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We prove that the hypernetted-chain and soft-mean-spherical integral-equation theories, together
with the variational perturbation theory (based on the Percus-Yevick approximation for the hard-
sphere reference system) are all identical in the asymptotic high-density limit: They share the same
Madelung energy that constitutes an exact lower bound to the true potential energy of the system.
The Percus-Yevick equation for hard spheres is shown to diverge at total packing fraction equal to
unity, with a direct correlation function c¢(r) given by the overlap volume of two spheres with
separation . We present the exact analytic solution of the mean-spherical approximation for any
repulsive potential ¢(r) satisfying #(k)>0 which is a Green’s function for an operator of the
Sturm-Liouville-type. The corresponding direct correlation function is given by the interaction be-
tween the particles when they are “uniformly smeared” inside a sphere. Our results are general,
applicable to any number of dimensions and to mixtures. The physically intuitive meaning for the
direct correlation functions is offered as a starting point for the statistical thermodynamic analysis

of nonspherical hard, and/or charged, objects.

I. INTRODUCTION

Integral-equation theories for fluids occupy a time-
honored niche in the modern history of liquid-state
theory.! Their low-density properties have been studied
by graph theoretical methods and partial information re-

garding their merit may be gleaned from their predictions’

for the low-order virial coefficients. The validity of these
equations for strongly coupled fluids is assessed by com-
parison with computer simulation results. No general
analysis of the properties of these theories at high densi-
ties is available. Yet, a great deal about the structure of
these theories and the underlying physics can be learned
from the study of their behavior in the asymptotic high-
density limit (AHDL). As an example for what we have
in mind, and to set the stage for the present study, recall
that both the Onsager “smearing” idea? and the Lieb-
Narnhofer® “ion-sphere” lower bound for the potential en-
ergy of the classical one-component plasma (OCP) are
contained* in the AHDL result for a mean-spherical ap-
proximation (MSA) with continuous direct correlation
functions (DCF’s). ¢(r). We proved* that in the AHDL
(superscript oo ) ¢ *(r) for the OCP is given by the electro-
static interaction energy between two uniformly charged
spheres of radius equal to aws (Wigner-Seitz radius) and
separation . This physically intuitive meaning for the
DCF’s has been already instrumental in the study of the
equation of state (EOS) for plasma mixtures® and prompt-
ed a new approach to the statistical thermodynamics of
arbitrary shaped-charged objects.®

" Another time-honored approach to the statistical ther-
modynamics of liquids is perturbation, theory.! This ap-
proach finds its widest range of applications when used in
the variational form based on the Gibbs-Bogoliubov in-
equality.” It has been recently investigated in light of new
developments in the diagrammatic analysis of liquid-state
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theory—the universality of the bridge functions.® In most
applications of the variational perturbation theory (VPT),
the energy integrals are evaluated by using the Percus-
Yevick (PY) pair correlation functions for hard spheres
(HS), and may be handled semianalytically in many cases.
This particular version of the VPT is denoted “VPY” in
short. The AHDL of the VPY has been demonstrated’ to
yield universal features for the equation of state in strong
coupling.!® When applied to the strongly coupled OCP in
three dimensions it yields the “ion-sphere” Madelung en-
ergy mentioned above—the same result as obtained analyt-
ically by the MSA, and close to the result found from the
numerical solution of the hypernetted-chain (HNC) equa-
tions.>1°

The present study was motivated by the contention that
these OCP features are general and apply to arbitrary
repulsive interactions in strong coupling. Our study of
the AHDL behavior of the most widely used integral
equation and perturbation theories reveals that they all be-
come identical in high densities, and it enables us to find a
general, physically intuitive meaning for the DCF’s. In
addition to revealing fundamental properties of the
theories discussed, and similarly to the case of charged ob-
jects,® our analysis offers a possible starting point for
physically intuitive and accurate statistical thermodynam-
ics of “nonspherical” hard particles.

We start (Sec. II) by gathering relevant information
about the integral-equation theories, namely the HNC,
MSA, and PY approximations. The thermodynamic
functionals of the pair functions are central to the
developments to follow, and the results are obtained in a
surprisingly simple way once certain observations are
made.

The AHDL is formally defined as the limit in which
the compressibility tends to zero. For continuous (soft)
interactions it is physically equivalent to the limit in
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which the excess free energy F® /N and the potential en-
ergy U/N are both asymptotically equal to the Madelung
energy Uy (p).

The PY theory for hard spheres and hard-sphere mix-
tures of arbitrary dimensionality D is discussed in Sec. III
where, in particular, we prove (S1). The AHDL is ap-
proached when the total packing fraction, n=(total
volume of sphere/total volume of the system)=1. (S2),
c¢*(r)=lim,_,,(r) is proportional to the overlap volume
of two spheres of diameter R and separation r. Note that
(S3), once proven for hard spheres, (S1) and (S2) are obvi-
ously valid for the MSA for an arbitrary potential ¢(r)
containing a hard core.

The HNC and soft-MSA (SMSA) theories for continu-
ous potentials that are strongly repulsive at short dis-
tances are considered in Sec. IV where, for arbitrary D, we
prove (S4). In the AHDL, the HNC and SMSA theories
are identical; they share the same DCF’s, ¢ *(r), and the
same Madelung energy (e.g, —- 5[ for the three-
dimensional OCP, I'=e?/aws). (S5), the AHDL result
from the HNC (SMSA) theory constitutes an exact lower
bound to the true potential energy of the system; e.g., the
HNC Madelung energy is lower than that for the stable
high-density lattice. (S6), g *(r), the AHDL pair correla-
tion function, has an “excluded-volume” range corre-
sponding to total packing fraction equal to unity, i.e.,
g*(r <2aws)=0. Since the SMSA is a parametric MSA,
this result (S6) is actually contained in (S1).

