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Theory of interparticle correlations in dense, high-temperature plasmas.
I. General formalism
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This is the first in a series of papers in which we carry out a systematic study of multiparticle
correlation effects in the dense, high-temperature plasmas, appropriate to the inertially-confined-
fusion experiments and the interior of the main-sequence stars. In this paper (paper I), we develop a
general density-response formalism with inclusion of varied degrees of the electron degeneracy and
the local-field corrections (LFC s) describing the strong Coulomb-coupling effects. An explicit
theoretical scheme of calculating the static LFC s is developed on the basis of the hypernetted-chain
approximation; useful expressions for the dynamic LFC's are proposed.

I. INTRODUCTION

Theoretical study of the interparticle correlations in
dense, high-temperature plasmas is an essential problem
in clarifying the basic properties of those high-density ma-'

terials which we encounter in the inertially-confined-
fusion experiments ' and in the interior of the main-
sequence stars. The fundamental quantities in describing
the correlation properties are the radial distribution func-
tions and the static- and dynamic-structure factors'* ' in
multicomponent plasmas. With the knowledge of those
correlation functions one calculates various thermo-
dynamic functions and thereby determines the equation of
state; transport coefficients, the stopping power against an
injected charged particle, and the distribution of electric
microfields can likewise be evaluated.

A most simplified treatment of a dense plasma consists
in assuming a classical one-component plasma (OCP)
model' in which a single species of ions is considered
and the electrons are regarded as a rigid, uniform back-
ground neutralizing the average space-charge field of the
ions. The correlation properties of such an OCP have
been extensively studied, thanks to the progress in the
Monte Carlo simulation technique and the recent ad-
vancement in the analytic theories. ' Accurate informa-
tion is now available on the correlation functions, the
thermodynamic properties, and other basic quantities. '

For the description of the actual high-density plasma
system under present consideration, however, the OCP
model amounts to something of an oversimpli. fication,
since the electrons do form a polarizable medium. "
The treatment of interionic correlations with inclusion of
the electronic screening effect is a fairly complex problem,
owing to varied degrees of electron degeneracy and in-
volvement of the local-field corrections (LFC's) due to
strong Coulomb coupling. "

The present paper (paper I), dealing with a general for-
malism, is the first in a series of papers in which we in-
tend to carry out a systematic study of multiparticle
correlation effects in the dense, high-temperature plasmas.
In the subsequent papers we shall investigate the numeri-

cal results of the explicit calculation for various physical
quantities, such as the correlation functions, thermo-
dynamic variables, the stopping power, transport coeffi-
cients, and the microfield distributions.

In Sec. II we specify the parameter domain for the plas-
mas under present consideration and remark on relative
magnitudes of various characteristic parameters. In Sec.
III we establish a general framework of the density-
response formalism for multicomponent plasmas and in-
troduce the LFC's describing the strong Coulomb-
coupling effects. In Sec. IV correlation functions are in-
troduced and are expressed in terms of the density-
response functions. In Sec. V we present a theoretical
scheme of calculating the static LFC's explicitly in the pa-
rameter domain of interest; approximate expressions for
the dynamic LFC's are proposed in Sec. VI. Section VII
concludes with a summary.

II. PLASMA PARAMETERS

We consider a multicomponent plasma at temperature
T consisting of electrons and various kinds of ions. The
particle species is distinguished by the subscript p, and we
reserve p= 1 for the electrons. The electric charge, the
mass, and the number density of each species are denoted
by Zze, I&, and n; the condition for the macroscopic
charge neutrality, Z&n& ——0 is assumed.i i' l'

in this series of papers sve confine onrseives to the con-
sideration of those plasmas in which the ions may be re-
garded as classical particles obeying the classical statistics.
This implies that the thermal de Broglie wavelength
A'(m&k&T) ' is much smaller than the average interpar-
ticle spacing, which we estimate at the Wigner-Seitz ra-
dius of the electrons,

a, =(4~n, /3)-'" .

