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Theory of interparticle correlations in dense, high-temperature plasmas.
V. Electric and thermal conductivities
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On the basis of the quantum-statistical formulation of electronic transport, we calculate the elec-
tric and thermal conductivities of plasmas in a wide range of densities and temperatures where it is
essential to take into account the varied degrees of electron degeneracy and local-field corrections
describing the strong Coulomb-coupling effects. The physical implications of the results are investi-

gated through comparison with other theories and experiments. For utility in the practical applica-
tions, we derive the analytic formulas parametrizing the computed results accurately for the general-
ized Coulomb logarithms appearing in those conductivities.

I. INTRODUCTION

In a recent series of publications, ' Mitake, Yan, and the
present authors developed a general theory in which the
interparticle correlations in dense, high-temperature mul-
ticomponent plasmas were formulated systematically over
a wide range of plasma parameters; various correlation
functions, the thermodynamic quantities, and the stop-
ping power against an injected charged particle were
thereby calculated. The parameter domain of interest
covered those appropriate to the inertial-confinement-
fusion experiments and the interior of the main-sequence
stars.

In this paper we wish to extend those theories and now
consider the problems of the electronic transport in such
high-density plasmas. We thus calculate the electric and
thermal conductivities of the plasmas over the same pa-
rameter domain as treated in the previous papers Plas-
mas are assumed to be fully ionized; the relativistic effects
in the electrons and the quantum-mechanical effects in
the ions are ignored.

The salient physical features which we account for in
the theory are the varied degrees of Fermi degeneracy in
the electrons and the strong Coulomb-coupling effects
described by the various local-field corrections in the
density-density response functions. We shall show that
the resulting theory is capable of describing the transport
coefficients accurately over a wide range of the density
and temperature parameters.

We begin with the quantum-statistical description of
the electrons and approach the transport problems
through consideration of their scattering in the random
potential fields produced by the ions. In Sec. II, we com-
pile the basic formulas for the electric and thermal con-
ductivities obtained in this approach. In Sec. III, the gen-
eralized Coulomb logarithms characterizing those conduc-
tivities are investigated and are explicitly calculated for
various combinations of the density and temperature pa-
rameters; analytic formulas parametrizing those numeri-
cal results are also presented. The results of the theory
are compared with those of other theories in Sec. IV, and

with experimental data in Sec. V. Derivations or a heuris-
tic account of some of the basic formulas are described in
the Appendixes. In this paper we follow the notation and
convention adopted in the previous papers, ' unless other-
wise specified.

II. ELECTRIC AND THERMAL CONDUCTIVITIES

We consider a fully ionized two-component plasma
(TCP) consisting of the electrons (mass m, =m, charge
—e, number density n, =n) and the ions (mass m; =M,
charge Ze, number density n;=n/Z). As we did in the
previous papers of this series, we define a set of dimen-
sionless parameters as

1/3
(Ze )2 47m;r=
k~T

2mk~ T0= (3' n ) (2)e

3~s=
4mn,

me 1 9~
2[4

2/3

z-'/'re .

Here S;;(k) is the static structure factor of the ions in the
TCP, defined and calculated in the previous papers, '

Rk
fo(k) = exp —a + 1

2mk~ T

is the Fermi distribution function with the normalization

These, respectively, mean the Coulomb-coupling constant
of the ions, the Fermi degeneracy parameter, and the den-
sity parameter of the electrons.

The electric resistivity p stemming from scattering of
the electronic current by the random potential fields pro-
duced by the ions is expressed as

m n;
2 v„(k)

2p=, , ', , f dk k'fo(k/2) "
S;;(k) .

1277 A e n~ ek
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n, = f dkk fp(k) (6)

which determines a =p/ke T,

u„(k) = —4m.Ze /k2 (7)

is the Fourier transform of the bare electron-ion interac-
tion, and

e(k)=1+[1—G, (k)] f dqqf (q)ln (8)
~A'k' o 2q —k

is the electronic screening function of the electron-ion in-
teractions. In Eq. (8), G, (k) represents the local-field
correction between electrons, defined and discussed in the
previous papers. A derivation of Eq. (4) is given in Ap-
pendix A.