These results lead to a reexamination of the MSA in-
tegral equation for a general class of potentials (Sec. V).
We find the exact analytic solution of the MSA in any
number of dimensions and for mixtures, for any repulsive
potential ¢(r) satisfying ¢(k) >0 (e.g., Coulomb, Yukawa)
which is a Green’s function for an operator of the Sturm-
Liouville type. The physically intuitive meaning of the
DCF’s is revealed.

Finally, using (S1)—(S6), we prove (Sec. VI) that the
three different theories, namely HNC, SMSA, and VPY
become identical in the AHDL. The analytic form of
their strong coupling equation of state is discussed. We
end (Sec. VII) by discussing the extension of our results to
mixtures and their implications to the statistical thermo-
dynamics of “nonspherical” objects.

II. INTEGRAL-EQUATION THEORIES
AND THERMODYNAMIC FUNCTIONALS
OF THE PAIR FUNCTIONS

This section contains a short resume of the most widely
used integral-equation theories, namely the HNC, MSA,
and PY. These integral equations are obtained from the
Ornstein-Zernike (OZ) relation between c(r) and the pair

correlation function g(r)=h(r)+1,
h(n=c()+p [ h(|t—r'|)c(|r | )dr, (1)
and the “closure” relations are for HNC,
c(r)+Bo(r)=g(r)—1—In(r) >0, (2)
for MSA,

g(r)=0, r <R; c(r)+PBp(r)=0, r >R (3)

and for PY,

c(r)=g

(r)—g(rlexp[Bo(r)] , (4)

where p=N /V is the number density, 8=(kzT)~! the in-
verse temperature, ¢(7) the pair potential, and R is the
MSA hard-core diameter.

The HNC theory, which is perhaps the most fundamen-
tal of these theories has been extensively discussed recent-
ly in connection to the modified HNC (MHNC) scheme
that attempts to include the contribution of the “bridge”
diagrams.® 11— 13

The MSA has been originally developed'* for potentials
that contain a hard core, i.e., an excluded-volume regime
for which the closure g(» <R)=0 is exact. The MSA for
continuous potentials with soft repulsion at short dis-
tances is obtained!® by adjusting the MSA hard-core di-
ameter R, R =R (S,p), until continuity of the pair func-
tions is reached, ie., g(r=R +0)=0. This model,
termed SMSA, has been attracting considerable interest in
recent years. It has been analyzed'®!” as a model akin to
the more fundamental HNC theory, and was applied suc-
cessfully to Coulomb plasmas*>!? (including screening ef-
fects'?), liquid metals,”®>?! charged colloidal dispersions,??
and the isotropic-nematic transition of line charges.® We
consider the HNC and SMSA theories for soft interac-
tions and the PY theory for hard spheres. For the hard-
sphere interaction, ¢(r >R)=0 and ¢(r <R)= oo, the
MSA and PY equations are identical.

Central to our analysis are the thermodynamic func-
tionals (of the pair functions) from which the integral
equations are obtained by variation. Recall that the in-
verse compressibility k- '=B(dP/dp)r=1+X[c] is given
by

k7l=1—p [ c(rdr, ‘ ()

and denote B[c]=~(X[c]+c(r =0)). Using the 0Z rela-
tion we obtain the following identity for the potential en-
ergy u=p(U/N):

u=L [ g(rB(ridr=Blc]+++G , (6a)
with
G=5 [gtrew

vanishing identically for the MSA. Notice that the HNC
and SMSA equations of state as obtained from the energy
or from the virial theorem for the pressure are identical.
Denote by f, the “virial” excess free energy, SF®* /N, and
let Z,=BP/p=p(3f,/dp)r while Z, denotes the corre-
sponding quantity obtained from Eq. (5). The thermo-
dynamic inconsistency of the HNC and SMSA theories is
reflected by Z,£Z,. For the PY theory, the “energy,”
“virial” (pressure), and “compressibility” equations of
state are all different in the general case. The functionals
fv»Z, for HNC and SMSA, and Z, for PY, are compiled
in Ref. 17, all of them containing the crucial random-
phase approximation (RPA)-type “logarithmic” term L

+Bé(r)]dr (6b)

Lc]= > ——(2m~P [ dkIn[1—pe(k)], )
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where the tilde denotes Fourier transforms.

Defining the RPA free-energy functional .#[c] by

Flcl=B[c]+L[c]l=u —+—G+L[c], 8)

we quote the following results from Ref. 17, with the
understanding that each functional is evaluated subject to
the appropriate closure (2)—(4)

(i) HNC

 Func=#—57—G+L; H=% fhz(r)dr (9a)
So =7HNc+H (9b)
Z,=5X+5+H—L . (10)

(ii) SMSA

Fmsa=u —5+L, (11a)
fo=F msa+F0, (11b)
Z,=+X+3—L, (12)

where  is some finite constant corresponding to the
value of f, for the smallest 3 or p for which a solution to
the SMSA criterion [g(r =R +0)=0] can be obtained.
For potentials having Fourier transform (e.g., Coulomb,
Yukawa) ¥ o=
(iii) PY
Fpyns=B[c]+L[c],
Z;=2F pyns+1.

(13a)
(13b)

Note that for hard spheres B[c]+ 3 =0, since u=0, so
that

X[c®]=—

The key to our analysis is the observation that a neces-
sary and sufficient condition for the logarithmic term
L [c] to be real in the asymptotic high-density limit is

C =(k)<O . ' (15)

®(r=0)—o0 . (14)

III. THE PY THEORY FOR D-DIMENSIONAL
HARD SPHERES

The required information enabling us to obtain the re-
sults (S1),(S2) of Sec. I is the recently derived!” exact re-
sult for the PY (MSA) theory for hard spheres (HS) in D

dimensions [for which g(r =R +0)= —c(r=R —0)],
dz, (Z,—1)
—= =2P-lng?(r =R +0)=—5—— . (16)
7 dn ng-(r + D=1

If the AHDL is approached for some n=%p then
c®(r =0) diverges at least as fast as g% =R +0) and
thus the function ¥(r)=c*(r)/c*(r =0) is continuous
and obeys Y(r=0)=1, ¢(r>R)=0, and [Eq. (15)]
P(k)>0.