Hence the condition stated above reads

A„=—a)(m„kgT)'r~/A')) 1 (p & 2),
where kz is the Boltzmann constant.
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I—:(Z )e /aikgT,
where

(Z'"&= y n„z„'"/y n„.
p&2

(3)

(4)

We shall consider those plasmas with weak (I &0.1) to
intermediate (0. 1 & I ( 10) coupling. In these cir-
cumstances, as we shall elaborate later in Sec. V, the
hypernetted-chain (HNC) approximation' provides an ac-
curate description of the static correlations between ions.

For the electron system we assume first of all that the
relativistic effects are negligible. This means that the pa-
rameter domain under consideration is restricted to

EI; (Elle, kg T(Plc

where

$2
EF= (3m' ni) ~

2721

(5)

is the Fermi energy of the electrons at T =0 and m is the
rest mass of an electron.

We further assume that the atomic nuclei in the plasma
are all in the fully ionized states, that is, the atoms do not
retain their orbital electrons. Such a state may be
achieved either through the pressure ionization

Ep &Z„'
~ (p) 2) (7)

or through the thermal ionization

k~T&Z„(p)2) ." 2A
(8)

In light of the condition for Saha equilibrium, Eq. (8) ap-
pears a bit too restrictive numerically than actually neces-
sary. At any rate, when none of those conditions for total
ionization are met, we must deal with a plasma system in
which the atomic nuclei retain some of their orbital elec-
trons.

The electron system in the plasma is characterized by
two parameters: the dimensionless density parameter,

r, =a&me /A'

and the degeneracy parameter,

8=kgT/EF .

(9)

(10)

The parameter r, plays the role of the Coulomb-coupling
constant for a degenerate electron system. '

In Fig. 1 we show the relative magnitudes of various
parameters on the density-temperature plane for two-
component electron-ion (-proton) plasm as, where
Z& ———]., Zz ——]., and n~ ——nz—=n. The hatched areas are
excluded from our consideration because of Eqs. (5), (7),
and (8). In A, bounded by 8=10 from the right, the elec-
trons are nondegenerate and obey the classical statistics;
the Coulomb-coupling constant I' of the electrons is the
same as that of the ions and takes on a value less than 0.1

for the bulk of the domain. In 3, bounded between 8= 10

The strength of Coulomb coupling in the classical ion
system may be measured by a dimensionless parameter'

k g10 T(K) I'.=1 e =10
10 &/zzzzxzzz;~'AY& yzzrzyzJ ygngy/

~-e=0.1
8— I =0.1

7— 8

3025
log n(cm-')

20

FIG. 1. Relative magnitudes of various characteristic param-
eters on the number density vs temperature plane for electron-
proton plasmas. The parameters A2, I, r„and 8 are defined
by Eqs. (2), (3), (9), and (10) in the text.

and L9=0.1, the electrons are partially degenerate; the
Coulomb coupling of the ions as well as of the electrons
can be intermediate. In C, bounded between
8=0.1 and I"=10, the Coulomb coupling of the classical
ions is intermediate, while that of the degenerate electrons
is weak to intermediate (10 &r, (1). On all of the
domains A, 8, and C, which we shall be concerned with,
the condition (2) is well satisfied.

III. DENSITY-RESPONSE FORMALISM

We assume that the plasma state in the absence of the
external fields &s translatiopally invariant both in space
and in time. We thgs work in terms of Fourier com-
ponents, so thai

V&(k, co) = fdr f dt V&(r, t)exp[ I'. (k r cot)], —(12)—

for example. The periodic boundary conditions for a unit
volume are adopted; the volume of the r integration in
Eq. (12) is unity.

The external disturbances V„(k,to) induce the devia-
tions 5p„(k,co) of the density fields from the unperturbed
values. The linear-response relations

5p~(k, co) = g X~,(k, to) V„(k,co) (13)

then define the density-density response functions
X&„(k,co) between the p and v species of the particles.
The longitudinal, frequency and wave-number-dependent,
dielectric response function e(k, co), which is defined as

To analyze the interparticle correlations in a multicom-
ponent plasma we use the density-response formalism or
the dielectric formulation ' in the framework of the
linear-response theory. We thus apply to the plasma a
weak (fictitious) external potential field V&(r, t) which
couples only to the density field p&(r) of the p-species par-
ticles. The extra Hamiltonian arising from the presence
of such external fields is then written as