Expressions analogous to Eq. (4) were obtained earlier

by Boercker, Rogers, and DeWitt. ' The major difference
appears to lie in the use of the Fermi distribution, Eq. (5),
and the exact ionic structure factor for the TCP in Eq. (4),
while Boercker et al. rely on a certain approximate rela-
tion between the classical dielectric functions and the ion-
ic structure factor.

In the limit of T~O, the Fermi function fp(k) becomes
a unit step function, so that Eq. (4) reduces to the Ziman
formula,

Bfp(kFx )
X fk „dxx(x —A, ) (13)

corresponding to Eq. (4) for the electric resistivity. In Eq.
(13), we define

g9/2
X=— IIs/2(a)I(n(a) ——„[I3/p(a)] I, (14)

4 I& /(2 a)

I3/2(a)
A, =—0 (15)

3 I$/2(a)

ty calculated in a single Sonine polynomial approximation
and that evaluated by a summation of infinite terms in the
Sonine polynomial expansion for Z =1. In the compar-
ison with experiments, to be carried out later in Sec. V, we
shall take account of the factor A given by Eq. (12).

We now turn to consideration of the thermal conduc-

tivity for TCP. As we show its derivation in Appendix A,
we have an expression

g i pl n)

16v 2rrX~ k~(ke T)5/ n,
2

u„(k)xf dkk S (k)

2
m n; »F

3 v„(k)
12+Re n, ek (9) I (a)= dz

exp(z —a)+ 1
(16)

where

kF ——(3 n, )'/ (10)

2kT 3e Inc
2

u„(k)
&& f dk k S;;(k)exp

0 ek
Ak

8mkg T

The exponential factor in the integrand of Eq. (11) intro-
duces a natural convergence of the integration in the
large-k domain, with an effective cutoff approximately at
the inverse of the thermal de Broglie wavelength,
A/(2mke T)'/ . The concept of large-k cutoff by such a
quantum-mechanical diffraction effect is valid for high-
temperature plasmas with ke T & (Ze ) m/2' . Other-
wise a usual classical cutoff at about the inverse of the
Landau length, Ze /ke T, is applicable.

It is well known " that the magnitude of the electric
resistivity calculated according to the classical scheme of
Eq. (11) takes on a value 1.97 times as large as the Spitzer
value' ' for Z =1, because possible deformation of the
electronic distribution function is not appropriately taken
into account in the calculation leading to Eq. (4). The
factor

3 =1.97 (12)

thus corresponds to the ratio between the electric resistivi-

In the classical limit 8»1 for the electrons, Eq. (4)
takes the expression

3/2
n;

are the Fermi integrals.
In the limit of T~O, Eq. (13) reduces to

m n; »F
3 v„(k)2 2

dk k S;;(k) .
4~gn k T p e(k)

(17)

A procedure of this derivation is described in Appendix B.
The ratio between Eqs. (9) and (17) yields the usual
Wiedemann-Frantz relation'" at 0« 1, i.e.,

2
kg T.

3 e
(18)

In the classical limit 8 »1, we find from Eq. (13)

m '~'n,

75(2') k (AT) n,
2

u„(k)
X f dk k' "

S;;(k)exp
0 ek

fi k
(19)

8mkg T

In this section and hereafter we confine ourselves to
consideration of TCP with Z = 1 for simplicity. We
rewrite Eqs. (4) and (13) as

Again we remark that the value calculated through Eq.
(19) is 1.66 times as large as the Spitzer value' ' for
Z =1, due to the fact that Eq. (13) has been obtained in
the single Sonine polynomial approximation.

~ III. GENERALIZED COULOMB LOGARITHMS
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' 1/2
2~ r'"

p=4 LE,
3 Q)p

1 52(6~) ~~2

Lp,
K 75 kg T ct)p

temperature (ktt T &me /2A' ) domains.
We have explicitly carried out numerical calculations of

Eqs. (22) and (23) for 21 parametric combinations ranging
over 0.003&I &2 at 8=0.1, 1, and 10. The functional
values of G, (k) and S;;(k) necessary for those calculations
have been obtained in the hypernetted chain (HNC)
scheme' ' developed in the previous papers' of this
series. The results of the calculations are listed in Table I.
We note that Lr /LE~ 1 in the classical limit (8 &&1) and
that Lr/LE —+75/13~ =0.5845 in the limit of complete
Fermi degeneracy (8~0).

