.16)

so that, in this limit, T is independent of the values of
and a. This asymptotic result is also valid if at t=0 there
is an applied nonvanishing field below its threshold value.

The expression for T in (3.16) contains two well-
differentiated factors. The In(1/2€) factor takes into ac-
count the fluctuations of the system, so that when €e—0,
T becomes infinite. The existence of this factor makes
clear that 7 is much larger than the differential relaxation
times 7Ty and T, given in (3.4) and (3.6). This fact im-
plies that when the field is switched on, the system spends
in the vicinity of the unstable state a time T >> T, before
approaching the stable state 8% in an exponential relaxa-
tion with time constant 7,. This is true both for random
and nonrandom fields. The prefactor [2(a®?—1)]"! in
(3.16) indicates the dependence of T on the curvature of
the potential U(8) around #=0. In the approximation
leading to (3.16) the randomness of the magnetic field
only modifies this factor. The estimate which follows
from (3.16) for the MFPT T in the case of a nonrandom
field A =’(%)1/ 2 is To=~237y~200 sec. Identifying 4 with
A, the relative variation caused by the fluctuations of the
field is '

T-T, _ —D/T
T R*4+D/r—1"
Therefore the field fluctuations diminish the time that the

system. needs to leave the unstable state. For & =(3)!/?
and D /r~5X 1072 this gives a variation of 10%.

To=T(D/r=0). (3.17)

IV. SUMMARY AND CONCLUSIONS

In this paper we have analyzed the Fréedericksz transi-
tion in a twist geometry in the presence of a fluctuating
magnetic field and have taken into account thermal fluc-
tuations. We imagine an experimental situation in which
- controlled random perturbations are superposed to the
magnetic field in analogy with experimental studies of the
electrohydrodynamic instability.® Our description is also
useful to analyze the effect of natural fluctuations of the
magnetic field.

In agreement with recent studies'® we have found that
the magnetic field fluctuations produce a shift of the in-
stability point. This shift is directly given by the strength
of the magnetic fluctuations. For fluctuations of H? of
5%, the shift in H? is of 5%. Our new results refer to
dynamical properties. The characteristic relaxation times
are modified in a larger relative amount than the shift in
the instability point. Again, for fluctuations of H? of
5%, the differential relaxation times 7';, T,, and the time
needed to leave an unstable state are estimated to be modi-
fied by 10%. T, becomes larger while T, and the decay

time diminish. Our formulas (3.4) and (3.6) for T; and
T, can be applied to a number of physical situations that
we can envisage. Small fluctuations of the director angle
can be produced by small changes in the mean value of
the applied field H. These fluctuations decay with time
constants T; or T, depending on the final value of the
field. If the fluctuations of the field are controlled by a
noise generator, we have the additional possibility of
changing the stationary state of the system by modifying
the parameters of the external noise acting on the field.
Finally, we note that 7', with =0 is the time constant
for the exponential relaxation of the system when the
mean value of the field is set to zero starting with a situa-
tion in which %40 is either larger or smaller than Ap.

Equation (3.16) for T gives the time lag between the
switching on of a field larger than the critical one and the
time in which the director turns following the field. This
formula is also of interest in the absence of field fluctua-
tions. In fact, we do not know of any other consistent cal-
culation of this time lag for the Fréedericksz transition.
Our estimate of T, is compatible with experimental re-
sults in other geometries.!?

Our conclusions are based on a stochastic dynamical
model which incorporates the thermal fluctuations of the
system. In the absence of field fluctuations this model
gives a relaxational dynamics driven by the equilibrium
free energy. The main assumptions of our final model
equation (2.15) are two. First, we assume that the system
is spatially homogeneous in the plane of the sample. This
assumption corresponds to a mean-field treatment in
which only the most unstable Fourier mode in the plane
of the sample is considered. Spatial fluctuations in that
plane are not essential to describe global relaxational pro-
cesses. The random term associated with the thermal
fluctuations models the global fluctuations of the order
parameter. Secondly, we neglect the coupling of the un-
stable mode (in the direction perpendicular to the sample)
to the stable modes. For H <3H, only an unstable mode
exists. In the limit of vanishing thermal fluctuations our
model reduces to the standard one in the literature.>®!?
Fluctuations of the magnetic field are modeled as in other
experimental studies”?®> by a Gaussian broad-band noise
with two adjustable parameters. A requirement is im-
posed in these parameters so that the condition of a single
unstable mode is respected.

Although our results follow from a mathematical
development of the dynamical model, they admit a clear
physical interpretation. Fréedericksz instability is con-
trolled by the square of the magnetic field. The dominant
contribution of the field fluctuations is then a systematic
contribution given by the noise strength D /7. Essentially,
the effect of fluctuations is to change the value of the
square of the (reduced) field #% by 7 2+D /7. The time
constants have then to be roughly given by the formulas
for the case without field fluctuations with % ? replaced by
h 24D /7. This replacement only modifies the potential
U (0) which describes the instability. The situation can
then be described in terms of the modified potential TU(6).
For h24+D/r<1, U(0) is flatter at 6=0 than the poten-
tial U(0). This obviously implies a slowing down of the
relaxation towards 6=0. T, increases with field fluctua-
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tions. For 224D /7> 1, U(6) has deeper wells at 6=0
than those of U(6) at 6. In turn, this implies a smaller
value of T,. Likewise, the maximum of T(6) at 6=0 for
h24+D/7>1 is more pronounced than the corresponding
one of U(6). As a consequence, the time spent by the sys-
tem before leaving the unstable state when a field is
switched on from A=0 is smaller than in the absence of

field fluctuations.

