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Vibrational excitation and dissociative electron attachment via the 2=} shape resonance in H, is
treated within the framework of Feshbach’s projection-operator formalism. The problem of nuclear
mootion in the complex, energy-dependent, and nonlocal potential of the 2=} resonance is solved with
the use of a separable expansion of the nonlocal potential. The resonance energy, width function,
and level-shift function, which characterize the resonance in the fixed-nuclei limit, are taken from
recent ab initio calculations based on the many-body optical-potential approach [M. Berman, C.
Miindel, and W. Domcke, Phys. Rev. A 31, 641 (1985)]. Integral cross sections for vibrational exci-
tation of H, and D, up to v =4 and for dissociative electron attachment to H, and D, molecules in
the vibrational levels v =0, 1, and 2 have been calculated. The calculations provide a good overall
description of the.experimental data for both H, and D,. Pronounced isotope effects and a strong
dependence of the attachment cross section on the vibrational state of the target molecule are found,
in qualitative agreement with experimental observations. The accuracy of two widely used approxi-
mations, the adiabatic-nuclei approximation and the local-complex-potential model, is quantitatively
assessed for this prototype resonance. While the off-shell adiabatic-nuclei approximation provides a
qualitatively satisfactory description of vibrational excitation, we observe a stunning failure of the
local-complex-potential model. Empirical local complex potentials, fitted to reproduce experimental
vibrational excitation and dissociative attachment data in H, and D, within the local-potential
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model, lack any physical meaning.

I. INTRODUCTION

Since the pioneering work of Schulz and co-workers it
is well established that resonances in electron-molecule
scattering are a common phenomenon.! The most in-
teresting and important aspect of -electron-molecule-
scattering resonances is the strong coupling of the elec-
tronic and nuclear motions. As a consequence, the cross
sections for vibrational excitation of the target molecule
are strongly enhanced in the energy range of a resonance.'
Of particular interest are reactive processes such as disso-
ciative attachment, where the short-lived collision com-
plex decomposes into a stable negative ion and a neutral
fragment."? These inelastic and reactive collision process-
es constitute a major part of the physics and chemistry in
outer space, in the higher atmosphere, and in discharges.’

The hydrogen molecule exhibits a broad low-energy
shape resonance in electron scattering, leading to vibra-
tional excitation and dissociative attachment in the
(2—6)-eV energy range.*~® Since H, is the simplest
closed-shell molecular target, this resonance plays a proto-
typical role for our understanding of such collision pro-
cesses. The first calculations of vibrational excitation and
dissociative attachment in H, were performed by Bards-
ley, Herzenberg, and Mandl.”® They employed Siegert
resonance theory to calculate the complex poles of the S
matrix corresponding to the lowest 3,5 and 3] reso-
nances in e-H, scattering.” The resonance energy ob-
tained in this way was adopted as a local complex poten-
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tial energy for the nuclear motion to calculate the dynam-
ical cross sections.® The calculated resonance energies and
widths were not accurate enough, however, to allow for a
quantitative description of the experimental data.

Close-coupling calculations for rotational-vibrational
excitation of H, were performed by Henry’ employing a
static, model-exchange, and model-polarization potential
for the e-H, interaction. Henry and Chang'® carried out
an adiabatic-nuclei calculation of rotational-vibrational
excitation cross sections. The first true ab initio study of
vibrational excitation of H, was the calculation of Klon-
over and Kaldor!! based on the adiabatic-nuclei approxi-
mation using T-matrix elements obtained with an L2
basis-set method and a second-order many-body optical
potential for the e-H, interaction. Very recently, Mor-
rison and co-workers'>!® performed rotational and
rotational-vibrational close-coupling calculations based on
accurate fixed-nuclei scattering data and analyzed the ac-
curacy of the adiabatic-nuclei approximation.

Several other treatments'*~'¢ of rotational-vibrational
excitation and dissociative attachment in H, were based
on traditional resonant scattering theory, assuming a local
complex potential for the nuclear motion in the resonance
state as in Ref. 8. In these calculations the parameters
characterizing the local complex potential were varied to
achieve qualitative agreement with experimental vibra-
tional excitation and/or dissociative attachment cross sec-
tions.!*~1® As recently emphasized by Nesbet,!” the local
complex 22 potential-energy curves thus obtained differ
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seriously from one another and from ab initio calcula-
tions.!®!° Indeed, the width of the 2Z; shape resonance
is so large at short internuclear distances that the applica-
bility of the local-complex-potential model can reasonably
be questioned. The local-complex-potential model has
also been used in calculations of associative detachment in
collisions of H™ with H.?>2! Bieniek?? has recently point-
ed out the possible breakdown of the local-complex-
potential model for this process. Alternative models for
dissociative attachment in H, and associative detachment
in H™-H collisions, which are based on Faddeev equations
or a modified effective-range theory, have been proposed
by Drukarev and Pozdneev?® and by Gauyacq,”* respec-
tively.

In this work we present a unified treatment of vibra-
tional excitation and dissociative electron attachment in
H, using nonlocal Feshbach resonance theory as applied
earlier to e-N, and e-F, scattering.?>?® While vibrational-
ly elastic scattering and the excitation of low vibrational
levels of H, seem to be very well understood theoretical-
ly,!1—13:27.28 the present work represents the first ab initio
calculation of the dissociative attachment cross section.

In the projection-operator approach?® one introduces
projectors

0= va) ¥l . W
P=1-0= [dkkdQ, | D) (G| @

in electronic Hilbert space, which are assumed to com-
mute with the nuclear kinetic-energy operator T.30—34
In other words, the discrete state |4¥4) and the back-
ground continuum states |1/;k ')y are diabatic®>%° elec-
tronic basis states. One obtains in this way a separation
of the T matrix for electron scattering into a background
term Ty, and a resonant term T.. By construction, Ty,
is a smoothly varying function of energy and generally
weakly dependent on the internuclear distance R. The
background scattering can thus be treated in the
adiabatic-nuclei or impulse approximation.’’” The contri-
bution of the resonant scattering to vibrational excitation
and dissociative attachment, on the other hand, can be
evaluated exactly by treating the nuclear dynamics in the
short-lived negative-ion state, which is governed by an
energy-dependent, complex, and nonlocal poten-
tial.2>26:30-34 The fixed-nuclei input data required in this
approach are the potential energy V,(R) of the target
molecule, the energy €,(R) of the discrete state |14 ), and
the width and level-shift functions T(R,E) and
A(R,E).*»? Methods for the ab initio calculation of
these quantities have been developed by Hazi®®3° and by
Berman and Domcke.** An alternative and largely
equivalent formalism to treat vibrational excitation and
dissociative attachment, which is based on the R-matrix
approach, has been proposed by Schneider et al.*' and ap-
plied to the *II, shape resonance in N,.*?

