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Damping of cylindrical phonons in extense fermion matter
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A previous model, designed so as to simulate the coupling between a one-dimensional, quantal
harmonic excitation in a fermion heat bath, is extended to consider three-dimensional vibrations

with axial symmetry. This investigation addresses future studies on the relaxation of collective

modes in finite Fermi systems such as deformed nuclei. For this application, the equations of ir-

reversible dynamics in the proposed model are extracted and their solutions are examined in a range
of parameters appropriate for the nuclear fluid. The formulation, techniques, and discussion are far
more general and can be applied to a variety of problems arising in statistical mechanics and many-

body physics.

I. INTRODUCTION

The relaxation of quantal macroscopic degrees of free-
dom in many-body systems or fields continues to be a sub-
ject of enthusiastic research. Although this issue has trad-
itionally received most inputs from quantum optics, ' the
observation of transport processes in the nuclear fluid
offer new insights and roads to enriching our comprehen-
sion of its different facets. In particular, atomic nuclei,
that are many-body, however finite, quantal systems, pro-
vide an interesting evidence of damped collective motion
through the giant resonances, among which the oldest and
most popular, the dipole-charge mode, has induced many
theorists in the field to search for explanations of its
width for a couple of decades. As an alternative to the of-
ficial nuclear models that inspire the most accepted
answers to that question, namely the hydrodynamic and
the microscopic descriptions of the dipole relaxation, a
scheme has recently been proposed that primarily suggests
the possibility of regarding the macroscopic vibration
under study as a quantal oscillator, that undergoes
Brownian motion in the nuclear environment. With this
idea in mind, the model was developed according to
several procedures of nonequilibrium statistical mechan-
ics and the relaxation of a one-dimensional oscillator
in an equilibrated fermionic reservoir, that could be con-
ceived as nuclear matter for the applications of interest,
was established. In the first stage, a standard particle-
phonon interaction was adopted as the coupling mecha-
nism. Further extensions of the primary model imply the
evaluation and analysis of the collision frequencies of the
fermions in presence of the oscillator, a test application
to spherical nuclei, the examination of the competition
between dissipative and diffusive events in the equilibra-
tion of a charge mode in a nucleus, ' the investigation of
the solutions of the master equation for a time-dependent
harmonic oscillator" and the coupling of the vibration to
a low-frequency oscillation. The latter is aimed at
representing a surface collective mode in a finite nu-
cleus. '

In the present work, we advance one more step in the

field of quantal Brownian motion in fermionic systems
and propose an extension of Ref. 4 intending most realis-
tic applications. Our motivation lies in the experimental
fact that giant dipole resonances in deformed nuclei split
into two or three components, according to the nucleus
being axially symmetric or not. We then begin the study
of the equilibration dynamics of a three-dimensional, axi-
ally degenerated harmonic oscillator immersed in an ex-
tended fermion heat bath to which it couples via single-
phonon creation or destruction. Notwithstanding the ac-
tual calculations that are performed for nuclear parame-
ters and ranges, the formulation is general and only makes
use of assertions, techniques, and approximations widely
approved in nonequilibrium statistical mechan-

1,5 —7, 13, 14

This paper is organized as follows. In Sec. II the details
of the physical model are described. In Sec. III we briefly
explain how the equations of irreversible motion for the
oscillator and the fermion system are extracted within the
current approximations. It is seen that the oscillator
decouples into two modes, the one lying along the symme-
try axis, the other corresponding to a circularly degenerat-
ed vibration lying on the equatorial plane. The irreversi-
ble road toward equilibration is then described by two mu-
tually independent master equations for the one- and
two-dimensional oscillators, respectively. However, they
are coupled together by the kinetics of the heat bath,
whose total collision rate admits contributions from either
vibration. The generator of evolution of the latter turns
out to be a constant, non-Hermitian matrix in the weak
coupling limit supplemented with the assumption of per-
fectly elastic collisions between each oscillator component
and the fermions. As for the one-dimensional component
along the z axis, this is exactly the situation discussed in
Ref. 4 and is no further considered here. The evolution of
the oscillator in the plane is associated to a spectral prob-
lem that can be analytically solved, if one takes advantage
of the particular random-walk pattern related to the given
master equation and conveniently chooses a set of boun-
dary conditions. This is explained and analyzed in Sec.
IV. In Sec. V, some numerical calculations aimed at illus-
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trating the model in the range of nuclear parameters are
presented and discussed, while Sec. VI contains the major
conclusions and perspectives.