In order to satisfy these properties ¥ must be expressi-
ble as a convolution of two identical sphencal distribu-
tions (using x =r/R)

Yp)= [ pp(|x up(|x—x'|)dx’, (17)

with up( | x| > +)=0. Inserting this in Eq. (14) and re-
calling the definition of 17 we immediately get

' wolx])dx

x| <+

f p(1x[dx |— . (18
| < b

L
2

A straightforward application of Schwarz’s inequality®’
yields H)p =1 and up( | x| )=const, which proves (S1) and
(S2).

Recalling that the convolution of two uniform spheres
of diameter R and separation 7 is their overlap volume
Q,(r,R), we define w(r,R)=Q,(r,R)/Q,(r =0,R) to write

1/1(r)=1iml[c(r)/c(r=O)]=a)(r,R). (19)
17—)

The analytic form of the PY DCF for hard spheres for ar-
bitrary D is contained in the function w(r,R) which is an
odd-power D-degree polynomial for odd D, and an infin-
ite power series of odd powers for even D. For any odd D
the general solution of the PY DCF for hard spheres is
given by the odd-power polynomial with (D +3)/2 coef-
ficients

c(r)=ag+ar+ayr3+ - +agr?, (20)

and using either the method of Percus®* or that of Gillan
et al.® it is a matter of straightforward (albeit tedious)
algebra to obtain the coefficients. The observation that
the function w(x,1), given in 2D by

l{arccosx —x[(1—x2)172]}
K

4 2 1
=1— 77'x-}-3 x+10 x4
has a rapidly convergent series expansion, suggests a
method for obtaining approximate analytic solutions for
an even number of dimensions.
For an arbitrary mixture of (additive) hard spheres in
any number of dimensions we find that the AHDL is ap-
proached for total packing fraction equal unity, with

y(r)= lirnl[c,-j(r)/cij(r =0)]
1]—}

=Q0,(r,R;,R;)/Q,(0,R;,R;) ,

where Q5(7,R;,R;) is the overlap volume of two spheres of
diameters R;,R; and separation r. Thus, for any D, the
functions c¢;(7) have the same analytic form as for the sin-
gle component, while c;;(r) for is£j is constant for
r <(R;—R;)/2. It is easy to check that all available ana-
lytic solutions of the PY equations for hard spheres (in
D=1,3,5) obey our general results.?

This newly found “geometric” meaning for the HS
DCF’s uncovers, for the first time, the general analytic
structure of the PY DCF’s for hard spheres of arbitrary
dimensionality.?” The overlap volume is a key quantity
also in the scaled-particle theory (SPT) for hard particles
and our results may uncover the long suspected connec-
tion between PY and SPT.?® The physically intuitive
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meaning for the DCF’s may serve as a starting point for
developing accurate approximations in a statistical ther-
modynamic description of nonspherical hard objects—in
analogy with the idea of smearing for charges.®

1IV. ASYMPTOTIC HIGH-DENSITY LIMIT
OF THE HNC AND SMSA THEORIES

Considering the HNC and SMSA functionals in the
AHDL we first require f,;°—u®. For the SMSA this
leads to [see Egs. (6),(11),(12)] Z° —+X[c*]. For HNC
it means that both L * and H ® diverge more weakly than
B>, Note that L* [in view of (15)], G* [in view of (2)],
and H * (by definition) are all positive definite. In turn, a
physically acceptable solution must exhibit a negative-
definite excess entropy in the AHDL, which means that
fP—u®=L*+H*—-G*>0. Thus, G* must diverge
more weakly than L*+H> and, in turn, more weakly
than B*®. We obtain that a physically acceptable solution
of the HNC and SMSA theories must have the same
AHDL functional forms; namely, for both HNC and
SMSA we have

fr=u®=B[c~], 1)
Z2=5X[c*]. (22)

We outline the remaining part of the proof of (S4) for
the special case of the OCP, Bé(r)=T"/x with x =r/avs.
In the AHDL (I"'— ), defined in view of the Madelung
behavior, co(x)=limpr_, [c(x,T)/T]. From (21) we ob-
serve that co(x =0) is finite and the continuity of the pair
functions implies [see Eq. (2)] that cy(x) < 1/x for some
finite region, x <xg, for which in the limit I'— oo,
g ®(x <xo)=0. Considering now (21) and (6) we obtain

lim (G/D)=lim [ g(x,Dcolx)+1/xldx=0.  (23)

Since g(x)>0 in the HNC theory, the inequality in (2)
implies that c¢y(x)+1/x=0 for x>x,. Thus, the
AHDL-NHC is mapped on the AHDL SMSA, and

c®(r)+Be(r) >0 (24)

is valid for both HNC and SMSA. Since the SMSA is a
limit of the MSA then in view of S3 (in Sec. I) we get (S4):
Xo= 2a WS-

The proof of (S5) follows from a general Ewald-type
identity for any pair function g(r)=h(r)+1 with a struc-
ture factor S (k)=1+ph(k),

u=E [ grBp(rdr
=B[0]+2 [ g(n[(r)+p8(rdr

—+2m~P [ sx6(kdk, | (25)

where ©(r) is any (Ewald auxiliary) function for which
O(k) exists. Note that Eq. (6) is a special 0Z case of Eq.
(25) with ©(r)=c(r) and S(k)=1/[1—pc(k)]. Since for
any physical distribution g(r), S(k)>0 (by definition),
the choice ©(r)=c ®(r) implies [in view of (15) and (24)]

u>Blc®]=ufinc smsa - (26)

The variational function giving the best lower bound
(26) among functions satisfying (15), (24), and the MSA
condition [recall (S6) in Sec. I] ¢ *(r > 2aws)= —L¢(r), is
at the same time, the AHDL result of the HNC and
SMSA theories. The solution of the “best bound” prob-
lem for the Coulomb potential,* using the charge-
smearing idea®? and elementary electrostatics, led to the
OCP results mentioned in the Introduction. The analysis
of this best bound problem should lead to better under-
standing of the nature of the HNC and SMSA approxi-
mations. A step in that direction is taken in the next sec-
tion.

