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Theary of interparticle correlations in dense, high-temperature plasmas.
III. Thermodynamic functions
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On the basis of the general formalism and the analysis of the correlation functions presented in
the preceding two papers (I and II), we calculate in this paper (III) various thermodynamic functions
with explicit inclusion of the varied degrees of the electron degeneracy and the local-field corrections
describing the strong Coulomb-coupling effects. The physical implications of the computed results
are investigated through comparison with other model calculations. Mindful of practical applica-
tions of the present theory, we derive the analytic interpolation formulas parametrizing the comput-
ed results accurately for the thermodynamic functions.

I. INTRODUCTION

In the first paper in this series, ' referred to as paper I,
we presented a general formalism for the analysis of inter-
particle correlations in dense, high-temperature plasmas.
The formalism was applied to explicit calculation and in-
vestigation of correlation functions in the preceding pa-
per, referred to as paper II. In the present paper (paper
III in the series), we calculate various thermodynamic
functions, investigate their physical implications through
comparison with other model calculations, and derive the
analytic interpolation formulas which may be of use in
practical applications.

For definiteness in the numerical analysis, we confine
ourselves to consideration of two-component hydrogenic
plasmas, where Z= 1. The parameter domain of interest
has been specified in connection with Fig. 1 in paper I,
whose notation we follow here unless otherwise specified.

The thermodynamic properties of dense plasmas have
been considered by various investigators in the past.
Except for the molecular-dynamics simulation work of
Hansen and McDonald, where the plasma is modeled as
a classical system of interacting pseudoparticles, those au-
thors treated parameter domains where it was not neces-
sary to take account of varied degrees of the electron de-
generacy ' or the local-field corrections ' (LFC's)
describing the correlation effects beyond the random-
phase approximation (RPA). The present paper aims at
elucidating the effects of both the electron degeneracy and
the LFC's on the thermodynamic functions through a for-
malism with a reliable accuracy.

II. INTERACTION ENERGY Y

In paper II (Ref. 2) we, have evaluated the static-
structure factors S»(k), S22(k), and S~2(k) for combina-
tions of the electron-d. egeneracy parameter 0=0.l, l, and
10 and the Coulomb-coupling constant I (2. %'ith the
knowledge of those static-structure factors, the interaction
energy E;„,of the hydrogen plasma is calculated as"

Ei t E11+E22 +E12

l e

xkBT 4~2kBT k2- 11dk [Sti(k) —11,
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Xk~T 4~'k T
d k [S22(k) —1],
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%kg T 4~2kB T k2J dk S,2(k) .
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Here X refers to the total number of the electrons or the
ions, Ez„(p,v=1,2) denotes the partial contribution to
the total interaction energy arising from correlations be-
tween the p- and v-species particles.

In Tables I—III we list the numerical results of the
computations with and without inclusion of the LFC's for
32 parametric combinations of 0 and I . Since I, 6t, and
the electron-density parameter r, are related via

I 8=2(4/9~) r, ,

a large I implies strong Coulomb coupling, not only in
the ion system, but also in the electron system at a rela-
tively high temperature 8)0.1, for instance. The com-
puted results in those tables show that the Coulomb-
coupling effects represented by the LFC's become signifi-
cant even at a relatively modest value of I =l.

It is instructive to note the behaviors of E~~/Xk~T and
Ez2/Xk~T in the small-I domain. While the ionic in-
teraction energy behaves according to the Debye-Huckel
prediction -I, the electronic counterpart varies pro-
portionally to I; the latter shows dominance of the
Hartree-Fock (HF) exchange energy. Owing to these dif-
ferent behaviors, a crossover in the relative magnitude be-
tween E~ ~/Xkz T and E22/Xkts T takes place at a certain
I" value; with LFC this I value is observed in the vicinity
of 0.5 and in RPA it takes on a somewhat reduced value.