II. DESCRIPTION OF THE MODEL

L,
i
n, m, n, ) =A'm,

I a i n, m, n, ) =&(n +m)/2
i

n + l, m + l, n, ),
I L ~

n, m, n ) =&(n —m)/2
~

n+1, m —l, n, ) .

(2.8b)

(2.8c)

(2.8d)

The model proposed for the preliminary study faced in
this work considers a boson system coupled to a fermionic
heat bath, the former being associated to a three-
dimensional (3D) oscillator that simulates a harmonic ex-
citation in a finite deformed nucleus. The fermionic
reservoir represents equilibrated nuclear matter at a given
temperature T, or in other words, a Fermi gas described
by an equilibrium single-particle (SP) density,

1

(e —e )IT~F
(2.1)

H =Hp +Hg +Her,
with the fermionic contribution

(2.2)

where eF ——38 MeV and T can amount to a few MeV
(hereafter, the Boltzmann's constant k is chosen as the
unit of entropy).

The time evolution of the combined system is generated
by the Hamiltonian

Notice that
i

m
i
(n and m varies in steps of two units. '

This basis will be the one adopted to expand the evolv-
ing density operator of the oscillator, Pa(t) as

pa(t) = P p„„„„(t)I n m, n, ) (n', m', nz
I

. (2 9)
n, m, nz,

n, m, n

The matrix elements ptJ(t) will be irreversible driven to
equilibration by an interaction that we assume to have a
standard particle-phonon structure,

cx, IM

(2.10)

As usual ' ' SP labels p(a) are assigned to represent the
lowest- (highest-) lying levels in a collision vertex; at zero
temperature (M(a) explicitly denotes SP states located
below (above) the Fermi level.

H =g e;b; b;+ —,
' g Vjklb; bj blbk, (2.3)

III. THE EQUATIONS OF MOTION

and the boson term

Hg ——H +Hy+H,

=(r„r„+r,r, +1)An+(r,'r, +-,' )A' n, . (2.4)

The operator b; (I ) creates a SP (a one-phonon) state on
the corresponding vacuum, b; (I" ) being its Hermitian
adjoint. Equation (2.4) displays another of the working
hypothesis; namely, the 30 oscillator exhibits axial sym-
metry. Thus, the model here presented is well suited for
the description of resonant decay in axially deformed nu-
clei. In this situation, it is convenient to introduce the cir-
cular operators that respectively create right- and left-
handed polarizations in the (x,y) plane,

pa(t) =TrFp(t), (3.la)

p~(t) =Trap(t) . (3.1b)

The technique here utilized to extract the equations of
motion for the boson and fermion subsystems has been al-
ready employed in the one-dimensional (1D) case.~ 8

It is inspired in the reduction procedure giving rise to
the quantal Bogoliubov-Born-Green-Kirkwood- Yvon
(BBGKY) hierarchy and it has been shown that it is
equivalent to a projection method' ' ' ' with time-
dependent projectors. ' From the operational point of
view, what one does is to reduce the undesired degrees of
freedom out of the density matrix of the system p to ob-
tain the subsystem densities,

r, = I/v2(r, —lr, ),
I = I/V2(r„+i I )

(2.5a)

(2.5b)

Reduction of the Schrodinger —von Neumann equation of
motion i Rp =Lp with the Liouvillian

in terms of which the boson Hamiltonian reads,

H =(r', r, +r', r, +1)en+(rtr,'+-,' yn, . (2.6)

]=La+ LF +Lap

gives rise to the coupled equations for Q =B or I',

(3.2)

It is clear that I R, I L, and their adjoints satisfy the boson
commutation rules and are independent, [I a, l t ]=[I,I „]=0. In this representation, the axial com-
ponent of the angular momentum of the oscillator reads,

L, =iri(I ara —rL I t ) . (2.7)

Since L, is a constant of the motion, one can build up a
basis

~

n, m, n, ) (Ref. 15) where n =na +nt, m =na
—nL, and

R'
i
n, m, n, ) = [(n + 1)iris'+ (n, + —,RQ ] i

n, m, n, ),
(2.8a)

i fiPQ ——WQPQ+Kg(P),

with the free-flow generator or effective Liouvillian

WQ ——LQ +Tl' Q(LaFp Q )