V. SOLUTION OF THE MSA INTEGRAL
EQUATION FOR A GENERAL CLASS
OF POTENTIALS

Notwithstanding its general interesting properties as a
model,!%!” the SMSA’s usefulness stems from the availa-
bility of exact analytic solutions, in three dimensions, of
the MSA equations for the Coulomb!®? and Yukawa®®3!
potentials. The main power of the original methods®% 3
for solving the MSA is their capability to provide the ana-
lytic form of the DCF, c(#), inside the core (r <R). For
a known analytic form, however, the generally complicat-
ed set of algebraic equations for the coefficients may be
set up also by other methods.?#?> Partly due to the com-
plexity of the solutions, especially for mixtures, there has
not emerged from these methods a general picture of (i)
the analytic form of c¢(r <R), (ii) its dependence on the
dimensionality D, (iii) its possible physical interpretation,
and (iv) its relation to the potential, ¢ (» > R)= —Bd(r).
By means of the “asymptotic” analysis we were able to
answer these questions for two important and rather ex-
tremely disparate systems, namely Coulomb plasmas (Ref.
4) and hard spheres (Sec. IIT). In this section we discuss a
more general class of potentials.

Consider potentials ¢(7) which are strongly repulsive at
short distances [¢(r =0)= o0, to sustain an excluded
volume regime g(r <R)=0] and possess a Fourier
transform ¢(k). For such potentials, both the HNC and
SMSA theories interpolate between rigorous lower bounds
for the exact poential energy of the system: The RPA (or
Debye-Hiickel) lower bound,®® which represents the
correct low-density (weak coupling) behavior, is an exact
feature of the HNC and SMSA theories. Thus, their mer-
it in representing strongly coupled fluids will be deter-
mined by the extent to which their high-density behavior
(Sec. 1V) represents a tight lower bound to the potential
energy of the high-density stable lattice. The solution to
the best bound problem considered here leads to DCF’s
which optimize the collective coordinate description for
dense classical systems, originated by Percus and Yev-
ick.3® Interestingly enough, the best bound problem hap-
pens to be readily solvable for any potential which is a
Green’s function for the Sturm-Liouville operator

Lé(|r—r'|)=—8(|r—r1"|) (27)

and obeys J;(k) >0. It is interesting to note that the signi-
ficance of the Green’s-function potentials (for the modi-
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fied Helmholtz operator) has been observed before,* in a
related context, but without the consequences drawn by
the present best bound approach.

We obtain a unified picture, valid for arbitrary dimen-
sionality and for mixtures, of the analytic form of the
SMSA (and MSA), DCF, c(r), its physically intuitive
meaning and its relation to the Green’s-function potential
¢(r). Our results also suggest a method for obtaining ap-
proximate solutions for even dimensionalities (e.g., D=2),
and leads to SMSA-type approximations for the more
complicated nonspherical cases (e.g., charged lines®). The
Coulomb [d(k)=k~2% ¢3p(r)=r~'] and Yukawa
[¢(k)=(k2+A>)~!, ¢3p(r)=e~*"/r] potentials represent
the two most important examples corresponding to
L =V?%V?— )2, repsectively. It should be noted, howev-
er, that even ‘“realistic” potentials for liquid metals (e.g.,
the “empty core”)’’ belong to the general class considered
here.

To simplify notations we consider explicitly potentials
with a finite ¢(k =0). The treatment of potentials that
require a compensating background (like Coulomb, see
Ref. 4) needs only minor modifications and leads to the
same result [Eq. (35)].

The general SMSA equation can be expressed variation-
ally'”3® [with continuous c(r)] by

8F [c]/6c(r)=0, r <R (28)

where #[c] is the RPA free-energy functional [Eq. (8)].
Recall that for potentials having Fourier transform, % [c]
is the SMSA excess free energy as obtained from either
the virial pressure or from the potential energy. Consider
the SMSA in the AHDL, p— o, denoted as before by su-
perscript (). A physically acceptable behavior in that
limit is the Madelung-type equation of state, typical for
the static lattice, ¥ ® =u ® =Bu,(p). Defining

Yr)=— lim [c(r,B,p)/Bl=—c>(r)/B,
p— o
we use Egs. (6) (with G=0 for the MSA) to write

unp)=+ |p [ 9rdr—ytr=0) |, (29)

with ¥(r) depending only on p:¥(r,p). Condition (15)

takes the form

P(k)>0. (30)

The AHDL of the SMSA variational equation may be
thus written as ‘ '

Sup(p)/8Y(r)=0, r<R* (31)

for continuous functions w(r) that obey (30) and
Y(r >R>®)=¢(r). This defines the general asymptotic
SMSA variational problem which is now readily solved
for any Green’s-function potential.

In view of (27) (r) obeys the equation?
LY(|r|)=—f(|r]|), with f(r>R*)=0, and may be
represented by the convolution

W= [ ¢(|r—r' |)f(|r'|)dr . (32)

Since J(k)zf(k)aik)zO [Eq._(30)], and we required
é(k)>0, we have f(k)>0 or f(k)=g*k) so that f(r)

3

must be expressible as a convolution of two identical func-
tions g(r >R */2)=0:

f= [q(lr=r'|g(|r'|)dr . (33)

Inserting (32) and (33) into (29), Eq. (31) takes the form
Sup(p)/6g (r)=0 by which it is readily solved to give

q(r <R *®)=const, pf4r|gR°°/2dr_l . (34)
This identifies R ® =2awg and ensures that ¥(r) < @(r), in
agreement with the general analysis in Sec. IV.