The present work is based on ab initio calculated Fesh-
bach resonance parameters €;(R), I'(R,E), and A(R,E)
obtained recently by Berman, Miindel, and Domcke*’
(henceforth referred to as I). In these calculations the
electron-H, interaction has been described in the many-
body optical-potential formalism using the two-particle-

hole Tamm-Dancoff approximation (2ph-TDA).* The
Schwinger variational principle**® has been used to solve
the fixed-nuclei -electron-molecule-scattering problem.
Employing projection-operator techniques adapted to
shape resonances,**” an explicit separation of the 2= T
matrix and eigenphase sum into a smooth background
term and a rapidly varying (with respect to energy and in-
ternuclear distance) resonant term was achieved. To solve
the difficult problem of nuclear motion in the energy-
dependent, nonlocal, and complex potential of the 23}
resonance we avail ourselves of methods developed recent-
ly.** The local part ¥ (R)="V,y(R)+€4(R) of the poten-
tial is represented by a Morse function and treated analyt-
ically, while the nonlocal part is approximated by a separ-
able expansion*’ generated by the Lanczos basis of the
Morse Hamiltonian.>%3!

Apart from obtaining reasonably accurate ab initio
cross sections for vibrational excitation and dissociative
attachment in H, and D,, our interest focuses on the
analysis of the accuracy of two commonly employed ap-
proximations, namely the adiabatic-nuclei approximation
and the local-complex-potential approximation. It will be
seen that the 23 shape resonance in H, provides a partic-
ularly clear-cut demonstration of the limitations of the
local-complex-potential model for broad resonances.

II. THEORETICAL FRAMEWORK

A. The projection-operator formalism

The electronic projectors defined in Eqs. (1) and (2) de-
fine a separation of the fixed-nuclei elastic electron-
molecule-scattering T matrix into a resonant and a back-
ground term according to

T(K',K) = Treg (K, k) + Ty (K',K) (3)

The resonant 7 matrix is given by the explicit expres-
sion?>40

Tres (K, k) =V [k2/2—€4—F (k)] {(ViF))* @)
with the definitions

Vi =@ | H 9a) (5)

ea=(Ya | H |¢g), (6)

F(k)= (g |HG (J ) H | ¥z) . ©)

Here H=—3V?+X is the effective electronic single-
particle Hamiltonian which can be rigorously introduced
via the many-body optical-potential approach.’> X is the
energy-dependent and nonlocal self-energy of the one-
body Green’s function® and includes the static-exchange
potential. A similar ab initio optical potential, which is
based on the projection-operator formalism rather than
the diagrammatic Green’s-function approach, has recently
been employed by Schneider and Collins.?’” The |1,/1(+))
are background scattering states defined as the solutions
of the projected Lippmann-Schwinger equation*®47
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and Gbg in Eq. (7) is the corresponding Green’s func-
tion. The |k*)) are plane-wave states, constramed to be
orthogonal to the discrete state |, ), and G {*) is the as-
sociated free Green’s function. Both can be constructed in
closed form.*”* A central quantity in the projection-
operator formalism is the complex level-shift function of

Eq. (7). It defines the width function I'(E) and the real
level-shift function A(E) via
I'(E)=—-2ImF(k), 9
A(E)= ReF (k) (10

for real positive k =V 2E. The level-shift A(E) for E <0
is given by F (k) with positive imaginary k.

When the nuclear degrees of freedom are included, the
multichannel resonant 7 matrix can be written as a for-
mal operator expression’’

Tres(kf’vl'ki,v)

=(v'| V‘—> E—Ty—Vo) (Vi ¥ |v), (D)
where k; and k; are the initial and final momenta of the
scattered electron,

Ty=—(2u)"'d*/dR? (12)

is the nuclear kinetic-energy operator, u being the reduced
mass, and

Vopr=V1(R)+A(R,E —Hy)— $il(R,E—Ho)  (13)

with
VI(R)=V0(R)+ed(R) ) (14)
Hy=Ty+VyR) . (15)

Here we have suppressed the rotational degrees of free-
dom, which is justified when considering vibrational exci-
tation and dissociative attachment in low-temperature
gases. The energy E in Eq. (11) is the total (electronic
plus nuclear) energy

E=k}/2+e¢, (16)

which is conserved in the scattering process. The states
| v) are vibrational eigenstates of the target molecule

Hylv)=¢,|v) . (17)

We distinguish state vectors in the Hilbert space of nu-
clear motion from state vectors in the electronic Hilbert
space by using rounded “|)” and cornered “|)” Kkets,
respectively. ¥(R) is the potential energy of the project-
ed discrete state, while V,, is the effective or “optical”
potential which governs the nuclear motion in the reso-
nance state. It is energy dependent, complex, and nonlo-
cal.?>26:30—-34 The nonlocality arises from the dependence
of the width and level-shift operators on the nuclear
kinetic-energy operator Ty contained in H,. Explicitly,
the complicated operators I'(R,E — ﬁo) and
AR,E —H o), which depend on the noncommuting opera-
tors R and H,, are defined as

T(R,E —Ho)=2w 3, Vg_ (R)|m)(m | V5_, (R),

(18)
A(R,E —H,)
Vi—e (R)|m)(m | Vg _. (R)
=§pde' i Fo -, (19)
where Vi(R) is defined via
I'(R,E)=2m | Vg(R) | 2. (20)

The summation over m in Egs. (18) and (19) is meant to
include integration over the continuous part of the spec-
trum of H.

The operator expression (11) for the resonant electron-
scattering T matrix including nuclear motion is essentially
exact within the assumption of a diabatic discrete state
and background continuum. The only additional approxi-
mation made in deriving Egs. (11)—(15) (apart from the
neglect of rotational motion, which could be straightfor-
wardly included) is the assumption of a single electronic
scattering channel, namely electronically elastic scatter-
ing.3°=3* The coupling of the elastic channel with the in-
finite manifold of channels corresponding to excited elec-
tronic states, representing closed channels in low-energy
electron-molecule scattering, has not been explicitly con-
sidered. In the present work the coupling to these closed
channels is taken into account in the fixed-nuclei limit,
using the many-body optical-potential approach. The
channel coupling renders the fixed-nuclei electronic opti-
cal potential = and thus the effective electronic Hamil-
tonian H energy dependent. Therefore, €; defined in Eq.
(6) is explicitly energy dependent and F (k) in Eq. (7) ac-
quires an additional energy dependence through H. In a
complete non-Born-Oppenheimer theory the electronic op-
tical potential X itself becomes a nonlocal operator in the
nuclear coordinate R, in analogy to I' and A discussed
above. This nonlocality (with respect to the nuclear coor-
dinate) of the polarization potential is not included in the
present work. We treat the energy dependence of the po-
larization potential adiabatically by replacing €;(R,E) by
€3(R)=¢€4(R,E (R)), where E_(R) is the fixed-nuclei
resonance energy defined by the implicit equation

Eri(R)=€4(R,E s(R)) +A(R,E,o(R)) . @1

For e-H, scattering this approximation is justified, since
the energy dependence of €; is weak [see Fig. 6(a) in IJ.
Similarly, we neglect the weak additional polarization-
induced energy dependence of I' and A and make use of
Eqs (18) and (19), which, in a strict sense, are valid only
in the absence of polarization effects.