(3.3)

(3.4)

(here —Q denotes the complement of the Q coordinates)
and the coupling term Kg(p). Furthermore, a hypothesis
of the Markovian type, in other words, an assumption re-
garding the microscopic and macroscopic scales in the
problem has to be introduced in order to extract the kernel
of irreversible evolution in Eq. (3.3). One supposes that
the duration r, of the collision event between the oscilla-
tor and a fermion is much shorter than any period or ob-
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&g[(Pgp g)(t)]=Itg[p(t)], t ))r, . (3.5)

servable time scale, disregards the information concerning
those microscopic, short-lived processes, and quickly
writes down a formal expression for ICg, the kinetic
operator,

The details of the calculation are given elsewhere '
and for the model under consideration, straightforward
application of this technique gives rise, in the weak cou-
pling (HI1+ «H&, H+)-plus-sharp resonance (energy-
conserving interaction vertex) limit, to the coupled system
of equations of irreversible motion

(R) (z)
Pnm = ~+ (Pn+1,m+1+Pn+1, m —1 2Pnm )+~— (Pn —l, m —1+Pn —1,m+1 Pnm ) i

P.,= ~+'(P;+1 P., )—+ ~"(P.,-1 P.-, »—

p~ =p~'"'+ 2 I

~"I'~&«"—~ &) I [(1—p"b»(1 —p ) —(1—p~)p. (1—p„)]&~„
a,p, s

+[(1 p~')p (1——p„)—(1—po')p„(1 —p )]&~ I,

(3.6a)

(3.6b)

with i =R, z, and

N
(8) ~ (8)

p& = ~ pram.
m= —N

(3.6d)

Equations (3.6) are valid in the very close to equilibra-
tion regime where interference effects (off-diagonal ele-
ments of either density matrix) have already vanished. '

It is clear from Eqs. (2.8) and (2.9) that the occupation
probabilities of the oscillator states are factorizable,

P„„(t)=P„m(t)P„(t) . (3.7)

The transition probabilities (per unit time) 8'+ read

8"+ =Q
f

A, '„' ~&(II" e1 „)p„(1——p ),
a,p

W" =y
f
~."„

f

'~6(n" —~.„)p.( 1 —p„),

(3.8a)

(3.8b)

Q=c, fq f,
Q, =c, fq, f,

(3.9a)

(3.9b)

where c„c, are the sound velocities in the given direc-
z

tions in the nuclear environment.

where i denotes either R or z. Notice that according to
the hypothesis of axial symmetry, we must choose
A, '&' ——A, &', this being the reason why only the label R ap-
pears in (3.6a). We observe that while Eq. (3.6b) is simply
the master equation for a 1D oscillator that performs
quanta1 Brownian motion in a fermionic heat reservoir,
Eq. (3.6a) generalizes the former to the 2D situation with
axial symmetry. Thus, the latter contains events related
to creation or destruction of nodes ( n + 1) as well as of po-
larization quanta (I+1). In addition, one should take
notice taat in the extended kinetic equation for the fer-
mions Eq. (3.6c) the contributions from collision events of
the particles with the different components of the 3D vi-
bration [namely, those in the (x,y) plane and along the z
axis] simply add up, reflecting the independence of these
components. Furthermore, we have assumed that q, q,
are the respective components of the oscillator momenta,
related to the corresponding frequencies by an acousticlike
dispersion relation,

IV. THE SPECTRAL PROBLEM

A, q '6(k~ kq )6——(k —q), — (4.1)

where k is the modulus of the projection of the relative
momentum k —k„on the (x,y) plane. In due turn, this
implies that two particles with momenta ka and k„can
participate in a collision event with the plane oscillator
only if (a) the momenta lie on a plane k, =cte and (b) for
given projection k of k on the (x,y) plane, kz musta» a ~ ' I'xy
lie on a circumference of radius q centered at k . Now,a»

