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On the basis of the general theoretical framework constructed in the preceding paper (paper I in
the present series), we calculate in this paper various correlation functions in dense plasmas, taking
account of local-field corrections and varied degrees of electron degeneracy; physical implications of

the results are investigated.

I. INTRODUCTION

In the preceding paper,' hereafter referred to as paper I,
we constructed a theoretical framework in which the in-
terparticle correlations may be formulated and analyzed
for dense plasmas. In the present paper we apply the gen-
eral formalism to explicit calculation of various correla-
tion functions and to investigation of salient features aris-
ing from strong Coulomb-coupling effects.

The correlation properties of dense plasmas have been
considered by various investigators?~® in the past. The
present paper aims at elucidating systematically the ef-
fects of both varied degrees of the electron degeneracy and
local-field corrections (LFC’s) describing those Coulomb
correlations beyond the random-phase approximation
(RPA). Since this work is a continuation of paper I, we
closely follow the notation and convention used in paper I
unless otherwise specified.

- II. STRUCTURE FACTOR

We calculate the structure factors defined by Eq.
(1.23),! for two-component plasmas (TCP’s) with Z=1 at
32 combinations of the electron degeneracy parameter
6=0.1, 1, and 10 and the Coulomb-coupling constant
I" <2, following the scheme described in Sec. IV of paper
I. In this paper (except for the numerical data to be cited

J

in Table II), we shall be concerned with investigation of
the results only for the cases of I'=1.0, 6=0.1 and
I'=0.1, 6=1.0, both of which assume the same density at
rs=0.184. The rest of the computed results will be of use
for the calculations of the thermodynamic quantities in
the following paper.’

For calculation of the ion-ion correlation (u=v=2), we
use the classical expression, Eq. (1.25b). For the electron-
electron (u=v=1) and the electron-ion (u=1, v=2)
correlations, we retain the quantum expression and carry
out the @ integration of Eq. (I.24a) in Eq. (I.25a) by the
summation of contributions arising from the poles of
coth(#iw /2kp T') on the imaginary  axis:®

kpT =
Splk)=——"—3 X, (kiz), (1)
l=—c
where
z1=2mlkpT /% . )

In the actual calculation of S;;(k), we note the identity
X11(k,iz)) =X\"(k,iz;) + F(k,iz;)
+ X1k, iz) — X2k, iz;) — F(k,iz;)] . 3)

Here X\”(k,0) is the free-electron polarizability as given
by Eq. (1.20),

2

2nE (k) k /kp)*[1—G 1k

Flk,iz)= |22 | 2 ) . rl - n(k)] ) (4a)
# (z°+b)z"+c)
2mEg k|’

= F X 4b
#x"(k,0) | kp (4b)

b[1—Gy,(k)]D(k,0
c L 1 (k1D k,0) (4c)

The infinite summations with respect to / of the first two
terms on the right-hand side of Eq. (3) can be carried out
analytically. Since the last, square-bracketed term in Eq.
(3) decreases at least as fast as (z;)~® in the large- |/ |
domain, we find it sufficient in accuracy to sum this term

32

v(X(k,0)+[1—G (k)] {1—v(kXX(k,0)[1— Gy (k)]}

[

over |/| <300. Si,(k) can likewise be calculated with
analogous prescription.

As mentioned in Sec. V of I, we evaluate the electron-
electron LFC from the solution to the hypernetted-chain
(HNC) equations for the electron one-component plasma
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TABLE I. Structure factors S,,(k) at T’'=1.0 and #=0.1. The numbers in the first column represent

the values of ak in units of (257 /256).
ak Sn(k) Szz(k) S]z(k)
%%% LFC RPA LFC RPA LFC RPA
0 0.1392 0.1295 0.1392 0.1295 0.1392 0.1295
1 0.1711 0.1618 0.1633 0.1524 0.1358 0.1258
2 0.2501 0.2410 0.2305 0.2144 0.1269 0.1158
3 0.3496 0.3407 0.3262 0.2998 0.1140 0.1021
4 0.4547 0.4457 0.4336 0.3922 0.09921 0.087 17
5 0.5579 0.5487 0.5389 0.4804 0.084 26 0.07292
6 0.6549 0.6458 0.6337 0.5587 0.07028 0.06021
7 0.7432 0.7344 0.7141 0.6253 0.057 82 0.049 31
8 0.8207 0.8124 0.7795 0.6809 0.047 04 0.04011
9 0.8857 0.8781 0.8314 0.7267 0.037 82 0.03237
10 0.9366 0.9299 0.8717 0.7645 0.02991 0.02576
11 0.9720 0.9664 0.9027 0.7957 0.02302 0.01999
12 0.9913 0.9868 0.9262 0.8214 0.016 89 0.014 81
13 0.9979 0.9944 0.9441 0.8430 0.01177 0.01042
14 0.9991 0.9964 0.9578 0.8611 0.008 193 0.007 322
15 0.9995 0.9973 0.9682 0.8766 0.005927 0.005 342
16 0.9997 0.9980 0.9762 0.8897 0.004 441 0.004 035

(OCP); purely quantum-mechanical effects such as the
Pauli exclusion-principle contributions are thus ignored in
this evaluation of G,(k). In Fig. 1 we plot the classical
HNC values of G,(k) for 6=1 and for 6=0.1, both at the
constant density »;=0.184. Those are then compared
with G, (k) derived by Ichimaru and Utsumi’ for a degen-
erate electron liquid (6=0) at the same density,
r,=0.184. Naturally the classical evaluation does not ex-
hibit a peak structure around k =2kg, which is essential
to account for the exchange effects.’ Otherwise the two
curves for 6=0 and 8=0.1"in Fig. 1 appear quite similar
in the small-k domain, where the Coulomb-induced ef-
fects are predominant.