APPENDIX

In this Appendix we give a more detailed derivation of
our final model equation (2.11) in the absence of magnetic
field fluctuations. Neglecting thermal fluctuations, the
dynamical equation for the director n(r,?’) can be written
in terms of the free-energy functional (2.3) as®

1 8F[n(r,t')]

vy on(r,t’) (Al

o,n(r,t')=—

We now consider the same geometry as that in (2.4) but
we admit a dependence of the angle ¢ in the three spatial
directions

ny=cos¢(r,t'), n,=sing(r,t’) . (A2)

In this situation (A1) reduces to an equation for the angle

¢(r,1),

3,(r,t") _ 1 3F[¢(r,t)]

y  o¢(r,t’)

The explicit form of the free-energy functional F[¢(r,t')]
is given by (2.3) with

fald(x,1)]= 1K 1[cos’$(3,$)2+sin’h (D, $)?
—2sing cos$d,$d,d]+ 3K ,(9,¢)?
+ 5K 33[cos$(d,$)*+sin’(3, ¢ )?
+2sing cosd, 0,41 ,
— 31X, H%in% .

(A3)

(A4)

Smld(r,2)]= (A5)

In the same way as in (2.6) we can now introduce a sto-
chastic TDGL-type model

1 3F[¢(r,t")]

at'¢(r’t )_'— 7’ 6¢(r,t')

+n(r,t’), (A6)

Abp o(t')={1—[(2m + V)X H, /H)*+£3Q]}6,, q(z')

d/2
2 2 9" q; (¢ )Olqz( 16, Pq— Q1+Q2)(t ) f_d/z

qlqznlp

where the following identifications have been made:

K,,
kE_L?) gZ———7 ’
X, H X H
2 (A12)
Ky K11 K33
H= QP=r—a/+ 5 4
K» 2

X, d?’
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where 7(r,t’') is a Gaussian white noise with correlation

(qlry, 2] () ))=278(r,—r2)8(t'1 —1t5) . (A7)
The physical ideas underlying (A6) are the same as in
(2.6). In particular it gives a relaxation dynamics to an
equilibrium solution e ""#". This distribution gives the
equilibrium probability of a configuration ¢(r).

Expanding (A6) for small values of ¢(r,t"), its explicit
form becomes

1
at'¢(r,t')=?[K11a§¢+Kzza§¢+K3sai¢
+XHHp—54*)1+n(1,t") . (A8)
In the rhs of (A8) we have neglected a term

(1/y K33 —K1)35¢0,¢. This term can be neglected in
an ordinary Landau expansion'® in which only lowest-
order terms in ¢ containing spatial derivatives are kept.
A different reason for neglecting this term is that for or-
dinary MBBA, K;;~K3;; (Ref. 24). In any case, if this
term is kept, it does not contribute to our final equation
(2.11).

A more detailed analysis of the dynamics specified by
(A8) can be given by Fourier transforming ¢(r,z’) and
n(r,t"). Proceeding in this way, we will be able to identify
the more unstable modes involved in the relaxation pro-
cesses that we study. The Fourier expansion is given by

$(p,z,t)=3 3 cos(2n +1>f5eiwe;,,q(z'> (A9)

n q .
and analogously for 7(r,t'). In (A9), p stands for a two-
component position vector in a plane perpendicular to the
relevant z direction. By inverse transforming the internal
noise 7)(r,t’) it is easily seen that its Fourier modes are

correlated through
, , 2kpT
(Tim,q, (1 Vg, (25)) =2 —ﬁ,— SmnBq,,—q, 011 —15) .
(A10)
Substituting (A9) and (A 10) in (A8),
dz cos[(2m +1)mz /d]cos[(2n + )7z /d]
X cos[(2] +1)mz /d]cos[(2p + Dmz/d] | +Anmo(t) ,  (A11)

[
Linearizing (A11) we can do a linear stability analysis,

Q6 q

where g.(m) stands for the inverse of the characteristic
length for the fluctuations of the mth mode in a plane
perpendicular to the z axis

A6 ot =E3(q2 — )4 Mimg(t) . (A13)
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q%(m)zé[l—&m FVXH, /H)] (A14)
7

For a given m and q, the mode 8,, (') becomes unstable
if the pair of inequalities

1—(2m +1)%H,/H*>0, q?>Q? (A15)

are both satisfied. If we are interested in relaxation pro-
cesses not extremely close to the critical point H =H, we
must focus our analysis on the most unstable mode, i.e.,
the fastest one. For fields H, < H < 3H,, this corresponds
to taking m=0, g, =2w/L,, q,=2mw/L,, L,,L, being the
dimensions of the sample in the x,y directions. It should
be noted that for critical equilibrium dynamics the
relevant modes would be the slowest ones, but here in
‘what concerns the dynamics of relaxation processes, our
interest lies in the fastes modes. Specializing the general
equation (A 11) for the mode m =0,q=0 (the lower cutoff
in the g-space can be neglected in the limit L — « ), we

obtain Eq. (2.11).

Equation (2.11) gives a model in which spatial fluctua-
tions in the plane x-y are averaged out. It represents a
strict mean-field theory for the most unstable mode m =0
of the spatially averaged quantity 6,,(¢’) =0, q0lt’),

, , ——1— 2— d/2 E ,
0, (¢ )—S fdp p f_d/zdzcos(Zm +1) d o(p,z,t")

Eé [ dp6,,(p,1") . (A16)

The correlation length g~ ' measures the spatial equilibri-
um fluctuations of the system in the x-y plane. In a
mean-field study of a relaxation process the relevant fluc-
tuations are the global fluctuations of the order parame-
ter. In particular these are the fluctuations needed to

analyze the nonequilibrium decay of an unstable state.
They are well modeled by the random term &’(¢') in (2.11).
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