Y(r) has a well-defined physical meaning; it is the in-
teraction between the particles when they are “smeared
out” uniformly inside a D-dimensional sphere of radius
aw. For the Coulomb potential this amounts to replacing
each point charge by a uniform charge distribution within
a hypersphere,* and it is equivalent to the charge smearing
process of Onsager,” with u,(p) corresponding to the
“ion-sphere” bound of Lieb and Narnhofer.® Using the
overlap-volume function o(r,R) defined in Sec. III we
write our main result in the form

W(rp)=Alaws) [ ¢(|1—1 ol |1 |, 2aws)dr, (35)
where A (aws) is determined from the boundary condition
¢(r =Zaw5)=¢(r =Zaws) .

The analytic form of the SMSA DCF is contained in
the corresponding hard-sphere (HS) function vpyg(#)
=w(r,R) which is an odd-power polynomial for odd D,
and an infinite odd-power series for even D. For any den-
sity, for odd D, the SMSA DCF has the same analytic
form as the function

cn= [ ¢(|r—r |)a(r',R)dr’, (36)

where &(7 > R)=0 is an odd-power polynomial of degree
D containing (D +3)/2 coefficients like cyg(r) of Eq.
(20). The results (35) and (36) agree®® with available ana-
lytic solutions for the Coulomb and Yukawa potentials
in 3D, providing at the same time the exact solution for
(e.g.) the (k)=k !, (k>+A%)~! potentials for arbitrary
D together with its physical intuitive meaning. Again, as
applies for hard spheres, the observation that the function
o(x,1) has a fastly convergent series expansion, suggests
that an approximate solution employing a low degree
odd-power polynomial may be reasonably accurate for an
even number of dimensions.

Finally, it is interesting to note that our results (35) and
(36) for the SMSA also provide the solution for the MSA.
This is so because the discontinuity at » =R is specifically
associated!®*? with the linear (in 7) term of ¢ (» <R).

IV. UNIVERSAL STRONG COUPLING EQUATION
OF STATE FOR THE HNC, SMSA, AND VPY
THEORIES

A. Variational statement of the theories

Most applications of the VPT have been carried out in
the VPY mode in which the energy integral is evaluated
with the PY hard-sphere (PYHS) pair function
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o(r)dr , (37)

,
uvpy(B,p,m)= 2/3PngYHS R

where d[ =(6n/mp)'”? in 3D] is the hard-core diameter.
The VPY excess free-energy functional, f=BF™ /N,

Svey =uvpy(B,p;m)+Sypy (1) , (38)

contains also the parametric (minus-) excess entropy,
Sypy(n), that determines 1(/3,p) by the variational condi-
tion

9fvpy /0m=0. (39)

The optimization of the entropy function, Sypy(n), which
plays the role of a “fitting function,” has been discussed
recently®!® in light of the MHNC theory based on the
universality of the bridge functions. In particular, it has
been demonstrated that a single choice of Sypy(77), in-
dependent of the pair potential and reasonably well
represented by the PY virial entropy [see (¢) below], yields
highly accurate thermodynamics for a large class of phys-
ically conceivable potentials. '

Recall that the SMSA is obtained from the MSA free
energy by imposing!’

ayMSA_
ay

a requirement equivalent to g(r=R +0)=0. Since the
AHDL HNC is mapped on the AHDL SMSA (Sec. IV), it
can also be written in the variational form

fINC /9 =0, n=1. (41)

AfMSA s9m (40)

Given the 7 dependence of the potential energy,
u(B,p,m), the analytic form of the first correction to the
(leading) Madelung energy term is determined by the rela-
tions (40) and (41) from the behavior of the entropy
S(B,p,n) as function of 7 near n=1 (see examples in
Refs. 9, 10, and 17).

B. Potential-energy functionals

Let g*(r),c*(r) (i.e., nonsubscripted quantities) denote
the AHDL results for the HNC (SMSA) theory for the
potential ¢(#), and let

uvpy = 71]1_)11‘11 uvey(B,p,m) ,
gpuys(r)= },LrnlgPHYS(r) .
Consider the difference
A=ufnc,smsa —UVpy
Bpfg‘”(r rdr—1Bp [ gfuys(rp(r)d
(42)

Using (6a) and G =0 for the first (MSA) integral, and
identity (25) with 6(r)=c *(r) for the second (PY) integral
in (42), noting that

[ givms (M(C=(r)+Bb(r)dr=0,

we obtain

A—+2m)~P [ Sus(k)C =(k)dk
=30m ™ [ A xus([C (k) /C yus(k)]dk . (43)
Recall that (Sec. III)
C fyus(k) =Ciyus(r =0)(k)

and that for a Green’s-function potential (GFP) (Sec. V)
we have

C =(k)=—BA(aws)d(k)$(k)
to get
—+B2m)~

- Aaws)
Cgyus(r =0)

For an inverse-power potential (IPP), » =", with T « Bp"/?
denoting the usual coupling constant, we obtain

Agrp = b f h Byns(k)d(k)dk

(44)

C *(k)/T

1 —D 7, o
5 (2m) h (k) dk
7 \&T f PYHS T k)

AIPP 3

X w—r‘—— ) (45)
Cpyns(r =0)

where the integral is a finite constant. In general we ob-
tain

A = BU,(p)/CRyns(r =0)—0 as -1 (46)

with U,(p) some function of the density.
Thus, all three seemingly different theories, the HNC,
SMSA, and VPY share the same Madelung energy

UENC =USMsa =Uvpy =Bup(p) 47)

(e.g., — T for the OCP) which is an exact lower bound
for the true potential energy of the system considered.