For convenience in practical applications, we derive an-
alytic formulas which parametrize those computed re-
sults: For the generalized Coulomb logarithm in the elec-
tric resistivity, we find an expression applicable over the
domain I & 2 and 0)0. 1,

(20)

(21)

3 ~8'" -dkL (I,8)= f —f (k/2)
4 o k ~e(k) ~2

75V~ 8'" f-dkL (1,8)=
104 y' o k

&( f„,„dxx(x' —A, )'
F a (8)lnl +b (8)+c (8)I

1+d(8)r' (32)
dfp(kpx )

X (23)
where

where co& (4~——ne /m)' . We shall call LE and Lr the
generalized Coulomb logarithms, which are defined and
calculated according to

k
~

e(k)
~

2 Smks T (24)

Assuming the weak-coupling cases I «1, we may substi-
tute the Debye-Huckel formulas'

k +k
S;;(k)=

k +2k

kae(k)= 1+
k

(25)

(26)

In the classical limit 0))1, both LE and Lz- approach
the same expression:

g3/2
a(8)=

20 —0.S79 238+0.232 720' + 1.4853

8 ( —,ln8 —0. 18603)+ 1.27048
b(8)=

t9 +1.89938 +4.3243t9+1

3gp 0.694 608' +0.242 28c 8=8
0 +1.7768

3~2 0. 135 508' +0.083 521
0 +0.36797

(33)

For the generalized Coulomb logarithm in the thermal
conductivity, we obtain again for I & 2 and 0)0. 1

in Eq. (24), to find

Lp ——exp(g)E~(g) ——,exp(g/2)E~(g/2) .

Here

(27)
TABLE I. The generalized Coulomb logarithms LE and Lz-

for the electric and thermal conductivities defined by Eqs. (22)
and (23).

ka ——4wne /k~T, (28) LE Lp Lz-/LF

and

A'kD 3 4
4mkg T 2 9a

2/3

(29)

~ dtE((x)=f —exp( t)— (30)

+O(g, g 1ng), (31)

where @=0.57721. . . is Euler's constant. The leading
terms in this expansion were obtained by Kivelson and
DuBois' with the aid of the quantum-mechanical version
of the Lenard-Balescu-Guernsey equation; those terms
were used later by Williams and DeWitt' to construct a
connecting formula for the Coulomb logarithm between
the high-temperature ( kz T & me /2A' ) and the low-

is the exponential integral. Since g«1, we may expand
Eq. (27) as

L p ————,
'

In/ ——,
' (y+ ln2) —

4 g(in/ —1+y+ —,
' ln2)

10
10
10
10
10
10
10

1

1

1

1

1

1

1

1

1

0.1

0.1

0.1

0.1

0.1

0.003
0.01
0.03
0.1

0.2
0.5
1

0.01
0.03
0.05
0.1

0.2
0.3
0.5
0.7
1

0.03
0.1

0.3
1

2

3.893
3.255
2.700
2.143
1.852
1.530
1.354
1.599
1.249
1.094
0.8940
0.7123
0.6180
0.5145
0.4566
0.4045
0.097 63
0.073 29
0.052 84
0.034 55
0.026 81

3 ~ 591
2.954
2.402
1.850
1.563
1.249
1.076
1.391
1.048
0.8985
0.7083
0.5402
0.4551
0.3639
0.3140
0.2700
0.062 98
0.046 80
0.033 26
0.021 26
0.01623

0.9224
0.9075
0.8896
0.8633
0.8440
0.8163
0.7947
0.8699
0.8391
0.8213
0.7923
0.7584
0.7364
0.7073
0.6877
0.6675
0.6451
0.6386
0.6294
0.6153
0.6054
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where

p (8)lnI +q (8)+r (8)I
1+s(8)I

g3/2
p(8)=

2g / +0.0292 200—1.46610'/ +2.6858

(34)

Present BHS BRD MD

TABLE II. Values of o.* calculated in various schemes at
r, =0.4. "Present" uses Eq. (32) in place of L in Eq. (39); BHS,
Eq. (36); BRD, Eq. (37); and MD refers to the molecular-
dynamics values obtained by Hansen and McDonald (Ref. 21).