H,„,(t)= g fdrp„(r)V„(r, t) .
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the ratio between the total and external potential fields in
the plasma, ' ' is given by

1 = 1+v(k) g ZpZ Xp (k, co),
e(k, co)

(14)

where v(k)=4me /k .
%e find it useful to express the density-density response

functions in terms of the screened response functions and
the LFC's. To do so we consider the effective potential
P&„(k,co) on a p-species particle produced by the density

fluctuation 5p„(k,co) in the v-species particles, which may
be written as

Npv(k, co}=ZpZvv(k)[1 —Gpv(k, co))5p (k, co) . (15)

This potential generally differs from the bare Coulomb
potential Z&Z v(k)5p„(k, co) because of the microscopic
correlation effects involved; the difference is here mea-
sured by the dynamic LFC, G&„(k,co). The screened
density-response function X„' '(k, co) is then introduced ac-
co1dlng to

5'(k, co) =Xp '(k, co) Vp(k, co)+v{k)Q ZpZ„[1 —Gp„(k,co}]5p (k, co) (16)

Xii ——Xi [1—Z2vX2 '(1 —G22)]/D,

X22=X2 [1—Z ivX'1 '( I —G i i )]/D,

X12=Z1Z2vX1 X2 (1—G12)/D,(0) (0)

X21 ——Z1Z2vXI 'Xz '(1 —G2, )/D,

(17a)

(17b)

(17c)

(17d)

where

D = [1—Z ivX'1 '(1—G11)][1—Z2vX2 '( I —G22)]
—Z 1Z2v'Xi 'X2 '(1 —G12)(1—G21) . {18)

The dielectric function, Eq. (14), takes the form

+Z1Z2vX1 X2 {G1 i +G22 G12 G21 }1

In the random-phase approximation' ' (RPA), one sets
G&„(k,co) =0, and uses the free-particle polarizability'

The function X„' '(k, co) thus describes a density response
of the p- species particles against a renormalized potential
field V&(k, co)+ g, P&~(k, co) in the plasma. For the
analysis of the electron-hole liquid in semiconductors,
Vashishta, Bhattacharyya, and Singwi' have used a for-
mulation analogous to Eq. (16) where the co dependence of
G& (k, co) has been ignored.

Expression for X„(k,co) may be obtained through a
comparison between Eqs. (13) and (16). For simplicity in
notation we write the results for a two-component
electron-ion plasma, suppressing the frequency and wave-
number arguments ~ and k:

2 1/3

X (k, co)=—(01 mv(3m n„)
2~2A2x

dx
1+exp[(x —M ) /B]

T

(2xK+K ) 0—
(2xK —K ) —0 (20)

with

K =k/(3m. n„)'i (21a)

Q =2m~(co+i 0)/fi(3m nq) (21b)

B=2m~kti T/A (3mn~). (21c)

for the screened response function. The positive infini-
tesimal +0 in Eq. (21b) ensures the causal boundary con-
ditions in the evaluation of Eq. (20). The dimensionless
chemical potential M in Eq. (20) is to be determined
through a numerical solution to the equation

00 X
dx (22)1+exp[(x —M )/B]

resulting from the normalization condition. In the classi-
cal limit B»1, Eq. (20) tends to the Vlasov formula
in the degeneracy limit 6~0, it reduces to the Lindhard
expl esslon. '

In the present formulation we retain the representation
of the screened response functions as given by Eq. (20).
All the microscopic correlation effects beyond the RPA
are thus lumped into Gz (k, co). Once those LFC's are
determined, the strong-coupling theory of a dense plasma
is completed.

IV. CORRELATION FUNCTIONS
The dynamic-structure factors S&„(k,co} in a multicom-

ponent plasma are calculated as the Fourier transforms in
space and time of density-density correlation func-
tjons+4p 57 18

(23)
OO

~~(k, co)=
4

dr dt(, [p&(r'+r, t'+t)p (r', t')+p„(r', t')pz(r'+r, t+t')])exp[ i(k r cot)] . — —

Here ( . . ) refers to the expectation value in the equili-
brium state. The fluctuation-dissipation theorem'
(FDT) relates those structure factors and the imaginary
parts of the density-density response functions as '

(24a)S„„(k,co) = — coth ImX„„(k,co) .2' B

In the classical limit Ac@ &~kB T, those relations reduce to
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kgT
S„„(k,co) = — ImX„,(k, co) . (24b)

The static-structure factors S& (k) are defined and cal-
culated as

S&„(k)= f de S& (k, co) .
&n„n.