The onset of ion-electron decoupling brought about by
the electron degeneracy is apparent in Tables I—III. At
0= 10, the electrons may be regarded as classical particles;
the, interaction energy between ions and electrons takes on
a magnitude greater than the interionic or interelectronic
energies (

~
E,2 ~

)
~
E&i

~

=
~
Ezz

~

). At 8=0.1, on the
other hand, the electrons are almost completely degenerate
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TABLE I, Partial contributions to the total interaction energy at 0=0.1 obtained from Eqs. (2). LFC and RPA refer to the com-

putations with and without inclusion of LFC s, respectively.

—Eii/NkgT
LFC RPA

—E22/Nkg T
LFC RPA

—Ei2/Nkg T
LFC RPA

0.03
0.05
0.1

0.2
0.3
0.5
0.7
1

2

1.3212X 10
2.2072 x10-'
4.4336X10 '
8.9201 X 10
1.3437 X 10
2.2528 X 10
3.1662 X 10
4.5387 X 10
9.0861x 10-

1.3213X 10
2.2077 x10-'
4.4373 X 10
8.9427 X 10-'
1.3500x10-'
2.2750 X 10-'
3.2162 X 10
4.6553 X 10
9.6573 X 10-'

4.1208 X 10
8.7419X 10
2.3877X 10-'
6.3411X 10
1.1030X10
2.1654X 10
3.3252 X 10
5.1668X 10
1.1638

4.1993X 10-'
9.0363X10 '
2.5565 X 10-'
7.2345 X 10
1.3297 X 10
2.8637 X 10
4.7480 X 10
8.1171X 10
2.3042

1.1705 X 10-'
2.4741 X 10-'
6.7859 X 10
1.8468 X 10
3.3079X 10
6.8904 X 10-'
1.1193X 10
1.8799X 10
5.2971 X 10

$.1692X 10
2.4685 X 10
6.7446 x 10-'
1.8177x 10-'
3.2197X10 '
6.5454 X 10
1.0365 X 10
1.6744 X 10
4.1470X 10

The Helmholtz free energy of the system is

F=Fo+Fp, (4)

where Fo is a sum of the free energies of the ideal-gas
electron system and the ideal-gas ion system. The excess
free energy F,„ is calculated according to'

F,„F,„(I ) r 1 E,„,+ dI-
Nk T Nk T s ro I Nk T

(5)

and the ion-electron coupling is much depressed.
The observation mentioned above offers another justifi-

cation for the use of Eq. (I.36) or Eq. (I.44c) [in paper I
(Ref. 1)] in the present dense-plasma problem. As we
have remarked in connection with Fig. 1 in paper I, the
regime A (8& 10) coincides with that of weak-Coulomb
coupling (I (0.1); here the RPA gives an accurate
description of the correlation effects. Hence we may legi-
timately use Eq. (I.36), although

~
E~q

~
may be larger

than
~

E~~
~

and
~
E2z ~. As the value of 8 decreases, the

electron degeneracy acts to lessen the effects of G&z(k)
and Gz&(k); Eq. (I.44c) may thus be used with a good ac-
curacy.

III. FREE ENERGY

the excess free energy per ion-electron pair f,„ is likewise
expressed as a sum of the partial contributions:

fex =f1 1 +f22+f12 (6)

dk dq 4vre'

Nkz T nk~ T (2') (2m)
~

k —q ~

xfo(k)fo(q)

The two-component Debye-Hiickel (TCDH) theory
predicts that f~ t

——f22
———I /v 6 and

fi2 ———(2/V 6)I
Figures 1—4 exhibit the excess free energies at 0=1 cal-

culated according to Eq. (5) where the values of the in-
teraction energies listed in Table II are used. Since the in-
tegration from I o

——0 to any I in Eq. (5) can be explicitly
carried out in the RPA scheme, we have evaluated the in-
tegrations pertaining to the free energies in the LFC
scheme by Simpson's method, choosing the smallest I
value for each 0 as I z and the corresponding RPA value
as F,„(I0).