By construction, the fixed-nuclei background T matrix
Ty introduced in Eq. (3) is weakly dependent on R and E
in the energy region considered. The existence of such a
separation of the fixed-nuclei 7 matrix into a smooth
background term and a rapidly varying resonant term for
the 23 shape resonance in H, has been demonstrated in
I. Therefore, the conditions required for the validity of
the adiabatic-nuclei approximation®’ are fulfilled for the
background scattering, and we may approximate the mul-
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tichannel background 7 matrix as
Tog(ky, vk, 0) = (0" | Troo(kyp,k;) |0) (22)

where Ty,(ks,k;) is the off-shell fixed-nuclei T ma-
trix.>>3¢ In the present application the R dependence of
Tye(kys,k;) is so weak® that the background contribution
can be neglected for all but the vibrationally elastic chan-
nel. The formalism of Schneider et al.**? yields a simi-
lar separation of the multichannel R matrix into a
“resonant” term and a ‘“‘nonresonant” term, the latter be-
ing treated in the adiabatic-nuclei approximation.

Assuming that the dependence of the discrete-
continuum coupling element V{*'(R) on the angle
does not change strongly with the internuclear distance,
we can perform the angular integration and obtain for the
integral resonant electron-molecule-scattering cross sec-
tion>" 58

TS (E;) = (4mv/k})
X | (v’ VEf(E—TN—Vopt)‘lVEi lv)|?2, (23)

where v counts the spatial degeneracy of the discrete state
(v=1 for the 23} state of H, ™).

The Feshbach formalism also yields a simple and for-
mally exact (within the approximations discussed above)
expression for the T-matrix element describing the rear-
rangement process of dissociative attachment’!>#

T (K ski0) =K' [(PF) [v), (24)

where K is the asymptotic momentum in the dissociative
channel and | K ) is the scattering state describing nu-
clear motion in the nonlocal potential of the short-lived
negative ion

| B )= | K+ G5 Vo |[K ) . (25)

Here | K) is the plane-wave state describing free motion
of the fragments and G\ =(K2/2u—Ty+in)~! is the
corresponding free Green’s function. The integral cross
section for dissociative attachment reads [adopting energy
normalization for the scattering states (25)]

Ogiss(E1,0) =4 v/k2) | (K 7| Vg [0) | 2. (26)

Equation (26) is equivalent to expressions given in Refs.
26 and 57.

The widely used local-complex-potential model®>® can
be derived within the more general framework of the
projection-operator approach.?>>3=3* . The local approxi-
mation consists in the replacement of the nonlocal opera-
tors I'(R,E —H,) and A(R,E —H,) defined in Egs. (18)
and (19) by the local functions

T(R)=T(R,E(R)) ,
A(R)=A(R,E (R)),

where E .. (R) is the fixed-nuclei resonance energy defined
in Eq. (21). With this approximation the optical potential
for the nuclear motion becomes an energy-independent
and local function of R

VEW(R)=V1(R)+A(R)—5iT(R) . (28)

(27a)
(27b)

We have to replace, furthermore, the energy-dependent
entrance and exit amplitudes VEi and Vg 2 by local ampli-

tudes, defined by (see, for example, Ref. 60) _
W(R)=Vg_(R)E(R)]™'*. (29)

The vibrational excitation and dissociative attachment
cross sections in the local approximation are then given by
Egs. (23), (25), and (26) with ¥V, and Vf replaced by the
local quantities (28) and (29), respectively.

B. Parametrization of the fixed-nuclei data

The formalism outlined in the preceding subsection al-
lows the calculation of vibrational excitation and dissocia-
tive attachment cross sections from a few input data
which can be obtained by fixed-nuclei ab initio calcula-
tions. In detail, these quantities are (i) the potential-
energy curve V,(R) of the target molecule, (i) the energy
€4(R) of the discrete state, defining the potential-
energy curve of the discrete state according to
Vi(R)=V,(R)+€4(R), and (iii) the discrete-continuum
coupling elements Vz(R) which appear as entrance and
exit amplitudes in Eqgs. (23) and (26) and define the nonlo-

~ cal width and level-shift functions according to Egs. (18)

and (19). These data are sufficient to evaluate the
resonant electron scattering and dissociative attachment
cross sections. If the background scattering contributes to
vibrational excitation, the fixed-nuclei background T ma-
trix Ty,(k’,k) is also required as a function of R to evalu-
ate the background contribution in the adiabatic-nuclei
approximation.

In the present work, as in earlier calculations, we
adopt the strategy of parametrizing the potential-energy
curves Vy(R), V1(R) and the coupling elements Vz(R) by
suitable analytic expressions so that most integrals re-
quired in the dynamical calculations can be performed
analytically. The use of analytic parametrizations consid-
erably reduces the number of (generally expensive)
ab initio calculations required as a function of energy and
internuclear distance. It allows us, moreover, to employ
particularly efficient methods to deal with the nuclear
dynamics in the nonlocal optical potential and thus to ob-
tain numerically exact solutions for the model defined by
the parametrization of the ab initio data.?>*®

For H,, a very accurate theoretical potential-energy
function of the 12; ground state is available.®! We have
used a cubic-spline interpolation of these data to define
Vo(R).

The discrete-state energy €;(R,E) has been calculated in
I for seven internuclear distances between R=1.4014 a.u.
[the equilibrium geometry R, of H, (Ref. 62)] and
R=2.75 a.u. The discrete-state energy is approxi-
mated here by the energy-independent quantity
€4(R)=€4(R,E(R)), as explained above. E (R) is the
energy where the resonant 23] eigenphase sum goes
through 7/2 (see I). To define V|(R) more accurately at
short and large distances, the ab initio calculations of I
have been augmented by calculations at two more internu-
clear distances, R=1.0 and 3.0 a.u. The ab initio data for
Vi(R)=V,(R)+€4(R) are interpolated and extrapolated
by fitting a generalized Morse function®®

25,48
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VI(R)=.D1 {CXp[ ——Zal(R —Rl )]
—2texp[—a (R —R]}+Q (30)

to these data. Q=3.99 eV is the known asymptotic limit
of the 23] state of H,™ relative to the minimum of the
155 state of H,. A good fit to the ab initio data is ob-
tained with the following values of the parameters:

R,=R,=1.4014 a.u., t=0,
(31)
D=1.7¢V, o;=1.19a.u."!.