Considering the leading correction to this universal
behavior it is instructive to deal first with the D=3 case.
Denoting e=1—m we use the Wertheim-Thiele solution®®
of the PYHS equation in 3D to find

ch ~€—3’ fcw ""6_-29 Zuoo "’6—2, .fv°0 "'e_l ’
(48)
Chyns(r=0)~e*.
In view of (48) and (46) the leading term in A is of order
€%, i.e., T'e* for the inverse-power potentials. The leading
correctlon to the VPY Madelung energy term is of order®
€, and thus dominates A. The net result is that the
asymptotic high-density energy functional, to first and
second order, is identical for all three theories (HNC,
SMSA, VPY) and is of the following general form:
—llg-up=3(p,€)=u1§4D=3)(p)+u(1D=3)(p)e3+ L (49)
The explicit expressions for us(p) and u(p) are given by
Eq. (15) of Ref. 9(c)—in which the VPY theory for D=3
has been considered in some detail.
The general D-dimensional result is expected to be of
the form*!
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%ub(p,e)=u,‘,,’”(p)+u‘,’”(p)e‘D+3’/Z+ c L (50)
uy? )(p) can be evaluated by using the results of Sec. III
without resort to the full solution of the PYHS equation,
while in order to calculate u{”’(p) a more detailed solu-
tion is required. Fuller discussion of this feature will be
given elsewhere.

C. Analytic form of the strong coupling
equation of state for inverse-power potentials

The analytic form of the strong coupling EOS is deter-
mined (by the variational condition) from the excess en-
tropy functional S(e). To be specific consider the
inverse-power potentials, » ", with the coupling constant
I < Bp"’P, and let us begin with the VPY theory employ-
ing the PY-viral excess entropy Sqo(€):

Svpy=T(Aog+A4,€P )24 - )4 Sq(e) , (51)
where

Sole)= |Boe ™ PT 2 4o, D (522)

Bolne+ ---, D=1 (52b)

with the constants Ag,4;,..., Bg,Bi,..., depending

on the dimensionality D and on the power n. Note that
(51)—(52) represent a generalization for arbitrary D of the
discussion in Refs. 9 and 10. The generalization of (48)
for arbitrary D is*!

Z2~e P, f2~eP=D (D£1), Ine (D=1), (53a)
ZvocNG—(D+1)/2’ fvoo~6—~(D~1)/2 (D=£1), Ine (D=1),

(53b)
Cyus(r =0)~e™ P+ (53¢

Recall (from Ref. 17 and Sec. III) that the following rela-
tions hold for the PYHS theory in the AHDL.

gryus(r=R,e)~27 , (54a)
8f,,°°/86~g§°YHS(r=R,6) N (54b)
Cyns(7r =0)~[gfyns(r =R)1*~(Z,°)*. (54c)

In analogy to (54b) we define gq(€)=0Sy(€)/de and use
(39) and (51) to obtain the AHDL result

' ~gpyus(r=R)gole) . (55a)
Expression (52) yields gq(€)=gpynus(* =R) and thus
C(eq.s21~[8Fvus(r=R)]?, (55b)

so that the AHDL expression for the potential energy
takes the following form:

Udpy ~AoD+TO(eP+372) L 4 T +O(TP—1/2AD+1D) |
(56)
For D=3 we retrieve the I''/*-type correction®'° to the

Madelung term.
In one dimension (D=1) the PYHS c(r), g(r), and thus

the “viral” and ‘“‘compressibility”’ equations of state are
exact, so that the VPY free energy represents an exact
lower bound to the free energy for any density and tem-
perature. In the AHDL it gives the exact harmonic
behavior 4o + + with the Madelung energy of the linear
equally spaced lattice.

The leading AHDL behavior of the SMSA and HNC
entropy is given by the logarithmic term L which con-
tains, as a I'-independent term, the result for the PY
theory for hard spheres, for which Z° ~L §s~€e~2. The
AHDL free-energy functional for the SMSA and HNC
has a form  similar to that for VPY,
Sol€)~e P4+ ASy(T,e). The variational condition now
yields T' ~ e~ (3/2P+1 with an energy of the form

U”~A0F+O(F2D/%(D+1)) . (57)

This gives a I'!/? correction to the leading Madelung ener-
gy in three dimensions—in agreement with the analytic
and numeric (SMSA and HNC, respectively) results for
the OCP. The Madelung coefficient A is the same for
VPY, HNC, and SMSA. The coefficient of the correction
term I?273P+1D may be different for HNC and SMSA
because of possibly different contributions from
ASy(T,e). An example for the contribution of ASy(T,€)
in the SMSA for the 3D OCP is given by MacGowan.*?

Finally note that if the MSA hard-core diameter R is
fixed by imposing thermodynamic consistency between
the virial and compressibility equations of state (the TC-
MSA model) we must obtain gy(€) ~gfyus(# =R), so that
an expansion of the type (56), as for the VPY, is obtained.
In analogy to this result for the MSA, the modified-HNC
(MHNC) theory with the PYHS bridge functions will
feature the same type of an expansion if thermodynamic
consistency is imposed to determine the parameter R (the
bridge parameter, this time). This result can be immedi-
ately checked for D=1 in which all the theories con-
sidered in this section give the exact AHDL result. In
D=1 the exact AHDL bridge function for any potential
is given by that for the PY theory for hard rods.

VIII. SUMMARY AND IMPLICATIONS

In this work we considered the asymptotic high-density
properties of the most widely used theories for classical
fluids. The HNC, SMSA, and VPY, along some of their
variants (MHNC, TC-MSA), have been considered as
models for purely soft interactions (without hard core).
The PY theory and the MSA have been considered as
models for hard core and hard core containing interac-
tions, respectively.

For soft interactions we find that all theories discussed
lead to the same Madelung energy which constitutes an
exact lower bound to the true potential energy of the sys-
tem. This Madelung energy can be evaluated either by
solving a boundary value problem or by employing the
PYHS pair functions. In the AHDL all theories discussed
feature the generally unphysical property of a space-filling
excluded volume regime [namely g ®(r <2aws)=0] corre-
sponding to 7= 1—which is, however, the exact result in
one dimensional (D=1). In turn, we found that the
asymptotic analysis also leads to a well-defined meaning
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for the direct correlation functions for both hard-core po-
tentials (via the PY =MSA equation for hard spheres) and
soft, Coulomblike, interactions (via the charge-smearing
idea and the SMSA). In addition to uncovering these
basic features of the theories—with various implications
to be discussed below—our novel analysis of the AHDL
sheds new light on the mathematical problem of solving
the MSA integral equations and on the resulting analytic
structure of the solutions. Thus we were able to find, for
the first time, the general analytic form of the PY-DCF’s
for hard spheres in any number of dimensions and to
present a general solution of the MSA for any Green’s-
function potential. Our results have numerous implica-
tions, some of which are listed below. We hope to discuss
these in greater detail in the future.