Figure 1 shows the contribution of the electron-electron
interaction f~& divided by I . In the limit of I ~0, both
the LFC and RPA values approach the HF value, ' "

where
~ s means that 8 be kept constant. As in Eq. (1), Here fo(k) is the Fermi distribution

—Ei) /Nkg T
LFC RPA

TABLE II. The same as Table I at 0= 1.

—E22/Nkg T
LFC RPA

—E)2/Nkg T
LFC RPA

0.01
0.03
0.05
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2.1220X 10
7.1118X 10
1.2626X10 '
2.7730X 10-'
6.0809X10 '
9.5384X10 2

1.3008 X 10-'
1.6409 X 10
1.9686X 10
2.2792 X 10-'
2.5691 X 10-'
2.8351 X 10
3.0743 X10-'

2.1230X 10—'
7.1308X 10
1.2700 X 10-'
2.8178X 10
6.3362 X 10
1.0225 X 10
I 4378X 10
1.8738 X 10
2.3269 X 10-'
2.7946 X 10-'
3.2750 X 10
3.7667 X 10
4.2686 X 10-'

6.4243 X 10-4
3;2854X 10
6.9479 X 10
1.8823 X 10
4.9178X 10-'
8.4157X 10
1.2144 X 10
1.5981 X 10
1.9847 X 10-'
2.3690X 10
2.7466 X 10
3.1141X 10
3.4686 X 10

6.4699 X 10-4
3.3635 X 10-'
7.2413 X 10
2.0510X10 2

5.8157X10 2

1.0709 X 10-'
1.6523 X 10-'
2.3138X 10
3.0475 X 10-'
3.8473 X 10-'
4.7088 X 10
5.6282 X 10
6.6026 X 10—'

9.8272 X 10-4
4.9591X 10-'
1.0474 X 10
2.8742X10 '
7.8655 X 10
1.4203 X 10-'
2.1670X 10
3.0167X 10
3.9644 X 10
5.0077 X 10
6.1458 X 10-'
7.3788 X 10
8 7080X 10

9.8237 X 10
4.9498x 10-
1.0432 X 1Q

—~

2.8434 X 10
7.6479 X 10
1.3539x 10-'
2.0223 X 10
2.7538 X 10
3.5378 X 10-'
4.3670 X 10-'
5.2356 X 10-'
6.1393X 10-'
7.0747 x 10-'
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—El i/Nkgg T
LFC RPA

TABLE III. The same as Table I at 0= 10.

—E22/Nkg T
LFC RPA

—E)2/Nk g T
LFC RPA

0.003
0.005
0.01
0.03
0.05
0.07
0.1

0.2
0.5
1

1.5609 X 10
3.0669 X 10
7.8141X 10-4
3.5471 X 10-'
7.1941X 10
1.1433X 10
1.8587 X 10-'
4.6441 X 10-'
1.3744 X 10-'
2.4459 X 10-'

1.5616X 10
3.0698 X 10
7.8347 X 10
3.5898 X 10-'
7.3632 X 10-'
1.1845 X 10-'
1.9630X 10
5.2424X10-'
,1.9087 X 10-'
5.0141X 10

1.0054 X 10-4
2.1616X 10-'
6.0920 X 10
3.1112X 10
6.5700 X 10-'
1.0680 X 10-'
1.7735X10 2

4.6011X10 '
1.4640 X 10
3.0455 X 10-'

1.0148X 10-4
2.1732X 10
6.1375X 10
3.1891X 10-'
6.8627 X 10-'
1.1370X 10-'
1.9417X 10.-'
5.4950 X 10
2.1755X 10
6.1681X 10

1.9796X 10-4
4.2504 X 10
1.1965X 10-'
6.1491X 10
1.3147X10 ~

2.1685 X 10-'
3.6875X10 '
1.0394X 10
4.2070 X 10-'
1.2773

1.9795 X 10-'
4.2498 X 10
1.1960X 10
6.1368X 10-'
1.3091X 10
2.1536X 10
3.6455X10 '
1.0091 X 10-'
3.8270 X 10-'
1.0153

fp(k)=
exp[( ek —pp) /ka T]+ 1 'II~(y) = 9m

4

1/3 18
my

with ek ——A' k /2m, where the Fermi level pp is deter-
mined from the normalization condition X f dxxf, (k,x)

n k—= f dk fp(k) .
2 ~ 2~' (9)