The potential-energy curve V(R) of H,™ is shown in Fig.
1(a) (chain curve) together with the ab initio values (stars)

ReV(eV)

3R(a.u.)4

(b)

I (eV)
®

0 n i i A i i
! 2 3Rea.u?

FIG. 1. Fixed-nuclei potential-energy curves for H, and H, ™.
The long-dashed curve in (a) gives the Kolos-Wolniewicz poten-
tial (Ref. 61) for the X'3} ground state of H,. Stars give the
ab initio calculated (Ref. 43) potential energy of the projected
discrete 23 state, the chain curve shows the analytic fit by the
Morse function of Eq. (30) with the parameters of Eq. (31). The
solid curve in (a) gives the real part of the local complex poten-
tial defined in Eq. (28). The corresponding local width function
in shown in (b). The short-dashed curves show the empirical lo-
cal complex potential determined by Bardsley and Wadehra
(Ref. 16) (see text).

and the potential-energy curve V,(R) of H, (long-dashed
curve). It is noteworthy that the discrete-state potential
curve is purely repulsive.

In I the discrete-continuum coupling elements Vi (R),
the width function I'(R,E), and the level-shift function
A(R,E) were obtained as a function of energy for a grid of
seven internuclear distances. To fit these data by analytic
functions we choose the ansatz
2

3
> fi(E)gi(R)

i=1

[(R,E)=27 | Vg(R)|*= (32)

with
FUE)y=AE% % =123 . (33)

This ansatz incorporates the threshold law of Wigner®*
which requires T'(E)~E3/? for a p-wave resonance. To
fit the R dependence of the ab initio calculated I'(R,E),
we tried both exponentials and Gaussians for the func-
tions g;(R). The best fit was obtained with two Gaussians
and one exponential, i.e.,,

—CXR — 2
g(R)=e GERR i 19 (34a)

g3(R)y=e  GR R (34b)

The fixed-nuclei level-shift function A(R,E) has been
calculated in I for both positive and negative energies. To
obtain a parametrization of A(R,E) which is suitable to
evaluate the nonlocal level-shift operator A(R,E —I?O),
we write A as the Hilbert transform of T,

_ 1 ,T(R,E")
ARE)=——P [ dE'=—0;
S E{E)
=2 GRP [aE' T, (35)

Jj=1

neglecting thereby weak energy dependencies introduced
by polarization effects.* The functions F;(E) and G;(R)
follow trivially from Egs. (32)—(34). The principal-part
integral in Eq. (35) can be performed analytically.?>*8
With the parametrizations (32) and (35) we fitted simul-
taneously the ab initio data for I'(R,E) and A(R,E) by a
nine-parameter least-squares fit. The resulting width and
level-shift functions are shown in Fig. 2 (dashed curves)
together with the ab initio result of I (solid curves). The
values of the parameters A4;, B;, and C;, i=1, 2, and 3,
are given in Table I. The agreement between the two sets
of curves is satisfactory, especially for low energies and
for internuclear distances near the equilibrium geometry
of H,. The fit is less good at large internuclear distances,
near the crossing point of the H, and H,™ potentials. The

TABLE 1. Coefficients for the width function I'(R,E) de-
fined in Egs. (32)—(34).

Jj A4; (eV—1/4) B; (eV‘l) C; (a.u."1)
1 0.7276 0.6932 0.0

2 0.5956 0.1711 0.3302
3 0.4583 0.0533 0.0489
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A cev)
H

|\
\

-5 -4 -3 -2 -1 0] 1 2 3 4 5 6
ENERGY (eV)

FIG. 2. Ab initio calculated width (upper curves) and level-
shift (lower curves) functions as obtained in I (solid curve) as a
function of energy and internuclear distance. The analytic fit
provided by Egs. (32)—(35) with the parameter values of Table I
is shown by the dashed curves. The curves for the width I
(level-shift A) correspond, from top to bottom (bottom to top),
to the following internuclear distances (in a.u.): 1.4014, 1.6, 1.8,
2.0, 2.2,2.5, and 2.75.

deviation seen in I'(E) for E>5 eV should not affect the
final results significantly, since the cross sections are
peaked at lower energies (3—4 eV). The main features of
the width and level-shift functions, namely the rapid in-
crease of " with energy near threshold and the significant
energy dependence of A around E=O0, are accurately
reproduced by the analytic fit. The fit determines, ac-
cording to Eq. (32), also the discrete-continuum coupling
elements Vz(R) which appear as entrance and exit ampli-
tudes in the cross-section formulas (23) and (26).

The real part of the local resonance potential energy,
defined in Eq. (28), is included in Fig. 1(a) (solid curve).
Since the level-shift A is large, the local resonance poten-
tial lies considerably below the potential curve V;(R) of
the discrete state. It is interesting that the local resonance
potential is attractive at large and intermediate distances,
with a minimum near 2.2. a.u. and a well depth of more
than 1 eV. The short-dashed curve in Fig. 1(a) is the real
part of the empirical local resonance potential of Bardsley
and Wadehra,'® to be discussed below. For completeness,
the local width function I'(R) defined in Eq. (27a) is
shown in Fig. 1(b) (solid curve) together with the empiri-
cal local width function of Ref. 16 (short-dashed curve).
The local width increases monotonically with decreasing
R, reaching a value of about 4 eV at the equilibrium
geometry of H,.

The local 2=} resonance potential obtained in the
present work crosses the 12; ground state of H, at 3.03
a.u. Beyond that internuclear distance the 23] state of
H,™ is bound. A presumably very accurate potential-
energy function of the 23} state in the range 3.0
a.u. <R < o« has recently been obtained by Senekowitsch
et al.%® using multireference configuration interaction
techniques. These data are included as circles in Fig. 1(a).
The calculations of Senekowitsch et al. show that the true

nonrelativistic Born-Oppenheimer 2=, potential of H,™ is
considerably more attractive at intermediate distances
than previous ab initio® and empirical'®'%2?! potentials,
presumably owing to resonant electron exchange between
H and H™, which dominates over the polarization and

- van der Waals interactions®’ for R <10 a.u. The present

23 ¥ potential, being based on a Morse parametrization,
does not take account of these subtle long-range effects
and is seen to lie above the accurate potential of Ref.65
for R >3 a.u. This deficiency should not affect the vibra-
tional excitation cross sections for low channels, but
might affect the dissociative attachment cross section,
which is peaked at the dissociation threshold.