As a prior step to any application we wish to examine
the eigenvalue problem of the dynamical system (3.6) and
the evolution in the linear regime. Such a regime is au-
tomatically ensured in the so-called sharp-resonance ap-
proximation ' ' here adopted, that assumes the
particle-phonon interaction to be perfectly elastic. This
assumption shows up in the 5 distributions that force en-
ergy conservation in the transition probabilities [Eqs.
(3.8)] and in the generalized kinetics of the heat reservoir
[Eq. (3.6)]. In particular, the latter shows that when
particle-phonon collisions are effective, the collision fre-
quency driving the fermion system to equilibrium is infin-
ite. This fact, a limiting behavior of slightly energy-
broadened events, has been analyzed in the context of the
1D oscillator ' where it has been shown that those fer-
mions in momentum space lying in selected planes per-
pendicular to the z axis achieve instantaneous thermaliza-
tion; overall equilibration in k space can then proceed via
particle-particle collisions. Furthermore, this thermaliza-
tion does not imply any temperature change in the heat
bath, since the amount of transferred energy is finite. In
this case, the circularly degenerated oscillator in the (x,y)
plane is associated in the current view, to a cylindrical
acoustic wave stemming from the z axis in configuration
space. In other words, the geometry of the present model
refers to an infinite cylinder, rather than to an infinite
cube, of nuclear matter. This means that the phonon
wave function is proportional to a Bessel function Jo(qr);
consequently, the matrix element A, „of the particle-
phonon interaction should be of the form,
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I
1 „,I'= Ikp„, I'+

II+
I

+ Ikg

(4.2a)

(4.2b)

as one combines the energy conservation requirement at
the collision vertex, one finds the unique solution,

'1

mc, I

an +2 (4.2c)

where y is the polar angle between k and kz . Thus,a ~xy'
the transition rates 8'+ ' reduce to one integral along the
z axis and one integral with respect to k

~xy &xy

(4.3)

where
~ k& ~

and q& are given by Eqs. (4.2a) and (4.2b),

respectively, and
y, =so/X, s =1,2, . . . , X —1

a=+W /W+ .

(4.8a)

(4.8b)

W' ' =exp( fiQ/T) W—' (4.4) Hereafter, we drop the labels (R) on the transition rates

In the present work, the major interest is to solve Eq.
(3.6a) for the 2D oscillator. For numerical applications, it
is necessary to truncate the infinite system of coupled
equations (3.6a), this procedure induces boundary condi-
tions whose appropriate selection may lead to analytical
resolution of the spectral problem as in the 1-dim case. In
the following we show that this actually happens with the
truncation indicated in Fig. 1(a), for sufficiently large X.
The allowed transitions are represented by the arrows, the
upward (downward) going ones being weighted by
W' '(W+ '). In addition, a minus sign has to be intro-
duced if the arrow goes out the node whose derivative one
is writing. One can easily write any boundary condition
with the aid of the drawing; for example, along the edge
0&n &X, m &0 one has

2N"

nn

pnn = ""+ (Pn+l, n+1+Pn+1, n —1 Pnn)

+ W— (pn —1,n —1 Pnn )
(R) (4.5)

I I

-N
I I I I I I

N

This means we are in presence of a square lattice with per-
fectly reflecting walls and nearest-neighbor interactions.
A m /2 rotation by means of the change of variables,

'Ittwlit+

W-

nR ——(n +m)/2,

nL (n —m)——/2

(4.6a)

(4.6b)

V,"„= a'"+ '[a sin(ky, ) —sin(k —1)y, ]xQ
/

A,,A,„f

X [a sin(ly„) —sin(l —1)y„], (4.7b)

where

gives the lattice geometry shown in Fig. 1(b). It becomes
clear that in the ( nrem, nl ) plane the 2D oscillator factorizes
in two 1D ones and one is in a condition to profit of the
already known result. '" The eigenvalues and eigenvec-
tors of the dynamical matrix (3.6a) can be straightfor-
wardly written as

A.,„=—2[ W+ + W —+W+ W (cosy, +cosy„)]

(4.7a)

~ ~ ~

tl
~eeet�'~~~

~ '~ ~

~ ~ ~

0 I I

N

(b)
FIG. 1. (a) Representation of the boundary conditions select-

ed for the search of analytical solutions of the master equation
(3.6a). Each node represents a state ( n, m) of the plane oscilla-
tor spectrum populated with an occupation p„. The arrows in-

dicate the allowed transitions and we have chosen to truncate
the spectrum along the edges of a square with vertices (0,0),
(N, N), (2N, O), and (N, —N). (b) The same lattice rotated ac-
cording to the transformation in Eqs. (4.6).
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11 1;1

0.2 04 0.6 0.8 1.0
t/t

FIG. 5. Time evolution of the significant nonvanishing com-
ponents of the density matrix p„. The time unit is the period
of the unperturbed oscillator, to =2'/Q.