A. Equation of state for mixtures

The generalization of our AHDL analysis to mixtures
is straightforward, with the results (19) and (25) carrying
over their physical-geometrical meaning. The main tech-
nical points to note are the following: The functional L is
generalized to

o o
L=1/2p(2m)~P [ dkIndet(1-C), (58)

O O
where 1 is the unit matrix and the elements of C are

p(xixj)l/zéij(k) while x; denotes the mole fractions. The
condition (15) is generalized to

[C2(k)P=CZ(k)C %(k), CZ(k)<0 (59)
] JJ

while (16) is replaced by a set of equations given in Ref.
17. In the AHDL the total excluded volume is equal to
the total volume, i.e., total packing fraction equal to unity
for the effective hard cores

N= D XM= > Xip rer.pdr=1. (60)
i Do =

This leads to the following types of “one-fluid” equations
of state for the mixture (in the AHDL) depending on the
type of the interaction.

(i) Volume additivity for non-Coulombic soft potentials
(without background): (9=p~!)

Hp, )= x;9:(p,7) . (61)
(ii) Ion-sphere model for multicomponent plasmas:
U= [Qi/ zxiQi ]19 ) (62)
pY¥= > x;Pi(9,T)I; . (63)
i

(iii) van der Waals—like one-fluid model for the hard-
spheres mixture in the PY approximation:

Z;—(1—n)7? as n—1 with n= 2 Xi";. (64)
i

B. Statistical thermodynamics of charged objects

For the Green’s-function potentials the functional .7 [c]
which depends only on the relatively structureless DCF is

a good approximation of the free energy and yields accu-
rate structures upon functional differentiation (i.e., the
MSA integral equation). In analogy to calculating
ground-state energies for an Hamiltonian using physically
suggestive parameterized trial-wave functions, the smear-
ing idea provides a physically intuitive trial DCF (“wave
function”) for the functional .# (the “Hamiltonian’). The
simplest trial DCF is of the form

Clr)=—BAR) [ ¢(|r—r'oo(r,R)dr’ . (65)

With #[¢] representing the excess free energy, we fix
A(R) by C(r=R)=—pB¢(r=R), while the optimization
07[c]/0R =0 determines the ‘“smearing” diameter
R(B,p). This procedure yields R(B,p=0)=0, R(SB,p
— o0 )=2ayws, so that the energy U=pB(3.7[c]/3P)x, in-
terpolates (very effectively) between the exact low-density
(RPA) and high-density (“particle smearing”) lower
bounds. This approximation has been fruitfully applied to
plasma mixtures.’ It forms the basis for the treatment of
the isotropic-nematic transition of line charges.® Being
physically intuitive, relatively simple, and of expected
reasonably high accuracy, this novel approach may serve
as a starting point for a statistical thermodynamic treat-
ment of nonspherical-charged objects [e.g., micelles,
viruses, and DNA (deoxyribose nuclei acid) fragments in
aqueous solutions]. By increasing the number of free pa-
rameters the model can be upgraded—providing eventual-
ly the exact solution of the SMSA.

C. Statistical thermodynamics
of nonspherical hard particles

The basic physical meaning of the PYHS DCF’s as
overlap volumes between two particles as function of their
distance (and relative orientation if they are axially sym-
metric) may serve for hard particles the role of the smear-
ing for charges. For a collection of (e.g.) hard ellipsoids,
consider a discrete representation in which a fraction x;
of the particles point to the 7 direction relative to some
fixed direction in space. In the PY approximation we
have

o o
Z,=1/p(2m)~? [ dkIndet(1-C), (66)

where the elements of C are p(x;x;)'/2C;;(k). Instead of
solving the full structural problem by variation

BZC/BCU(I):O, I'<Rij (67)

where R;; is the vector of closest approach of two objects
with given 7 and }\, we may parametrize the functions
C;;(r) taking into account their basic geometric meaning.
The result (S1) namely that the PY hard-core equation of
state diverges a total packing fraction equal to unity is
general for any system of hard convex molecules.*® It is
noteworthy that many proposed equations of state for
such systems, based on scaled-particle theory or Y expan-
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sion,* do incorporate such a feature. The geometric
meaning of the DCF’s should be useful also in the context
of the interaction-site models.*’

Note, finally, that because the SMSA, on the hand, and
the PY theory on the other hand provide reasonably good
approximating functionals for the free energy of soft in-
teractions and the pressure of hard-core interactions,
respectively, by means of the same functional %, it is
much more difficult to deal with charged hard particles in
the regime where the steric hard core is comparable to the
smearing length (the charge-effective hard core).

YAAKOV ROSENFELD 32

ACKNOWLEDGMENTS

Parts of this work have been done during my sabbatical
at University of California, Los Angeles (UCLA). I thank
Professor W. M. Gelbart for his warm hospitality, con-
stant encouragement, and valuable discussions. I am
grateful to Professor H. Reiss and Dr. H. E. DeWitt for
stimulating discussions, and to Professor G. Stell for
sending valuable material. This work was supported in
part by National Science Foundation Grant No. CHE-80-
24270.

IReviews of simple liquids and plasmas are given by, e.g., J. A.
Barker and D. Henderson, Rev. Mod. Phys. 48, 587 (1976); J.
P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic, London, 1976); J. P. Hansen and M. Baus, Phys.
Rep. 59, 1 (1980); S. Ichimaru, Rev. Mod. Phys. 54, 1017
(1982).