8 ( —,ln8 —0.18603)—0.987878 +0.874228
q(8) =

0 +4.93120 +8+1
(35)

3y2 0.636 078 +0.033 439
8 —0.361 860+ 1

3g2 0.031 8568 +0.42460
s 8=8 0' —0.299 330+0.5
Those fitting formulas reproduce all the computed values
in Table I with digressions of less than 2% for LE and
1% for LT.

The analytic forms of those formulas retain the follow-
ing features.

(i) In the classical (8»1) and weak-coupling (I"«1)
limit, Eqs. (32) and (34) reproduce the first two terms on
the right-hand side of Eq. (31).

(ii) In the limit of complete Fermi degeneracy (8~0),
LF and LT behave proportionally to 8, as Eq. (22) il-
lustrates.

(iii) In the strong-coupling regime (I »1), both Eq.
(32) and Eq. (34) take forms proportional to I" . This is
a consequence of the ion-sphere scaling in the interparticle
correlations for a strong-coupling plasma; a heuristic ac-
count of this effect is given in Appendix C.

IV. COMPARISON %'ITH OTHER THEORIES

The electric conductivity of a strongly coupled hydro-
gen plasma has been investigated recently by a number of
authors.

Baus, Hansen, and Sjogren (BHS) treated the
electron-ion plasma as a classical system of pseudoparti-
cles interacting by those effective pair potentials which
simulate quantum diffraction effects at short distances.
Starting with a memory-function formalism coupled with

the Green-Kubo-formula, they obtained an approximate
expression for the generalized Coulomb logarithm as

dk [S„(k)S;;(k)—S„(k)]
~BHS z

(36)
(1+Pi k l2~mkgT)

The static structure factors, S„(k), S;;(k), and S„(k),
were determined by solving the HNC equations for the
system of pseudoparticles. As they noted, the weak-
coupling (Debye-Huckel) limit of Eq. (36) differs slightly
from Eq. (31).

On the basis of the quantum kinetic theory for the
current-current correlation functions, Boercker, Rogers,
and DeWitt ' (BRD) obtained an expression similar to
Eq. (4). In the classical strong-coupling regime they thus
proposed a generalized Coulomb logarithm in the form

LgR = D— dk k Si'I(k)exp
4~e

~

go(k)
~

8mkg T

0.05
0.1

0.2
0.5
1.0
2.0

4.34
2.17
1.09
0.434
0.217
0.109

14.97
7.95
4.97
3.86
3.85
3.99

14.18
7.13
3.99
2.30
1.87

16.2
8.61
5.33
4.13
5.29

12.3

3.6

where eo(k) is the classical limit of Eq. (8),

u„.(k) = —k~ Tc„(k), (38)

and c„(k) refers to the Fourier transform of the direct
correlation function between the electrons and the ions.
The functions, S;;(k), u„-(k) and eo(k), in Eq. (37) were
then determined in the HNC scheme. In the weak-
coupling limit, u„(k) approaches v„(k), so that Eq. (37)
reproduces Eq. (31).

In Tables II and III, we compare the values of a nor-
rnalized electric conductivity

1/2

o.* 1 93
2

(39)

TABLE III. Same as Table II, but with r, = 1.0.