C. Treatment of the nuclear dynamics

To solve for the nuclear scattering wave function in the
nonlocal complex potential V., we write Eq. (25) as
|§‘+))= |K*)+GSHF | R ), (36)
where
F=A(R,E —H,)—+iT(R,E —H,) (37)

is the nonlocal part of the potential, and | K'*’) and
G\’ are the scattering state and the Green’s function for
the local part V;(R). The scattering states (R | K‘*’) and
Green’s function G(1+)(R,R') can be calculated analytical-
ly for the Morse potential (see, e.g., Ref. 63).

Approximating the nonlocal part F by the separable ex-
pansion

N
F¥= 3 F|X)(B~H;X;|F, (38a)
iLj=1
By=W;|F|X;), (38b)

the integral equation (36) reduces to a set of linear-
algebraic equations and the corresponding T operator be-
comes®

_ N

TW= 3 F|x)(4~Y;X;|F, (39a)
ij=1

A;;=X; |(F—FG{"'F)|X;) . (39b)

The {(R |X;)} are a set of square-integrable basis func-
tions which will be specified below. In terms of the T
operator T'9 the amplitudes for dissociative attachment
and vibrational excitation are given by*®

(K Vg [0)=(K |1+ TG |v), (40)

W' | Vg, (E —Ty —Vop) ™'V, |0)
=('| VEfG(1+’(1+T‘”G(1+))V§i lv). (41)

The integral cross sections are finally given by Egs. (26)
and (23), respectively.

The only approximation involved in these expressions is
the truncation of the separable expansion (38) to a finite
number of terms. Provided we can find a suitable set of
basis functions (R | X;) which renders the expansion (38)
rapidly convergent, the truncation error can be made as
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small as desired by including a sufficient number of
terms. The obvious choice for the basis functions (R | X;)
would be the set of bound-state wave functions of the tar-
get Hamiltonian H, since matrix elements of the nonlo-
cal operator F are most conveniently evaluated in this
basis [see Egs. (18) and (19)]. A fundamental difficulty
arises, however, from the incompleteness of the set of
bound states of Hy. Owing to this incompleteness, con-
vergence of the results with the number N of basis func-
tions is slow or even impossible. A suitable complete and
orthonormal basis set is provided, however, by the Lanc-
zos basis of the Morse Hamiltonian.*®3%3! The iteratively
defined Lanczos basis functions®® can be constructed ex-
plicitly for the Morse potential and read*®>!

an! 172
Xn(2)= m
X zVH1/2 =172 2v(z) | (42)
where
z=(2/a)(2uD)'*exp[ —a(R —R,)] 43)

and y > — 7, but otherwise arbltrary The L(z) are gen-
eralized Laguerre polynomials.®

In practice we introduce the Lanczos basis of
H,=Ty+V(R), the vibrational Hamiltonian of the
discrete state. The tridiagonality of H; in the Lanczos
representation leads to a simple three-term recursion rela-
tlons for the matrix elements of G{*). All elements of
G{*) can thus be obtained from the single elemept
(Xo| GH’ | Xo), which can be calculated analytically.*®
Selecting a large but finite set of Lanczos functions of
H 1, we diagonalize the target vibrational Hamiltonian H 0
in this basis. We thus obtain an approximate eigenbasis
{(R | D)} of H, which spans the space of bound states of
H, and includes a discretized representation of the vibra-
tional continuum. This approximate eigenbasis of H| is
used to generate the separable expansion of F in Eq. (38)
and to perform the internal sum over vibrational states in
Egs. (18) and (19). The contribution of the continuum of
H | is thus included in both cases in a discretized manner.
The introduction of the complete and orthonormal Lanc-
zos basis is the essential step which allows us to obtain
fully converged cross sections for vibrational excitation
and dissociative attachment without recourse to the local
approximation. More details can be found in Ref. 48.

The Lanczos basis functions contain the parameter y
which can be adjusted to optimize the convergence of the
separable expansion (38). After a series of test calcula-
tions we have selected the values ¥ =35 for H, and y=10
for D,. H, has been diagonalized in a basis of 60 Lanc-
zos functions to generate the basis {(R |T)}. The matrix
elements of the Kolos-Wolniewicz potential ¥V,(R) with
the Lanczos functions are calculated by numerical in-
tegration. The matrix elements of the kinetic-energy
operator are given by simple analytic formulas.*®3! Con-
verged results for the cross sections were obtained using
20 of these basis functions in the separable expansion of
F. The matrix elements of FG1+ F entering Eq. (39b)

were calculated by inserting a basis between the operators
F and G\*). Forty of the basis functions (R |7) have
been used for the insertion. The calculations based on the
local approximation require a few more basis functions to
achieve convergence. This emphasizes that the present
method is especially adapted to the treatment of the nu-
clear dynamics in a nonlocal potential.

III. RESULTS

A. Comparison with experiment

We have calculated integral cross sections for vibration-
al excitation v—v’ with v=0 and v’'=1, 2, 3, and 4, as
well as the cross section for dissociative electron attach-
ment to molecules in the vibrational levels v=0, 1, and 2,
considering both H, and D,. The vibrationally elastic
electron-scattering cross section is given very accurately
by the simple adiabatic-nuclei approximation (see Sec.
IIIB) and thus does not require the application of the
more elaborate nonlocal resonance theory. We have
checked by adiabatic-nuclei calculations that the 23
background T matrix in Eq. (3), owing to its weak depen-
dence on R,* contributes negligibly to vibrational excita-
tion. It suffices, therefore, to evaluate the resonant vibra-
tional excitation cross sections given by Eq. (23). We as-
sume, furthermore, that the nonresonant symmetries 22+
2Hg, 211,,, etc., do not contribute to low-energy v1brat10na1
excitation and dissociative attachment in H,.