2L.. Onsager, J. Phys. Chem. 43, 189 (1939).

3E. H. Lieb and H. Narnhofer, J. Stat. Phys. 12, 291 (1975).

4Y. Rosenfeld, Phys. Rev. A 25, 1206 (1982).

. 5Y. Rosenfeld, Phys. Rev. A 26, 3622 (1982).

6Y. Rosenfeld and W. M. Gelbart, J. Chem. Phys. 81, 4574
(1984).

7G. A. Mansoori and F. B. Canfield, J. Chem. Phys. 51, 4958
(1969); J. C. Rasaiah and G. Stell, Mol. Phys. 18, 249 (1970);
and see, e.g., N. W. Ashcroft and D. Stroud, Solid State Phys.
33, 1 (1978); Y. Rosenfeld, Phys. Rev. A 26, 3633 (1982); 28,
3033 (1983), and references therein.

8Y. Rosenfeld, Phys. Rev. A 29, 2877 (1984).

9a) H. E. DeWitt and Y. Rosenfeld, Phys. Lett. 75A, 79 (1979);
(b) A. Baram and Y. Rosenfeld, J. Phys. C 13, L787 (1980);
(¢) Y. Rosenfeld and A. Baram, J. Chem. Phys. 75, 427
(1981).

10H. E. Dewitt, Phys. Rev. A 14, 1290 (1976); H. E. Dewitt, in
Strongly Coupled Plasmas, edited by G. Kalman (Plenum,
New York, 1978).

11y, Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20, 1208
(1979).

12F, Lado, Phys. Lett. 89A, 196 (1982); F. Lado, S. M. Foiles,
and N. W. Ashcroft, Phys. Rev. A 28, 2374 (1983).

13Y. Rosenfeld (unpublished).

143, L. Lebowitz and J. K. Percus, Phys. Rev. 144, 251 (1966).

I5M. J. Gillan, J. Phys. C 7, L1 (1974); A. H. Narten, L. Blum,
and R. H. Fowler, J. Chem. Phys. 60, 3378 (1974).

16y, Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20, 2162
(1979).

17y, Rosenfeld, J. Stat. Phys. 37, 215 (1984).

18, DeAngelis, A. Forlani, and M. Giordano, J. Phys. C 13,
3649 (1980).

19G. Pastore, C. Napi, U. DeAngelis, and A. Forlani, Phys.
Lett. 78A, 75 (1980). :

20D, K. Chatuverdi, G. Senatore, and M. P. Tosi, Nuovo
Cimento B 62, 375 (1981).

21G. Stell and P. T. Cummings, Mol. Phys. 43, 1267 (1981).

22J. P. Hansen and J. B. Hayter, Mol. Phys. 46, 651 (1982).

23See, e.g., G. Arftken, Mathematical Methods for Physicists
(Academic, London, 1970).

243, K. Percus, in The Equilibrium Theory of Classical Fluids,
edited by H. L. Frisch and J. L. Lebowitz (Benjamin, New
York, 1964). The continuity of A(r)—c(r) at r =R with its

first D derivatives provides, for odd D, all needed algebraic
equations to solve for the coefficients of the powers.

25M. J. Gillan, B. Larsen, M. P. Tosi, and N. H. March, J. Phys.
C 9, 889 (1976). The hard-core property of g(r) is related to
the large k expansion of S (k).

26M. S. Wertheim, Phys. Rev. Lett. 10, 321 (1963); J. L. Le-
bowitz, Phys. Rev. 133, A895 (1964); B. C. Freasier and D. J.
Isbister, Mol. Phys. 42, 927 (1981).

27Note that (S1) and (S2) together with Eq. (16) constitute an al-
ternative complete solution of the PY equation for hard rods
(D=1).

288ee, e.g., the review by H. Reiss, in Adv. Chem. Phys. IX, 1
(1965).

29R. G. Palmer and J. D. Weeks, J. Chem. Phys. 58, 4171
(1973).

30E. Waisman, Mol. Phys. 25, 45 (1973).

31L. Blum and J. S. Hoye, J. Stat. Phys. 19, 317 (1978). See also
J. S. Hoye and G. Stell, Mol. Phys. 52, 1057 (1984), for an up-
dated list of references.

32M. S. Wertheim, J. Math. Phys. 5, 643 (1964).

33R. J. Baxter, Aust. J. Phys. 21, 563 (1968).

34N. D. Mermin, Phys. Rev. 171, 272 (1968).

35J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

36G. Stell and W. K. Theumann, Phys. Rev. 186, 581 (1969); J.
S. Hoye and G. Stell, Phys. Rev. Lett. 36, 1569 (1976).

37See, e.g., N. W. Ashcroft and D. Stroud (Ref. 7). One obtains

= 4777222 1
= 1 —
o(k) 2 { + ’e(k) 1

where e(k) is the dielectric function and R, is the ‘“core” pa-
rameter.

38H. C. Andersen and D. Chandler, J. Chem. Phys. 57, 1918
(1972).

39See Refs. 29—31, e.g., for the 3D Coulomb, ¢(r)=r "1, we get
from Eq. (36) c(r)=Ao+ Aori+ Asr’+ Asr.

40Using the method of Ref. 24 we obtain (e.g.) in 3D that the
small-7 expansion of ¢ (r) has the form

cosX(kR.)

>0,

c(r)=c(0)+[2mpTRg(r=R)AC(r =R)Jr+ - -

where AC is the jump discontinuity of ¢ (#) at » =R.
41The general D dependence of the PYHS asymptotic behavior
is in fact dictated by the D independence of the result Eq.
(55b).
42D. MacGowan, J. Stat. Phys. 32, 123 (1983).
433, L. Lebowitz and J. W. Perram, Mol. Phys. 50, 1207 (1983).
44B. Barboy and W. M. Gelbart, J. Stat. Phys. 22, 709 (1980).
45P. T. Cummings and G. Stell, Mol. Phys. 46, 383 (1982).