Xln
(2m.18) +(y +2xy)
(2~18) +(y 2xy)2—

Numerical values pertaining to the integrals in Eqs. (7)
and (9) are tabulated in the Appendix. We find in Fig. 1

that the TCDH model deviates widely from the present
result (LFC or RPA) because it fails to account for the ex-
change effect.

The contribution to the free energy of the electron gas,
stemming from the summation of the ring diagrams, is
given by '"

Nkg T f dyy [in[1+%((y)]—%((y)J, (10)

where

0
11

I

—0.1

—0.2

—03-

—0.4—
TCDH

and kF ——(3m n)' . The sum of Eqs. (7) and (10) is also
plotted in Fig. 1 as HF+ RINCr. The difference between
this evaluation and the RPA result reflects the influence
of the ion system upon the electron-electron correlations.

The ion-ion excess free energy f22 divided by I ~ is
plotted in Fig. 2. The LFC result deviates remarkably
from the RPA result, indicating significant involvement
of the non-RPA Coulomb-coupling effects. For compar-
ison we have also plotted the free-energy values in the
one-component Debye-Hiickel (OCDH) model and those
obtained by Brami, Hansen, and Joly' (BHJ) for the one-
component plasma (OCP) in the hypernetted-chain ap-
proximation. It is noteworthy that the relation between

—0.3 —0.5—

—0.4

0.01 O.1 P 1

FIG. 1. Excess free energy arising from the electron-electron
interaction f&~ divided by I at 8=1 in various models. LFC
and RPA refer to the calculations with and without inclusion of
the local-field corrections, respectively; TCDH, the two-
component Debye-Huckel theory; HF, the Hartr'ee-Fock ap-
proximation; RING, the contribution from the sum of the ring
diagrams.

—0.6— 'OCDH
I I I I ~ I I I I I I ~ ~ ~ I I

0.01 O.l
t

1

FIG. 2. Excess free energy arising from the ion-ion interac-
tion f22 divided by 1 at 8=1 in various models. OCDH
refers to the calculations based on the one-component Debye-
Huckel theory; BHJ, the analytic expression given by Brami,
Hansen, and Joly (Ref. 11);LFC and RPA have the same mean-
ing as those in Fig. 1.
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1.5x10—

1.0x10—
—0.7-

—0.8- TCDH
0.5x10—

I ~ I I I I i I ~ 1 I

0.01 0.1 f 1

FIG. 3. Excess free energy arising from the electron-ion in-
teraction f&2 divided by I ~ at 8= I in various models. See Fig.
1 for the meaning of LFC, RPA, and TCDH.

the LFC and RPA curves is quite analogous to that be-
tween the BHJ and OCDH curves, as we would have ex-
pected. As 1 increases, F2 tends to be proportional to I
due to the strong Coulomb-coupling effects we observe
this behavior in the LFC and BHJ curves. The departure
of the RPA curve from the TCDH curve reflects the ef-
fects of electron degeneracy.

As we note from the comparison between the magni-
tudes of the RPA and TCDH values in Fig. 3, the elec-
tron degeneracy acts to lessen the electron-ion coupling.
The discrepancy decreases as the temperature is raised to
0= 10.

We show the total excess free energy f,„divided by
I ~ in Fig. 4. In spite of a considerable departure ob-
served in the computed results of each partial contribu-
tion, the LFC and RPA values for f,„differ only slightly.
This is because the LFC's tend to decrease the magnitudes
of f t t and f22, and increase that of f&z, the effects of the
LFC's are thus partially compensated. For small I, the
electron-electron exchange contribution is dominant; the
TCDH model is inadequate even at a small I. The
HF + RING+ BHJ curve represents a simple sum of the
partial contributions of the two OCP's. This model un-
derestimates the magnitude of the total excess free energy
by about (10—25)% as compared with the LFC result.