In the classical limit we find

kgT
S„(k)= — X„(k,O) .

npnv

(25a)

(25b)

where 6& represents Kronecker's delta. Those correlation
functions will be explicitly evaluated and discussed for
dense plasmas in the subsequent paper (paper II). '

Basic physical quantities of dense plasmas can be calcu-
lated with the knowledge of the correlation and response
functions. For example, the density of Coulomb-
interaction energy in a two-component plasma is given by

E,„,(e')=-,' f, f" d~ "
coth

(2m) 3 —~ 2m 2k~ T

1XIm 1—

—(Z fn & + Z2n 2)v (k), (27)

as a function of the strength e of the Coulomb interac-
tion. The Helmholtz free energy F per unit volume is
then calculated according to the integration over the cou-
pling constant as

E;„,(x)F=F(e))+f, dx (28)
e&

We shall investigate the thermodynamic properties of
dense plasmas on the basis of those formulas in paper
III.22

The radial distribution functions gz, (r), describing the
joint probability functions of finding the p —and v-

species particles at a distance r, and the associated pair-
correlation functions h&, (r) are then given by

g~ (r)=1+h„,(r)

=1+ f [S„(k) 5—„,]exp(ik r).,1 dk
&n~n, (2')'

(26)
g(r) =exp[ —[y(r)ikJ, Z']+h (r) —c(r)]

coupled with the Ornstein-Zernike relation

h(r)=c(r)+n fdr'c(
~

r —r'
~
)h(r'),

(30)

(31)

where h(r)=g(r) —1 and c(r) is the direct correlation
function. We have described the HNC scheme for a one-
component system; its extension to a multicomponent sys-
tem is straightforward.

A principal problem involved, in the calculation of the
static LFC is the degeneracy of the electrons. In an ear-
lier theory' we evaluated the LFC for the electrons accu-
rately in the domains A and C of Fig. 1 and then interpo-
lated the results into the partially degenerate domain 8.

In the present series of papers, in light of the numerical
comparison exemplified in Fig. 1, we adopt the point of
view that the degeneracy of the electrons can be taken into
account through the free-electron polarizability XP'(k, cu),
while the LFC's are determined semiclassically in the way
consistent with various polarizabilities. For a two-
component plasma (Z& ———1, Z2 ——Z), we may thus cal-
culate the LFC's and the dielectric response function
through the following steps of calculations.

(i) Solve the HNC equations, Eqs. (30) and (31), for the
static-structure factorS, (k) of the electron OCP and cal-
culate G, (k) by'

k 1
G, (k)=1+, 1—

S, k
(32)

significance and partly becuase of their conceptual simpli-
city, the dynamic LFC's are sometimes' approximated by
their static values, Eq. (29). In this section we develop a
theoretical scheme by which the static LFC's are calculat-
ed for the dense plasmas of our interest (cf. Sec. II).

The present scheme relies on the observation that the
HNC scheme' ' offers an extremely accurate description
of correlations in an intermediate to weakly coupled
(I'(10) classical OCP; comparison illustrating such an
accuracy has been discussed in the literature. ' ' ' ' For
I' & 1, the HNC results are virtually exact; even for
1 & I & 10, the HNC scheme reproduces interaction ener-
gies of OCP with relative errors less than 1%. In the
present plasma system the ions, interacting via screened
Coulomb forces, cannot be regarded as an OCP; the
screening effect then acts to widen the range of I for the
validity of the HNC calculation. '

In the HNC scheme the interparticle correlations with
binary interaction P(r) are analyzed through the HNC
equation

V. APPROXIMATION SCHEME FOR STATIC LFC

The dielectric formulation described in the foregoing
sections is completed when the LFC's introduced in Eq.
(15) are determined. As Eq. (25b) implies, the static
values