Figure 3 shows the calculated cross sections (solid
curve) for the first four excitation channels v'=1—4 of
H, in the (1—6)-eV energy range in comparison with the
experimental data of Ehrhardt et al.*% (crosses). For the
0—1 excitation channel [Fig. 3(a)] the agreement between
the present calculation and experiment is excellent, both
for the energy dependence of the cross section as well as
for its absolute magnitude. For the 0—2 channel [Fig.
3(b)] theory and experiment are still in agreement with
respect to the absolute size of the cross section, but the
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FIG. 3. Calculated and experimental integral vibrational ex-
citation cross sections for electron-H, scattering. Solid curve is
the result of the nonlocal resonance theory, crosses are the ex-
perimental data of Ehrhardt et al. (Refs. 4 and 69).
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theoretical profile is peaked at lower energy and is nar-
rower than found experimentally. For the 0—3 channel
the theoretical cross section is larger than the experimen-
tal one by about a factor of 2 (note, however, the small ab-
'solute value of this cross section). No experimental data
are available for the 0—4 vibrational excitation channel.
Although the vertical energy of the 22 resonance is close
to 4 eV [see Fig. 1(a)], the 0—1 and 0—2 excitation func-
tions are peaked at 3 eV. This shift results from the trivi-
al prefactor k;~2 in Eq. (23) as well as from nonlocal ef-
fects (see below). For higher inelastic channels the peak
of the excitation function shifts to the right, being close to
4 eV for the 0—4 cross section.

The present integral O—1 vibrational excitation cross
section for H, is larger and in better agreement with the
data of Ehrhardt et al.*%° than the ab initio result of
Klonover and Kaldor!! obtained in the adiabatic-nuclei
approximation using a second-order optical potential for
the e-H, interaction. This finding is consistent with the
trends observed in the fixed-nuclei limit.  As shown in I,
the more sophisticated 2ph-TDA optical potential yields a
23} eigenphase sum and cross section that are larger than
the second-order result. The present results for the 0—1
vibrational excitation channel of H, are also in good
agreement with ab initio rotational-vibrational close-
coupling calculations by Morrison and co-workers. '3

An interesting and somewhat unexpected feature of the
present results for H, is the appearance of fine structure
in the excitation functions for v > 3. This fine structure is
associated with short-lived vibrational levels of H,™
which converge to the dissociation limit at 3.725 eV. So
far the 2=} shape resonance in H, has been considered the
prototype example of an extremely short-lived resonance
where the nuclear motion can be described in the impulse
1limit.%7 The appearance of fine structure can be qualita-
tively rationalized, however, by considering the local com-
plex potential energy of H,~ shown in Fig. 1. The real
part of the local resonance potential exhibits an attractive
well which is deep enough to support many vibrational
levels. The local width I'(R), though very large at the
equilibrium geometry of H,, decreases quickly with in-
creasing internuclear distance [see Fig. 1(b)]. It follows
from the strongly anharmonic shape of the real part of
the local potential that the nuclei will spend most of the
time in the outer region, where I'(R) is small or even zero.
As a consequence, the autoionization probability is strong-
ly quenched. The importance. of this “vibration-induced
narrowing effect” has been emphasized previously.”! The
details of the fine structure depend very sensitively on the
energy and width of the resonance over a wide range of
internuclear distances. They represent, therefore, a
stringent test for the accuracy of the ab initio calculation.
The fine structure cannot be reproduced by calculations
based on the adiabatic-nuclei approximation and is possi-
bly difficult to obtain by close-coupling calculations, ow-
ing to slow convergence, as found before for the substruc-
ture of the *II, resonance in N,.”

Figure 4 shows the calculated vibrational excitation
cross sections for D,. These cross sections are smaller
than the corresponding cross sections in H, and decrease
faster with increasing v’. This result is in agreement with
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FIG. 4. Calculated integral vibrational excitation cross sec-
tions for electron-D, scattering.

the qualitative picture that the nuclear motion in D, is
more sluggish than in H, and thus cannot pick up the
same amount of momentum during the short lifetime of
the resonance. The ratio of the peak values of the calcu-
lated integral 0—1 cross sections for D, and H, is about
0.7, in agreement with earlier theoretical predictions.”?
The only experimental information we are aware of is a
measured ratio of 0.75 (0.55) for rotationally resolved

A;=2 (A;=0) transitions at 4-eV impact energy and 90°
scattermg angle.”® As in H,, we observe that the excita-
tion functions peak at higher energy and become narrower
with increasing v’. Also noteworthy is the complete ab-
sence of vibrational fine structure even for the 0—4 chan-
nel, in marked contrast to the results for H,. This differ-
ence is a consequence of the slower vibrational motion of
D,, which implies that the vibrational- narrowmg effect is
less efficient in D, than in H,.

The calculated integral cross sections for dissociative
electron attachment to H, and D, in their vibrational
ground states are shown in Fig. 5. The experimental data
of Schulz and Asundi® are included as crosses. The calcu-
lation reproduces the expected nearly vertical onset of the
cross sections at the threshold and their rapid decrease at
higher energies, although the theoretical profiles are
somewhat broader than the observed ones. The peak
values of the calculated cross sections are about 50%
larger than the experimental peak values for both H, and
D,. Considering the very small absolute magnitude of the
dissociative attachment cross sections and their sensitivity
to details of the ab initio nonlocal resonance potential,
this kind of agreement is rather satisfactory.

Since the nuclei in H, move faster, they have a higher
probability of dissociating before the short-lived 23, reso-
nance decays. Therefore, the dissociative attachment
cross section is much larger in H, than in D,. The calcu-
lated ratio of the peak values of the dissociative attach-
ment cross sections for H, and D, is 200, in excellent
agreement with the measured value of 200+20%.°

Allan and Wong’* have measured dissociative attach-
ment in H, and D, at temperatures ranging from 300 to
1600 K and have extracted cross sections for attachment
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FIG. 5. Calculated and experimental integral cross sections

for dissociative attachment in H, (a) and D, (b). Solid curve is -

the result of the nonlocal resonance theory, crosses are the ex-
perimental data of Schulz and Asundi (Ref. 6).

to rotationally and vibrationally excited molecules. A
dramatic increase of the attachment cross section with in-
creasing vibrational excitation of the target was ob-
served.”* The present results for dissociative attachment
to H, in the initial states v=0, 1, and 2 are shown in Fig.
6. To facilitate the display, the v=1 cross section has
been scaled down by a factor of 0.1, the v=2 cross section
by a factor of 0.01. It is seen that the shape of the cross
sections changes little with v. The calculated attachment
cross sections exhibit the expected increase with v, but
this increase is less pronounced than found experimental-
ly.”* Table II summarizes the calculated and observed
peak values of the cross section for dissociative attach-
ment to H, and D, in the initial states v=0, 1, and 2.