0 I I

I
I

0.1 1 e 10
FIG. 5. Absolute value of the excess free energy f,„at—

I =0.03 for 0=0.1, 1, and 10 based on the calculations with in-
clusion of the LFC's; the lines connecting them are only to guide
the eye. e-e, i-i, and i-e refer to the partial contributions aris-
ing from the electron-electron, the ion-ion, and the ion-electron
interactions, respectively, ' TOTAL, the sum of those three con-
tributions.

The dependence of the total excess free energy upon the
degree of the electron degeneracy is not simple. Figures 5
and 6 illustrate the 8 dependence of f,„at I =0—.03 and
1 evaluated in the LFC scheme. Since I is fixed, the ion-
ian contribution remains almost constant regardless of 8.
The magnitude of the electron-electron contribution de-
creases gradually as 0 increases owing to reduction in the
exchange energy. At I =1, however, this tendency is not
so remarkable as at I"=0.03 since the Coulomb correla-
tions act to compensate this reduction. The magnitude of
the ion-electron excess free energy, on the contrary, in-
creases with 8 because of the change in the degree of elec-
tron degeneracy. The total excess free energy is deter-
mined on the balance between those factors.

IV. EQUATION OF STATE

In order to derive the equation of state for the dense,
high-temperature plasma out of the numerical data tabu-
lated in Tables I—III, we must find an analytic formula
parametrizing those data which is sufficiently accurate to
enable the necessary integration and differentiation.

The fitting formula for the total interaction energy cal-
culated with inclusion of the LFC effect is expressed as
(I &2, 8&0.1)

—15
em

1.5-

1.0-

—2.5

05-
—3

0.01 0.1
FIG. 4. Total excess free energy f,„divided by I'~ at 8=1

in various models. See Figs. 1 and 2 for the meaning of the ab-
breviated symbols.

t

0.1 1 e 10
FICx. 6. Absolute value of the excess free energy f,„at—

I =1 for 0=0.1, 1, and 10; otherwise the same as in Fig. 5.
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RV
NkaT Nlg I

=a (8)I +b (8)I ~ +c(8)l
Nkg T (12)

—0.2

—0.3
—04
-o.s- e=~———-e=10
—06-

FIG. 7. Excess pressure P,„V!Nk~T at 8=0.1, 1, and 10 ob-
tained from the computations with inclusion of the L'FC's.

0.05

0

—0.05

-0.1

0Ec I I I I I I ~ I ( I ~ & ~ a I I

~ IM
0.04 o.~

FIG. 8. Excess kinetic energy K,„/Nk&T divided by 1" at
8= 1 obtained from the computations with inclusion of the
LFC's. Crosses represent the results for the electron OCP cal-
culated by Pokrant (Ref. 14).

where

a (8)=0.449 73 exp( —0.547 12/8) —0.443 35,
b (8)= —1.502 03 exp( —0.473 57/8) —1.047 75,
c (8)=0.481 62 exp( —0.16000/8)+0. 236 24 .

(13)
(17)

correl'ations acts to reduce the total pressure by (8—30)%
at I = 1 for 0.1 & 8 & 10.

The virial theorem for the Coulombic system reads'

1 2~v= 3EInt+ 3&

This formula reproduces all the computed values of E;„,
for the 32 cases with relative errors less than 2%.

The total excess free energy is then obtained by per-
forming the I integration in Eq. (5) from 0 to I as (I & 2,
8&0.1)

f,„(1,8)=a (8)I + ,
'

b (8)I i—+—,c (8)l (14)

This expression again reproduces the values obtained by
Simpson's method in Sec. III with relative errors less than
2%.