Present BHS 8RD MD

0.05
0.1

0.2
0.5
1.0
2.0

10.9
5.43
2.72
1.09
0.543
0,272

12.00
5.90
3.19
1.74
1.47
1.56

11.72
5.57
2.87
1.43
0.99
0.82

12.7
6.16
3.36
2.07
2.13
3.72

2.15

calculated in various theories at r, =0.4 and 1.0. For the
present work, we take L =LE, Eq. (22) or (32); for BHS,
L =L aHs Eq (36); and for BRD, L =LBaD, Eq. (37).
%'e also list the values obtained in the molecular dynamics
(MD) simulation carried out by Hansen and McDonald. '

The particular choice of the form, Eq. (39), follows the
example set by BHS (Ref. 20) and BRD.

We remark at this stage that the calculation scheme of
BHS, BRD, or even MD cannot in principle predict a
correct value of the electric conductivity for 8 & 1 because
the classical statistics is used for the electrons. When the
effect of Fermi degeneracy is weak (8& 1), however, we
find that the values listed in Tables II and III show fairly
good agreement with each other.

The electric and thermal conductivities of dense plas-
mas with strong Coulomb coupling (for the ions) and with
strong Fermi degeneracy (for the electrons) have been
studied by Minoo, Deutsch, and Hansen (MDH), ' by Itoh
et al. , and by Ichimaru and Iyetomi, on the basis of Zi-
man formulas as given by Eqs. (9) and (17). In Figs. 1—3,
we compare the present results, Eqs. (20) and (21) with

Eqs. (32) and (34) extrapolated into the small-8 domain,
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FIG. 1. Comparison of the electronic transport coefficients
of hydrogen plasmas at T=10' K. Above, the thermal conduc-
tivity a: curve refers to the present result based on Eqs. (21),
(34), and (35); solid squares, MDH (Ref. 19). Below, the electric
conductivity o.=1/p: curve is our result based on Eqs. (20),
(32), and (33); solid circles, MDH (Ref. 19).

In a remarkable experiment, Ivanov, Mintsev, Fortov,
and Dremin measured the Coulomb conductivity of
nonideal plasmas which were produced by a dynamic
method based on compression and irreversible heating of
gases in the front of high-power ionizing shock waves.
Gases used were argon, xenon, neon, and air; those were
regarded as forming singly ionized ( Z = 1) plasmas.
Each of the experimental values cr,„p, for the Coulomb
conductivity listed in Table IV derives from an average of
five to ten independent measurements and is attached to a
10—50%%uo error bar.

with those of MDH. ' As one would expect, a good
agreement is observed for 0 (0.3, say.

We have thus shown that the parametrization expressed
by Eqs. (32)—(35) is capable of describing accurately the
electric and thermal conductivities of TCP with Z= 1

over a wide range of the plasma parameters.

V. COMPARISON WITH EXPERIMENT

pl'
to to to p to

{cm-')

FIG. 3. The electronic transport coefficients at T=10 K;
otherwise the same as in Fig. 1 ~

8|

We compare those experimental values with the
theoretical predictions of Sec. III. Since the classical
statistics applies to the electrons for all the cases of the
experiment, we take account of the factor, Eq. (12), and
write

' 1/2

o.= 1.97
3m

2

COp

4~I ~ I. (40)

I ~expt ~theor l ~~expt (41)

When LE given by eq. (32) is substituted in place of L, we
denote the resulting value of Eq. (40) as o,h„,. When the
first two terms on the right-hand side of Eq. (31) are used
for L in Eq. (40), the resulting value of o is called cro In.
Table IV, the calculated values of o,h„, and o.o are listed.

In the weak-coupling domain I & 1, we find that o.,„p, is
fairly well represented by o.o, except for the second and
the third cases of the Ar experiments in Table IV. In the
four strong-coupling cases (I &1) of Xe, however, cro

shows a large departure from cr,„p„which increases sys-
tematically with I .

In the comparison between o.„p, and o-,h, „such a sys-
tematic discrepancy is completely erased, and we now find
that the values of

(wm'K
1

I". 0.1~0

top to t(I

FIG. 2. The electronic transport
otherwise the same as in Fig. 1.