Gp„(k)—:G„„(k,O) (29)

of the LFC are essential to the evaluation of the thermo-
dynamic quantities for a classical plasma. Because of this

v (k)XP'(k, co)
e, (k, co)= 1—

1+v (k)G, (k)X'i '(k, co)
(33)

(ii) Solve the HNC equations for the ion-ion structure
factor S22(k) with the interionic potential given by'

Z 2

P;(r) = fdk[k e, (k,O)] 'exp(ik r) . (34)
2~2

where k, =4nn &e /k~ T. Set the electronic dielectric
function as
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(iii) Note Eq. (17b) and the classical FDT, Eq. (25b),
i.e., Gpq(k) = kg Tk

+ 2
1— (44b)

&,(k, O) 4n.n (Ze) Sq2(k)
AT

S22(k) = — X2q(k, O) .
n2

(35) G]2(k) =62)(k) =0 . (44c)

(iv) Calculate h, 2(r) through the diagrammatic sum-
mation of Fig. 2, where the single and double circles
represent the electron and ion coordinates, respectively,
the filled circle corresponds to the particle coordinate to
be integrated, and l &2(r) describes an electron-ion bond in-

volving only the electronic coordinates at intermediate
stages. In the linear-response approximation, the Fourier
component of the electron-ion bond is given by

(x) Finally, substituting Eqs. (44) in place of the
dynamic LFC's in Eq. (19), we find

u (k)X', '(k, co)
e(k, co) =1-

1+u (k)G»(k)X', "(k,~)
Z u(k)X' '(k, co)

(O) (45)
1+Z u(k)G22(k)X2 (k, co)

Z 1
l )2(k) = 1—

n) e, k, O
(36)

Use of this expression in Fig. 2 yields

hi2(r) = f 1—Z dk
(2n )

1
S22(k)exp(i k r),.

e, (k, O)

(37)

-whence we find

S)2(k) =Z'~ S22(k) 1— 1

e, (k, O)
(38)

(v) Note Eqs. (17c) and (25b), to write

k~T
S)p(k) = — X(p(k, O) .

Qn)n2

(vi) Calculate the pure electron-electron bond by

l ~~(r) = f [cr~~(k) —1]exp(ik r)1 dk
n ) (2~)

with

kgT XI '(k, O)oti(k)=—
1 —u (k)[1—G, (k) ]XI"(k,o)

(39)

(40)

(41)

(vii) Calculate h ~&(r) through the diagrammatic sum-
mation described in Fig. 3, which yields

The expressions for the LFC's as obtained in Eqs. (44)
are rather easy to interpret. Equation (44a) appears
straightforward. We may rederive Eq. (44b) as follows:
For the ion system with the screened interaction, Eq. (34),
the LFC Gq2(k) may be calculated as

kg Te, (k, O)k
G,', (k)=1+, 1—

4~n2(Ze)' S22(k)
(46)

following the scheme of Eq. (32). Since G22(k) has been
defined relative to the bare ion-ion interaction, however,
we have G22(k)=G22(k)/e, (k, O), which yields Eq. (44b).

Equation (44c) is a consequence of the linear-response
approximation which we have adopted in Eq. (36) for a
representation of the electron-ion bond. Strong-coupling
effects between electron and ion beyond the RPA have
been ignored in Eq. (36) and thus we have found Eq. (44c).
Consequently the dielectric response function, as given by
Eq. (45), takes a form in which the contributions of the
electronic and ionic polarizabilities are added separately
and no interference terms appear. Such a neglect of
strong-coupling effects between electron and ion has been
justified in a number of cases. "' If the electron-ion
bond is calculated in a scheme beyond the linear-response
approximation (e.g., in a density-functional formalism ),
one would naturally find a result different from Eq. (44c).

In summary we have presented in this section a com-
plete theoretical scheme of calculating the static correla-
tions and thermodynamic properties for dense plasmas in
the parameter regime as described in Sec. II.