B. Accuracy of the adiabatic-nuclei
and local-complex-potential approximations

To the extent that the discrete state |;) is diabatic
and the contribution of the background negligible for in-
elastic and reactive processes, the results presented in the
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FIG. 6. Calculated cross sections for dissociative attachment
of electrons to H, in the initial vibrational level v=0, 1, and 2.
For the purpose of display, the v=1 cross section has been re-
duced by a factor of 0.1, the v=2 cross section by a factor of
0.01.

preceding subsection are based on an exact treatment of
the vibrational and dissociative dynamics beyond the
Born-Oppenheimer approximation. The nonlocal Fesh-
bach resonance theory requires, however, a considerable
computational effort to generate the ab initio input data
€4(R), T(R,E), A(R,E) and to solve for the nuclear
dynamics in the nonlocal complex potential. For this
reason the theory has so far been applied only to the sim-
plest electron-molecule-collision systems, namely e-N,,*
e-F,,%® and e-H, (this work). The same applies to the
ab initio multichannel R-matrix theory, which has so far
been applied only to vibrational excitation of N,.*> To
treat the collision of electrons with polyatomic targets,
one has to resort to computationally simpler methods
based on more crude approximations. It is certainly desir-
able to test the accuracy of these approximate methods in
cases where more accurate treatments are possible, such as
in the present case.

The simplest and most widely used approximation to
describe vibrational excitation by electron impact is the
adiabatic-nuclei approximation.’”>>7> In the context of
resonant electron-molecule scattering this approximation
is expected to be applicable for short-lived resonances.”
It is bound to fail for long-lived resonances since it cannot
reproduce the substructure of the cross sections associated
with the vibrational motion of the negative ion.”’ In its
simplest version the adiabatic-nuclei approximation for
vibrational excitation involves vibrational matrix elements
of the on-shell fixed-nuclei T matrix.>>’> In the present
case we are in the position to employ a more sophisticated
version which involves an approximate off-shell fixed-

TABLE II. Peak values of the integral dissociative attachment cross section (in A?) for H; and D, in
the vibrational states v=0, 1, and 2. Digits in parentheses indicate powers of ten.

H2 DZ
v Theor.? Expt.’ Local® Theor.? Expt.’ Local®
0 3.0(-5) 1.6(—5) 2.8(—4) 1.5(—=17) 8.0(—38) 3.2(—6)
1 5.2(—4) 5.5(—4) 2.7(-3) 3.5(—6) 3.6(—6) 4.0(—5)
2 4.3(-3) 8.0(—3) 1.5(—2) 4.3(-5) 9.0(—5) 29(—4)

*Nonlocal resonance theory, this work.
*References 6 and 74.

“Local-complex-potential approximation, this work.
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nuclei 7 matrix. We have evaluated the resonant 7" ma-
trix of Eq. (11) in the adiabatic-nuclei approximation us-
ing the appropriate off-shell amplitudes Vg, and VEf and

replacing E in the denominator by the geometric mean
(E.E;)'2

The second widely employed model to rationalize the
nuclear dynamics in resonant electron-molecule scattering
is the local-complex-potential approximation.®*>7 In
this approximation the energy-dependent and nonlocal
operator V. (R,E —H,) given by Egs. (13), (18), and (19)
is replaced by the energy-independent and local function
VoLpt(R) as explained in Sec. II A. The local approxima-
tion is expected to fail for resonances near threshold??3?
and for very broad resonances, as confirmed recently by
numerical calculations for certain simple models.’*’® The
local-complex-potential model is thus to some extent com-
plementary to the adiabatic-nuclei approximation. In
contrast to the latter, the local-complex-potential model
also permits the calculation of dissociative attachment
cross sections.

Figure 7 shows vibrational excitation functions for
v=0—1, 2, and 3 and the dissociative attachment cross
section in H, calculated in the adiabatic-nuclei approxi-
mation and the local-complex-potential approximation in
comparison with the results of the nonlocal Feshbach res-
onance theory. We discuss the adiabatic-nuclei results
first. For the resonant vibrationally elastic cross section
(not shown) the standard as well as the off-shell
adiabatic-nuclei result is indistinguishable from the nonlo-
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cal Feshbach result. This proves that the adiabatic-nuclei
approximation is sufficient to calculate the vibrationally
elastic cross section; the separation of the fixed-nuclei
23} T matrix into a resonant and a background contribu-
tion is thus unnecessary for this channel. For the inelastic
channels the standard on-shell adiabatic-nuclei theory is
less satisfactory than the off-shell version, particularly so
for large |v'—v |, as expected. The results of the off-
shell adiabatic-nuclei theory are displayed in Figs.
7(a)—7(c). This approximation is of excellent accuracy for
the v =0—1 channel; the accuracy deteriorates for the
higher channels were the exact cross sections start to
develop fine structure. Nevertheless, the overall magni-
tude of the cross sections is reliably predicted by the off-
shell adiabatic-nuclei theory, even for deeply inelastic
channels.

In contrast to the adiabatic-nuclei approximation, the
local-complex-potential model fails severely for the 22}
shape resonance in H,. The cross sections obtained using
this approximation are off by factors up to 10 and could
be included in Fig. 7 only after rescaling them by ap-
propriate factors as indicated in the figure. The cross sec-
tions obtained in the local approximation are generally
much too large, in particular for dissociative attachment.
The resonance peaks in the vibrational excitation func-
tions are too high in energy and too narrow, while the
width of the dissociative attachment profile is too large
(see- Fig. 7). The local-complex-potential model repro-
duces the vibrational fine structure seen in the v =0—3
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FIG. 7. Integral cross sections for vibrational excitation [(a)—(c)] and dissociative attachment (d) in H, calculated in the adiabatic-
nuclei approximation (solid curve with triangles) and the local-complex-potential approximation (solid curve with circles) compared to
the exact result (solid curve). For the purpose of display, the results of the local-complex-potential model have been scaled down by
factors of 0.3 [(a)—(c)] and 0.1 (d), respectively.
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and higher inelastic cross sections qualitatively, but not
quantitatively, i.e., the positions and intensities of the
fine-structure peaks are not identical to those found in the
nonlocal calculation.

The local approximation also fails to reproduce the iso-
tope effect in dissociative attachment and the dependence
of the dissociative attachment cross section on the initial
vibrational state. The local calculation yields a cross-
section ratio of 90 for dissociative attachment in H,
versus D,, compared to the nonlocal result of 200. The
dependence of the dissociative attachment cross sections
on v is less pronounced than in the nonlocal calculation
and thus not in agreement with experiment (see Table II).