0.2 0.4 0.6 0.8 1.0
t/t

FIG. 6. Time evolution of the oscillator energy (in units of
AQ } and of the entropy (in units of the Boltzmann constant k}.

V. CALCULATIONS AND DISCUSSION

p„(&)= 25„)(5 )+5 )) . (5.1)

Figures 2—4 exhibit the transition rates 8'+, 8', and
the eigenvalue A, ]o as functions of AA and T. As an illus-
tration of the time evolution, we show several graphs cor-
responding. to the middle range parameters 40 =18 MeV
and T = 5 MeV for a plane oscillator initially promoted to
its first excited level. The decay of the occupation proba-
bility p~~

——p] ~ as well as the excitation of the neighbor-
ing states is depicted in Fig. 5. In Fig. 6, the energy and
the entropy profiles as time elapses are displayed, while
the effective frequency vE is shown in Fig. 7.

From sets of time-evolution data such as those exhibit-

We have performed a set of calculations ordered in two
groups. (i) The transition rates W+, W, and the lowest
lying nonzero eigenvalue X&o

——A,o& have been computed as
functions of the cylindrical boson energy AQ, and the
equilibrium temperature T.

(ii) The time evolution of the density and the quantities
listed at the end of the preceding section have been
evaluated for several combinations of the parameters AA
and T, so as to sample the whole range of interest of
physical applications. The sound velocity c, in Eq. (3.9a)
has been chosen as c/4 (where c is the speed of light in
vacuum, equal to 300 fm/10 ' sec, and in all cases the
initial condition has been set as

ed in Figs. 5—7, we can extract a few parameters charac-
teristic of the approach to equilibration. Typically, we de-
fine a relaxation time or mean life rz for the magnitude
X, so that

X(oo)+[X(0)—X(oo)]/e if X decays,
rx (I —I/e)X( oo ) if X populates . (5.2)

Table I exhibits the values of ~&, ~&, and ~z for several~0'
phonon energies and heat-bath temperatures. For the sake
of comparison, we give as well the corresponding numbers
for the largest relaxation time eigenvalue A, &p'. All times
are given in the nuclear time unit 10 ' sec while transi-
tion rates and eigenvalues are given in
MeV 10 ' sec '/

~

A,
~

. In addition, in this table we give
the saturation (i.e., asymptotic) values of the populations,
energy, and entropy.

From inspection of Figs. 2—4 one verifies that, accord-
ing to Eq. (4.7a), the lowest-lying eigenvalue A, &o almost
coincides with the downwards transition rate 8'+ for low
temperatures, where the upwards-going probability mea-
sured by 8' is almost vanishing. Correspondingly, in-
creasing the temperature favors the departure of A, ~o with
respect to W+, due to the growing importance of reexci-
tation processes. The curvature of either W+ or A, ,o re-
flects the dependence on the exponent appearing in the
equilibrium densities p and p„, in the integral (4.3). By
contrast, the transition rate 8' is smoothed down by the

TABLE I. The effective lifetimes ~ (in units of 10 sec} defined in Eq. (5.2) for the first two nonvanishing components of the
density matrix and the energy, the inverse of the smallest nonvanishing eigenvalue of the evolution matrix (in units of 10 ' sec} and
the asymptotic or saturation values of energy (in MeV} and entropy (in units of the Boltzmann's constant k} on a sample of phonon
energies AA and heat-bath temperatures T, both in MeV.

«p»}
«po)
w(E}

E„/ A'0

5 /k

0.020
0.020
0.020
0.020
0.0
0.0

40=13
T=5
0.042
0.048
0.052
0.089
0.16
0.58

T =10

0.034
0.038
0.044
0.210
0.74
1.6

0.016
0.016
0.016
0.016
0.0
0.0

%0=18
T=5
0.036
0.040
0.042
0.056
0.056
0.26

T =10

0.038
0.046
0.056
0.136
0.4
1.07

0.013
0.013
0.013
0.013
0.0
0.0

%0=25
T=5
0.032
0.032
0.033
0.037
0.01
0.08

T =10

0.038
0.043
0.047
0.085
0.18
0.62
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&(10 sec )

0.2 04 0 6 0.8 1.0
/g

FIG. 7. Time evolution of the logarithmic derivative of the
oscillator energy.