In Table I we list the computed values of S,,(k) at
I'=1.0 and 6=0.1, both with and without the LFC’s.
This is one of those among the calculated cases of the

o=1(r=01

2 3
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FIG. 1. Electronic local-field correction evaluated in the
HNC scheme at 6=1 and 6=0.1 with the density parameter
r;=0.184. The dashed curve (IU) represents the local-field
correction for a degenerate electron liquid (6=0) at the same
density, obtained in Ref. 9.

parametric combinations where the departure between the
LFC and RPA values is fairly significant, sometimes
exceeding 10%.

In Fig. 2 we compare the values of S, (k) between the
cases with I'=0.1, 6=1.0 and with I'=1.0, 6=0.1,
evaluated with the LFC’s. When the effect of electron de-
generacy increases to 6=0.1, we observe that the relative
importance of the electron-ion coupling [manifested in
S12(k)] decreases.

Contrary to the cases of an OCP, the TCP structure
factors do not vanish in the limit of k—0. Retaining the
degeneracy effect of the electrons, we find that those take
on the same value,

A
S11(0)=5,,(0)=S,,(0)=
1( 2(0) 12(0) 144 —3(y, 4 y)AT (5)

where

0.5

(]

FIG. 2. Structure factors Sy,(k) at ©'=0.1 and 6=1.0 (solid
curves) and at I'=1.0 and 6=0.1 (dashed curves).
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FIG. 3. Radial distribution functions g,,(r) at T=0.1 and
6=1.0, evaluated with the local-field corrections (the solid
curves) and without them (the dashed curves). The two curves
for g1,(r) almost coincide.

36 [ B
== [, dx(1expl(Epx®—po) /ks TN ™', (6)

ylz-}lin:)[Gu.(k)/(ak)z] ,

@)
72=lim [Gn(k)/(ak)],

and g is the Fermi level of the electrons determined from
the normalization condition such as Eq. (1.22). In the
classical limit for the electrons, the integral A tends to un-
ity, so that §;;(0)=S,(0)=S,(0)=+ in the RPA,
where y,=v,=0; with LFC’s, §,,(0) deviate from %
We remark in passing that an accurate evaluation of p is
essential particularly for ensuring the correct limiting
behaviors of S,,(k) in the large-k limit.
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FIG. 4. The same as Fig. 4, but at I'=1.0 and 6=0.1.

TABLE II. Values of g,(0) computed at various combina-
tions of I" and € with and without the local-field corrections.

6=0.1 6=1.0 6=10
r 10 0.3 0.3 0.1 0.1 0.03
LFC 1.295 1.103 1.704 1.258 1.968 1.299
RPA 1.266 1.100 1.684 1.256 1.962 1.298

III. RADIAL DISTRIBUTION FUNCTIONS

With the knowledge of various structure factors
evaluated in Sec. II, we calculate the radial distribution
functions g,,(r) in accord with Eq. (1.26). Figure 3 shows
the compared values of g,,(r) at '=0.1 and 6=1.0 with
and without LFC’s. As has been often pointed out,©
RPA calculations tend to overestimate the short-range
correlations in g,;(r) and g,,(r), leading to such an un-
physical prediction as g,,(r~0)<0. An analogous
feature is observed in Fig. 4, where the case with I'=1.0
and 6=0.1 is exhibited.

Since the quantum-diffraction effects of electrons are
appropriately taken into account through X\*(k,w), the
radial distribution function g;,(») between the electrons
and ions remains finite and convergent in the limit of
r—0. In Table II we compare the computed values of
g12(0) with and without the LFC’s for several parametric
combinations of I" and 6. As we observe in this numeri-
cal comparison, the screening action of the electrons
around an ion is generally underestimated in RPA. The
physical origin of this underestimation has been account-
ed for in Ref. 4, where the screening effect has been inves-
tigated through a thermodynamic variational principle.

IV. CONCLUSION

On the basis of the general theoretical framework con-
structed in paper I,! we have calculated various correla-
tion functions in dense plasmas for various parameteric
combinations of I" and 6. We have presented some typi-
cal examples of the calculations where the effects of the
LFC’s and varied degrees of the electron degeneracy are
demonstrated; physical origins of those effects have been
investigated.

In the following paper,” we shall extend the present re-
sults to the calculation of thermodynamic functions for
dense plasmas.
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