Finally we calculate the excess pressure from Eqs.
(12)—(14) as ( I (2, 8 & 0. 1 )

P,„V
'
af,„'

= —V
NksT BV z ~

I df,. 28 df..
3 BI e 3 ~0 r

+—[p (8)I + q (8)I '~ +r (8)I'],3Nk T 0

where V is the volume of the system, and

p (8)= —0. 16404 exp( —0.547 12/8),

q (8)=0.316 14 exp( —0.473 57/8),

r(8)= —0.025686exp( —0.16000/8) .

(15)

(16)

The excess pressures at 8=0.1, 1, and 10 computed from
Eqs. (12), (13), (15), and (16) are plotted in Fig. 7.

The total pressure of the system is computed by adding
to this excess pressure the contributions arising from the
noninteracting parts; the latter for the ions is nk&T and
that for the electrons is tabulated in the Appendix. The
excess-pressure contribution, Eq. (15), of the interparticle

TABLE IV. Numerical values of the quantities defined
through Eqs. (A2}—(A4}.

0.01
0.03
0.05
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2
3
4
5
6
7
8
9

10
30

100

po/kg T

99.9918
33.3086
19.959
9.9164
4.8229
3.0486
2.1009
1.4862
1.0414
0.696 59
0.41642
0.181 11

—0.021 461
—1.2307
—1.8815
—2.3309
—2.6751
—2.9542
—3.1892
—3.3921
—3.5707
—3.7302
—5.3849
—7.1922

I3/2(po/k g T}

4.0016X 104

2.5755 X 10'
7.2290 X 102

1.3161X 102

25.772
10.647
5.9260
3.8528
2.7496
2.0863
1.6523
1.3507
1.1312
3.7010X 10-'
1.9737X 10-'
1.2708 X 1.0
9.0503X10 '
6.8659 X 10-'
5.4382 X 10-'
4.4454 X 10
3.7218 X 10
3.1754X 10-'
6.0905 X 10
1.0001 X 10-'

0.9991
0.9940
0.9855
0.9536
0.8649
0.7694
0.6827
0.6083
0.5457
0.4932
0.4489
0.4113
0.3791
0.2090
0.1431
0.1086
0.087 39
0.073 11
0.062 81
0.055 05
0.049 00
0.044 14
0.014 78
0.004439

where E refers to the kinetic energy. Subtracting from
Eq. (17) the noninteracting part Po V =—', Ko, we find

I',„V 1 Z;„, 2 X,„
Nkg T 3 NkgT 3 NkgT

Since the excess free energy f,„of the classical system
(8~~ ) is expressible as a function of I alone, ' '" we
naturally have K,„=O in this limit. If we take the limit
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of 8~0 (complete degeneracy) at a fixed value of I, we
may neglect the ion-electron coupling; we also have
%~i ——E22 ——0 because the ion system is classical and be-
cause the leading HF contribution to E

& &
identically van-

ishes in the limit of r, ~O. The total excess kinetic ener-

gy E,„ thus vanishes in this limit. Those boundary condi-
tions are naturally taken care of in Eq. (15). Figure 8 ex-
hibits the excess kinetic energy K„/Nk&T divided by I
computed from Eqs. (15), (16), and (18) at 8=1; we here
observe a change of sign from negative to positive at
I =0.3. Calculation by Pokrant' for the electron OCP
has shown an analogous tendency, as the crosses in Fig. 8
illustrate.

V. CONCLUDING REMARKS

We have carried out explicit calculations of the thermo-
dynamic functions for dense, high-temperature hydrogen-
ic plasmas relevant to inertially-confined-fusion experi-
ments and the interior of the main-sequence stars. The
numerical results are parametrized in the form of analytic
fitting formulas with a good accuracy.

For the interpretation of the calculated results we paid
particular attention to (i) the difference between the two-
component plasma system itself and a model system con-
structed by superposition of the electronic and ionic one-
component plasmas, (ii) modification arising from the
varied degrees of electron degeneracy, and (iii) the non-
RPA, strong-coupling effects described by the LFC's.
The importance of including all of these effects has been
explicitly demonstrated.
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