Boltzmann factor in Eq. (4.5), as a function of the phonon
frequency.

The results of the time evolution are typical of this kind
of calculation and display most expected features of
equilibration. The population densities (Fig. 5) approach
a canonical distribution for the given temperature with
the effective time rates given in Table I. The energy and
entropy (Fig. 6) reach saturation values that coincide up
to three to four decimal figures with those predicted by
the statistical equilibrium relations for the internal energy
and entropy of a 2D oscillator,

—fiQ/T
U =AH (5.3)

1 —8

S=——2ln(l —e "
) . (5.4)

T
Due to the degeneracy of the initial pure state of the oscil-
lator, the entropy does not vanish at t =0. We appreciate
in Fig. 6 that it grows up to a maximum, from which it
decays towards saturation below the original value. This
behavior is related to the fact that the early evolution is
mostly dissipative, as evidenced by the rather slight varia-
tion that the effective rate v~ experiences in the short-
time scale (Fig. 7), giving rise to entropy increase. As
time proceeds and the system is driven towards equilibra-
tion, the entropy evolves to reach the statistical figure
provided by Eq. (5.4) for the given temperature; if, as in
the case under discussion, this value is smaller that the in-
itial one, an entropy flow from the oscillator into the heat
bath is established. On the other hand, we can observe in
Fig. 7 the noticeable decrease in the effective decay rate
vz in the long run, indicating an important presence of
diffusionlike events accompanying the spread of the occu-
pation density into the canonical distribution. This situa-
tion characterized by a fringe of the oscillator spectrum
that becomes populated with some non-negligible proba-
bility, demands a large amount of intrinsic configurations
to come into play, since there are very many different
ways in which the particles in the heat bath can collide
with the macroscopic system to maintain invariant the
equilibrium density of the latter. This enlarging of fer-
mion phase space gives rise to entropy production, as
demanded by the second law of thermodynamics, in order
to compensate for the negative flow associated to the en-

tropy loss of the oscillator.
We now turn to the analysis of the mean lives defined

in Eq. (5.2) whose values for a set of temperatures and fre-
quencies are shown in Table I. It is not easy to establish
any law regarding their variation as functions of A'0 and
T, since these relaxation times mainly reflect a weighted
average of the different eigenvalues. It is clear that for
the lowest temperatures, the three mean lives are identical
and coincident with the largest relaxation time X&p . One
can realize as wel1 that for any frequency, heating the sys-
tem introduces some amount of spread among these time
parameters that becomes, however, less significant for
higher phonon energies.

VE. SUMMARY AND CONCLUSIONS

In this paper we have undertaken a model study of the
equilibration of a 3D quantal oscillator placed in a fer-
mionic reservoir. Due to the relevance of this problem to
applications in nuclear physics regarding resonance decay
in deformed nuclei, we have conceived the heat bath as
axially symmetric nuclear matter excited by the lowest
cylindrical acoustic mode. The phonons of the wave
propagating in the (x,y) plane are considered as the exci-
tation quanta of a 2D oscillator lying in that plane and
possessing angular degeneracy. Both the quantal and the
statistical equilibrium problems of such an oscillator can
be formulated and solved exactly.

We have extended a prior work devoted to a ID har-
monic modes and shown that under a given set of approx-
imations and assumptions involving the Markovian and
the weak coupling hypothesis, the dynamics of the com-
bined system can be cast into coupled nonlinear equations
of motion. The spectral problem of the master equation
describing the evolution of the phonon population density
can be exactly solved if one complements the former as-
sumptions with the sharp-resonance approximation mean-
ing energy conserving collision events. With the aid of
the analytical eigenvalues and eigenvectors, that one easily
finds if the boundary conditions are adequately chosen, it
becomes a simple task to describe the motion of physical
quantities of interest such as the distribution density of
the 2D oscillator, its energy, entropy, and effective decay
rate, which can be analyzed as functions of the selected
parameters, namely the phonon energy and the tempera-
ture of the fermion reservoir.

The study here presented is of such a general character
to be profited by other fields of physics requiring some
version of the damping process of a quanta1 harmonic ex-
citation in a many-body system. Further work along this
line is in progress aiming at closer approximations to the
inspiring problem of nuclear physics.
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