In recent years several variants of the local approxima-
tion have been discussed in an attempt to overcome the
limitations of this model for resonances near threshold
and broad resonances. The earliest proposal’”””’® may be
termed the “partly local approximation.” Here only the
width T'(R,E —I-Io) is treated as a nonlocal operator,
while the corresponding level-shift A(R,E —H,) is ap-

proximated by a local function and can thus be included

by a redefinition of the discrete-state energy. The “semi-
local approximation””%® takes account of the fact that
the energy dependence of the entrance and exit amplitudes
is important to guarantee the correct threshold behavior
of the cross sections. In this approximation the resolvent
in Eq. (23) is evaluated in the local approximation, keep-
ing the exact energy-dependent entry and exit amplitudes.
Finally, Hazi et al.,? in their ab initio study of dissocia-
tive attachment in F,, have chosen to approximate the
nonlocal level-shift operator A(R,E — H,) by the local but
still energy-dependent quantity A(R,E —€), where € is a
suitable mean vibrational energy.

We have tested the performance of these variants of the
local approximation for the present case. The partly local
and semilocal models fail as badly as the standard local
model. The approximation of Hazi et al.?® yields results
for vibrational excitation which are very similar to the
adiabatic-nuclei theory (and thus acceptable), but gives a

wrong energy dependence for the dissociative attachment'

cross section. We have to conclude that a completely non-
local treatment of the nuclear dynamics in the 22 reso-
nance of H, is essential. In particular, the nonlocality of
the level-shift operator is not negligible. The complete
failure of the local approximation is a consequence of the
large width of the 23} resonance and its proximity to
threshold.

The present ab initio results demonstrate most clearly
that the empirical local complex potentials determined by
Chen and Peacher'* and by Bardsley and Wadehra'® by
fitting dissociative attachment and vibrational excitation
data within the local resonance model are meaningless.
This fact has already been indicated by the severe
discrepancies between the potentials of Refs. 14 and 16, as
pointed out by Nesbet.!” In Fig. 1 we have included the
real part of the local potential and the width I'(R) of
Bardsley and Wadehra (short-dashed lines). Both real and
imaginary parts of the empirical local potential deviate
strongly from the ab initio result at short distances, where
the 22} resonance is broad. This finding stresses the
nonuniqueness of empirical local potentials for broad res-

onances emphasized previously.’”® Our results also have
implications for the associative detachment reaction,
which is the reverse process to dissociative attachment
and thus given by the same 7T-matrix element. Associa-
tive detachment cross sections for H™H collisions have
been calculated in Refs. 20 and 21 using the local-
complex-potential model, but Bieniek??> has pointed out
inconsistencies in the results which indicate a breakdown
of the local approximation. To obtain reliable associative
detachment cross section in H™H collisions, a nonlocal
treatment appears indispensable.

IV. CONCLUSIONS

We have performed an ab initio study of resonant vi-
brational excitation and dissociative attachment in H, and
D, using the projection-operator approach. The fixed-
nuclei electron-molecule-scattering 7 matrix and eigen-
phase sum have been decomposed into a background term
and resonant term in such a manner that the background
term becomes a smooth function of energy and is weakly
dependent on the internuclear distance, all rapid varia-
tions being contained in the resonant term. The fixed-
nuclei resonance parameters €;(R), I'(R,E), and A(R,E)
of the 2=} shape resonance have been calculated for a
grid of energies and internuclear distances employing an
accurate many-body optical potential for the e-H, interac-
tion, as discussed in detail in I. These ab initio data were
interpolated and extrapolated in E and R by fitting suit-
able analytic functions. For the resulting model, fully
converged cross sections for vibrational excitation and dis-
sociative attachment were obtained. The nuclear dynami-
cal problem has been solved with the help of a rapidly
convergent separable expansion of the nonlocal part of the
effective potential for the nuclear motion in the resonance
state. The contribution of the background term to inelas-
tic and reactive processes was shown to be negligible ow-
ing to its weak dependence on the internuclear distance.
Without any adjustment of the ab initio data we obtain
cross sections which are in rather good agreement with
experiment for 0—1 and 0—2 vibrational excitation and
dissociative attachment. This calculation represents, in
particular, the first ab initio treatment of dissociative at-
tachment in H,.

The present study complements earlier ab initio calcu-
lations of vibrational excitation in N, via the 2Hg reso-
nance?***? and dissociative attachment via the 23] re-
sonance in F,,2® which are based on essentially the same
formalism as used here. For the 23] resonance in H, the
strength of the nonlocal Feshbach resonance theory is par-
ticularly apparent. The local-complex-potential model
fails completely, both for electron scattering and dissocia-
tive attachment. The off-shell adiabatic-nuclei approxi-
mation is found to be satisfactory for a qualitative
description of vibrational excitation, but does not provide
reactive cross sections such as the dissociative attachment
cross section.

An interesting feature of the calculated cross sections is
the appearance of fine structure in deeply inelastic vibra-
tional excitation channels of H,. Although the details of
this fine structure depend very sensitively on the fixed-
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nuclei resonance parameters €4, I', and A, we believe that
this prediction is correct in principle and that vibrational
fine structure should be observable in sufficiently inelastic
channels. The appearance of vibrational substructure also
indicates that the vibrational close-coupling expansion
may be slowly convergent for higher channels.
Considering the three above-mentioned electron-
molecule-scattering resonances for which accurate calcu-
lations including the nuclear dynamics have been per-
formed, a consistent picture concerning the validity of the
local-complex-potential model begins to emerge. For the
comparatively narrow 2IIg shape resonance in N, the local
approximation is of excellent accuracy, although there are
significant deviations from the nonlocal theory in the vi-
brationally elastic channel.”> For the 23 shape reso-
nance in F, the local approximation is bound to fail, since
this resonance crosses the threshold in the Franck-Condon
zone and threshold effects are not properly treated in the
local model.2%*%78 As quantitatively shown in this work,
the local approximation is also inadequate for the 22}
resonance in H, owing to the large width of this resonance
and the proximity of the threshold, which results in a
strong energy dependence of the width T'(E) and the
level-shift A(E). We have to conclude that the local-
complex-potential model for vibrational excitation and

dissociative attachment should be applied only to com-
paratively narrow resonances which do not cross the
threshold in the vicinity of the equilibrium geometry of
the target molecule.

Forthcoming more complete and more accurate calcula-
tions of vibrational excitation and dissociative attachment
in H, should include the rotational motion and should be
based on accurate fixed-nuclei ab initio data which extend
into the asymptotic region R — c0. The nonlocal 22, po-
tential employed in the present work is only of qualitative
accuracy at large internuclear distances due to the analytic
extrapolation of the ab initio data beyond R=2.75 a.u. A
presumably very accurate potential-energy function of the
23 bound state of H,™ for R > 3.0 a.u. has recently been
obtained by Senekowitsch er al.® These data may serve
as reference values for more accurate analytic parametri-
zations of the Feshbach resonance parameters in the
asymptotic region.
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