10jo

10'

10
0

(Cr. 'cm-')
10

-1O'
I

tet p, tet
(cm-&)

coefficients at T=10 K;

are confined within 0.31 for all the 15 cases of the experi-
ment. In view of the large error bars associated with the
experimental data, we find such an overall agreement to
be rather remarkable. We wish to emphasize in this con-
nection that the generalized Coulomb logarithms are
functions of two parameters I" and 8, rather than of a sin-
gle parameter I", even for those plasmas where the elec-
trons may obey the classical statistics.
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TABLE IV. Experimental values a.„~, of the electric conductivity for Ar, Xe, Ne, and air plasmas
measured by Ivanov et al. (Ref. 23) and the theoretical predictions o,h„, and o.o based on Eq. (40).

Gas

Ar

T
(10 K)

22.2
20.3
19.3
19.0
17.8

ne

(cm )

2.8X 1O"
5.5X 1O"
8.1X 1O"
1.4X 10"
1.7 X 10&'

0.368
0.505
0.604
0.736
0.838

56.9
33.2
24.4
16.7
13.7

expt
(0 'cm ')

190
155
170
255
245

O theor

(Q 'cm '}

200
203
209
234
232

o.o
(0 ' cm ')

218
231
246
290
301

Xe 30.1

27.5
27.0
26.1

25.1

24.6
22.7

2.5 X 10"
5.9X 10
7.9 X 10"
1.4X 10"
].6X 10 '

2.0X10"
2.0X 10"

0.564
0.822
0.922
1.15
1.26
1.38
1.50

17.9
9.24
7.47
4.93
4.34
3.66
3.38

450
680
740
690
780

1040
930

442
506
546
657
660
728
694

518
680
789

1204
1389
1957
2352

Ne 19.8
19.6

1.1 X 10'
1.9 X 10'

0.303
0.367

94.6
65.0

130
165

148
160

158
175

Air 11.0 1.3 X 10' 0.267 218 60 53.1 56.0

H =2+ asap2m

—eg g f P, (k,co)g'(p, —k)exp( icot), —dt's

2&
(A2)

g(p, k) =2a pap+~ (A3)

is the electron-hole pair operator. The Heisenberg equa-
tion of motion for this operator reads
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APPENDIX A: QUANTUM-MECHANICAL
TRANSPORT EQUATIONS FOR ELECTRONS

We consider the kinetic equation for the electrons in
random potential fields P, (r, t). Let az and a~ be the
creation and annihilation operators for an electron in a
plane-wave state with momentum p. The spin indices are
suppressed for simplicity and we shall take account of
spin dependence only through its degree of freedom 2.
We shall be working on physical quantities Fourier-
transformed in space and time, so that

P, (r, t) =& f "
P, (k, co)exp[i(k r —cot)j, (Al)

k

where we adopt the periodic boundary conditions ap-
propriate to a cube of unit volume in the spatial Fourier
transformation.

The Hamiltonian for the electron system is written as

Pp q)

s~ =p /2m

I A, B I =AB+BA,

(A5)

(A6)

and we have introduced a difference operator h~ in the
momentum space, so that in general

~"f(p)=—[f(p+&k) —f(p)l . (A7)

We now transform Eq. (A4) into the transport equa-
tions of our interest. To do so we take a statistical aver-
age, denoted by ( ), of this equation. For the potential
field, we assume

y, (k, ) = (y, (k, ) )+y(k, )

. k
=21Ti

p
E5$05(co)+y(k, co) (A8)

so that a uniform dc electric field E is applied to the sys-
tem; P(k, co) then represents the fluctuating internal poten-
tial fields produced by the electrons and ions. We also
note that the Wigner distribution F(r,p) is given by

(Fr, )p=g(g(p, q) )e px(iq r) .
q

(A9)

We are concerned with the analyses of the transport
processes in the presence of the dc electric field E or the
weak temperature gradient c)T/dr. The Wigner distribu-

=(&~qE~ )g(p, q)

+ —g f b,@I'(p,q —k), $,(k, co)I exp( —icot) .
2k 2m

(A4)

Here
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tion in these circumstances can be calculated by con-
sideration of contributions only from the vicinity of q=O
in Eq. (A4); we thus find

2= 2 Cp
Fp(p )=

3 exp —ct +1
(2M)

(A18)