1S))(k)=ot)(k)+Z 1—
e, k, O

S22(k) . (42) VI. DYNAMIC LFC

(viii) Note Eqs. (17a) and (25b), to write

k~T
Sii(k)= — Xii(k, O) .

n)
(43)

In the treatment of dynamic phenomena in dense plas-
mas, such as the stopping power against impinging
charged particles, knowledge on the frequency dependence
of the LFC's becomes indispensable. Formulation of the
dynamic LFC's for a strongly coupled plasma is a diffi-

(ix) The LFC's are determined from the solution to
Eqs. (35), (39), and (43); the result is

hn(r) = Q——Q + Q——~lu l~ lm'

Gii(k)=G, (k), (44a)

+ ~lis~~ hss~lgg~

h ~r) Q llsmo + Q le~a. Qo

FKx. 2. Sum of diagrams for the electron-ion correlation
function h»(&).

=Q——Q+Q-- —Q Q
FIG. 3. Sum of diagrams for the electron-electron correlation

function h ll(r).
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cult problem with formidable analytic complexities, and
no exact solutions are as yet available. In this section,
without delving into such a difficult problem, we attempt
to derive approximate but useful expressions for the
dynamic LFC's by noticing a number of exact asymptotic
behaviors in their frequency dependence.

We begin by noting the high-frequency asymptotic ex-
pansion of the density-density response functions

Xp (k,co)~ g (47)(~ )n +1

constraints, are

coI„„(k)+ico„„G„,(k)
G„,(k, co) =

CO+ l COpv
(55)

where co&„are the characteristic frequencies distinguishing
between the low- and high-frequency domains in which,
respectively, Gp„(k, co) =Gp (k) and Gp„(k, co) =Ip„(k)
are approximately valid.

Those characteristic frequencies may be determined
once we find another constraint independent of Eqs. (54).
A possible choice would be

where the coefficients are given by the nth frequency mo-
ment of the imaginary part of Xp„(k,co) as

Mp",'(k) = A —f (%co)"Imp„(k,co) .

2 & 2 2t(~tp+~t )4

copp 47rnp—(—Zpe) /mp y

(56)

(57)

M„"„'(k)=Zn„e„(k)5„„,
M„'"(k) =2n p [ep(k) ]'[4Kp+ ep(k) ]5„

+4npn„ep(k)e„(k)zpz„v(k)[1 I„„(k)].—

(49)

Here Xz is the average kinetic energy per a p-species par-
ticle,

ep(k)=R k /2mp,

1 dq (k.q)
(2m) k q

(51)

According to the frequency-moment sum rules, ' Eq.
(48) is expressed also in terms of the time-independent
multiparticle correlation functions; Mp"„'(k) identically
vanishes for an even number of n in reflectionally invari-
ant systems. For the multicomponent plasma, the first
two nonvanishing terms are

where gp are factors of order unity.
The proposed co dependence of Gp„(k,co) in Eq. (55)

satisfies the causal boundary conditions. In addition it
derives another support from an explicit microscopic cal-
culation of G (k, co) carried out by Utsumi and Ichimaru~
for the degenerate electron liquid. In the latter theory
they performed a low-frequency expansion,

G(k, co) =G(k)+if, (k)co+ (58)

and then determined the viscosity coefficient

g (k)=
7T2 277 1/2—1 [G(k)—I(k)],
8 3 Q(k)

(59)

where Q(k) is a characteristic frequency in their theory.
We find that the first two terms in the low-frequency ex-
pansion of Eq. (55), as applied to the degenerate electron
liquid, agree with those in Eq. (58) since Q(k) takes on
values close to co& in the bulk of the k domain.

X [ (p„(k—q)p (q —k) )

—(p, (q)p„( —q) )5„./z ],

p, (q) = g Zppp(q),

(52)

(53)

lim Gp„(k,co) =Gp, (k),
Cil~0

lim Gp„(k,co) =Ip„(k) .

(54a)

(54b)

Proposed formulas .for Gp„(k,co), satisfying those two

and pp(k) denotes the Fourier component of the density
field pp(r) for the p-species particles.

In light of Eqs. (29), (47), and (50), we find the low- and
high-frequency limiting behaviors of Gp„(k,co) as

VII. CONCLUDING REMARKS

In the foregoing sections we have thus established a
general theoretical scheme by which the static and
dynamic correlational properties may be analyzed for the
dense, high-temperature plasmas in the parameter domain
as specified in Sec. II. In the succeeding papers we shall
carry out numerical solutions to the equations obtained
here and thereby investigate various fundamental proper-
ties of dense plasmas.
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