BF(r,p) E BF(r,p)
Bp Br

+'
Bp

X exp( icot) .— (A 10)

Introducing the Fourier components of the electron densi-
ty fluctuations in the phase space through

5N(k, co;p) =f dt g(p, k)exp(icot),

we obtain the transport equation,

BF(r,p) p BF(r,p) BF(r,p)
Bt m Br Bp

=ie f 3 f dcob~(5NQ*(k, co;p)), (A12)
(2n. )

is the Fermi distribution at a finite temperature. Al-
though we have suppressed the spatial coordinates r on
the right-hand side of Eq. {A17), we take T and cc

( =ij, /ks T) in Eq. (A18) to be functions of r in the calcu-
lation of the thermal conductivity, when Eq. (A17) is sub-
stituted on the left-hand side of Eq. (A16).

For the calculation of the electric resistivity we set
B/Bt=O, B/Br=0, and F(r,p)=Fp(p ) on the left-hand
side of Eq. (A16). Correspondingly we substitute a dis-
placed Fermi distribution F(r,p) =Fp(

~ p —mu
~

) on its
right-hand side, so that the electric current density is
given by

I= —n, eu . (A19)

We intend to solve Eq. (A16) for p=E/J in the limit of
both E and J approach zero.

We thus multiply both sides of Eq. (A16) by p and car-
ry out integration with respect to p. Performing partial
integrations by noting

where {5NP*(k,co;p) ) is a spectral function defined via'

(5N(k, co;p)P( —k, co') ) =(2n ) {5NP'(k, co;p) )5(co+co') .

The right-hand side of Eq. (A12) can be expressed in
terms of the spectral function {

~ P ~
(k,co)) of the poten-

tial fluctuations, as we note that a linear-response solution
to Eq. (A4) at q=k (&0) is given by

(r, p)
5N (k,co;p) = eP(k, co), (A14)

cu —co&~+ i g

where F(r, p) = {g'(p,O) ),

~~[f(p)g (p)] =f(p)&@(p)+g(p)&g(p)

+&l+"(p)]l:~@(p)]

f dp bg(p) =0,
we find

1p= lim
u~p (eneQ)

)& f fdcok. u(
~ P ~

(k, co))ImXp(k, co),
(2m )

(A20)

(A21)

{A22)

conj, ——ApE~ =(k p/m)+(A'k /2m), {A15) where

and g in the denominator of Eq. (A14) represents a posi-
tive infinitesimal ensuring a causal electron-density re-
sponse against a potential fluctuation. Equation (A12) fi-
nally reduces to

co=co —k U,

Xp(k, co)= —fdp . &Qp(p ) .
67 —CO&g+ L 'g

(A24)

BF(r,p) p BF(r,p) E BF(r,p)
Bt m Br Bp

f dk f d gk ~/(rp)
(2~) co —co&k+1'ti

We now assume that m, «m; and that the spectrum
(

~ P ~
(k, co) ) of the random potential fields is produced

by the ions with the structure factor S;;(k). Taking ac-
count of the screening action of the electrons via Eqs. (7)
and (8), we express

X{
~

P'~ (k, co)) . (A16)
v„(k){

~

P'~ (k,co)) =n; "
S;;(k)5(co) . (A25)

F(r, p)=Fp(p )+F((p),
where

(A17)

The electric resistivity p and the thermal conductivity ~
due to the electronic transport can be calculated by a solu-
tion to Eq. (A16) under specific boundary conditions. For
this purpose we set the Wigner distribution F(r,p) as a
summation of an unperturbed distribution Fp(p ) and a
perturbation F&(p) arising from the presence of the elec-
tric field or the temperature gradient:

We also note in the low-frequency limit

'2'
&mXp(kco) ~, 2~ m——Fp

Ak

k 2
(A26)

Substitution of Eqs. (A25) and (A26) into Eq. (A22) yields
Eq. (4).

For the calculation of the thermal conductivity we as-
sume T and a are functions of r and substitute the Fermi
distribution, Eq. (A18), into the left-hand side of Eq.
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2
P= fdp Fo(p ) (A27)

(A16); the first term vanishes because we assume B/Bt =0.
Since the pressure

to the terms on the right-hand side of Eq. (B2), where
8(a —z) refers to the unit step function.

Keeping the first two leading contributions with respect
to 0, we obtain

should be kept uniform (independent of r), we have a rela-
tion

2

8 e(a —y /48)+O(e ) .
6 (B4)

Ba 5 I3/z(a) iMnT

Br 3 Ii/p(a) Br
(A28) Since X~m. 8 /6, we have Eq. (17) in the limit of 8~0.

where I„(a) are the Fermi integrals, Eq. (16).
In the right-hand side of Eq. (A16} we substitute Eq.

(A17) with

3m' p' (2m)' ~Fo(P'}
Fi(p)=

2~(irikF) X (A'k }

(A29)

APPENDIX C: COULOMB COLLISION
IN STRONGLY COUPLED PLASMA

We consider collisions between two charged particles
(Ze) in a one-component plasma; their reduced mass and
relative velocity are p and u in the center-of-mass system.
The relation between the scattering angle X and the im-
pact parameter b is

where Eqs. (10), (14), and (15) have been used. We note
that Eq. (A29) satisfies

f dpFi(p)=0, (A30)

f dppFi(p)=0, (A31)

xcot
2

bPU

(Ze)

and the cross section for the momentum transfer is'

(Cl)

dp s~ F, (p) =qT,P
~m (A32)

so that qT represents the thermal energy flux transported
by the electrons.

We thus set

Q = f (1—cosX)

T

=4m ln
(Ze)

PU

(Ze)
2pu sin (X/2)

1

sin(X;„/2)

'2

2& Sly dg

(C2)

BTqT= —K
Br

(A33)

and solve Eq. (A16) for i~. To do so we multiply both
sides of Eq. (A16) by pI[p /(fikF) ]—A, I and carry out
the p integration. The third term on the left-hand side
then produces an integral proportional to the left-hand
side of Eq. (A31) and hence it vanishes. Assuming Eq.
(A25) again, we finally obtain Eq. (13).

APPENDIX B: THERMAL CONDUCTIVITY
IN THE LIMIT OF COMPLETE FERMI DEGENERACY

Here we have written the lower limit of the 7 integration
as 7;„,to avoid a logarithmic divergence.

When the plasma is weakly coupled (1 ~&1), one takes
to be that corresponding to b =kD ', so that

in[1/sin(X;„/2)] scales as -ln(1/I ), the usual classical
Coulomb logarithm for a weakly coupled plasma. '

When the plasma is strongly coupled (I' & 1), the inter-
particle correlations begin to scale as the Wigner-Seitz (or
the ion-sphere) radius

We begin with the expression for the thermal conduc-
tivity, Eq. (13). We define

a =(3/4mn)' (C3),

I "
dxx(x A)

"P( '/8 — )
"/~"F [exp(x /8 —a)+1]

Setting y =k/kz and z =x /8, we find after a partial in-

tegration

and one can assume that the range of the electrostatic po-
tential of the charged particle Ze is confined within a dis-
tance a~a, where o;& is a correction factor of the order of
unity. We thus take X;„ in Eq. (C2) to be that corre-
sponding to b =aia, to find

I=-g y2

2 4

2
1

exp(y'/48 —a) + 1 Q =2m i ln 1+(Ze)
PU

'2
CX )QPU

Z 2g 2 (C4)

+8, dz(ez —A)
y'/4e exp(z —a)+ 1

(B2)

We apply the Sommerfeld expansion

1 vr d=B(a—z) — 5(z —a) +O(a )
4

exp(z —a)+ 1 6 dz

(B3)

Since I & 1, we may estimate a~apu /Z e ~ 1 for a ma-
jority of the plasma particles. Retaining only the first
term after expanding the logarithmic term in Eq. (C4), we
find that the Coulomb logarithm now scales as -I, a
finding consistent with Eqs. (32) and (34). The cross sec-
tion, Eq. (C4), becomes -2m.(a&a), a value close to the
geometrical cross section between the ion spheres, 4ma .
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