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Cross sections for the E-shell ionization of medium-heavy atoms by relativistic electrons have
been calculated in a relativistic framework in the Coulomb gauge to order ao (=e /h'c} in the in-

teraction Hamiltonian. Here exchange is neglected. The incident- and scattered-electron wave func-
tions are described by Dirac plane waves. Only the bound- and ejected-electron wave functions are
described nonrelativistically for a. screened Coulomb potential, used earlier by the present authors.
Thus the screening effect is taken into account in this calculation in a satisfactory manner. The cal-
culation is a repetition of what has been published recently by the present authors with one impor-
tant exception: Here, the ejected-electron continuum state wave function that is used is determined
variationally for the above screened Coulomb potential. Thereby some perturbation approximation
of ad hoc nature could be avoided. As a consequence, considerable improvement is noticed in the
total cross-section results. Comparison with experimental results for Cu, Ag, and Au shows a
good agreement. The calculation may easily be extended to ionization from other shells.

I. INTRODUCTION

oV(r)=
cto(Z 1 I ) aors.r-e

In most earlier theoretical investigations' of inner-
shell ionization problems, screening effects on the atomic
electrons were taken into account through the choice of
the effective central potential in the form

+oZeff
V(r) = — +uo,

. r

where Z,tt=Z —0.3 for the E shell and vc is a constant
term. This is satisfactory for describing the bound-state
wave function. For the description of scattering states
there arise major difficulties. One of these is in assigning
proper energies to the two outgoing electrons moving with
velocities U and v~, respectively. A second one is a con-
ceptual one, closely linked with the first difficulty which
forces one to suggest certain virtual excitation to give rise
to contributions to real ionizations. Moreover such virtu-
al contributions very often are —,

' to —,
' of the real contri-

butions. So a better way of treating the screening effect'is
warranted. Scofield actually took such a step and calcu-
lated total ionization cross sections for a number of
species using Dirac-Hartree-Slater atomic wave functions
in the calculation. An alternative way of taking the
screening effect into account is to use the Thomas-Fermi
model potential as the effective central potential for the
atomic active electron. An approximation to this poten-
tial has actually been used. by Fermi in some other con-
text. We also proposed' recently for the use of the above
screened Coulomb potential

in the study of inner-shell ionization problems. One good
thing with this potential is that the above-mentioned diffi-
culties no longer arise. One needs in the inner-shell ioni-
zation calculation both the bound-state and the
scattering-state solutions for this potential. Bound-state
solutions are easily obtained by the variational method.
In our earlier calculations" the scattering state wave func-
tion was taken corresponding to a certain Coulomb poten-
tial, a part of the above potential, and the effect of the
remaining part was treated perturbatively. This gives rise
to certain difficulties and the results do not always appear
to be good. So in our present work we have calculated
both the bound- and the scattering-state wave functions
variationally, although nonrelativistically, for the above
potential and used these in our earlier formulation of the
problem to obtain a formula for the triply differential
cross section for the X shell ionization. We computed
both the differential and the total cross section results for
a number of atoms and compared these with other
theoretical and experimental results. In most cases our re-
sults closely agree with those of Scofield, particularly for
heavier atoms.

II. THEORY

In our relativistic formulation of the atomic inner-shell
ionization problems we use the Coulomb gauge. In this
gauge the interaction Hamiltonian separates into a "stat-
ic" Coulomb part and into a part which involves interac-
tion with the transverse electromagnetic field. This
second part includes the retardation effect. In a central
field approximation for the atomic active electron and in
absence of exchange, the scattering amplitude to the order
no becomes
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T Td + Tfr

where

cxo
Td ——4'f + V r2

~].2

and where

e;(r],r2, cr], cr2) =Ip;(r], o])u (r2)

@f (r 1,r2, cr 1,cr2 ) =yf (r ],cr 1 )u, ( r2 )
CT2

y; being the initial bound-state wave function for the K
electron and yf the final scattering-state wave function
for it. Because of orthogonality we may write as well for
it the expression

(3a)

and The expression for the transverse term may be written as

T„=—
2 2

gu', (pf)(a. e)u (p;) J d r]yf(r], o'])(a e)e 'y;(r], o.]) .
(t —Wf)

(3b)

In all these expressions we use the same notations as those
of Ref. 2 and natural systems of unit are used unless oth-
erwise stated. The expression for the triply differential
cross section then becomes

CT

dwf dip dipPf

T

2 PPf WW) W)

(2m. ) p;

where quantities with an overbar correspond to those in
which spin averages are taken. Finally the result has to be
multiplied by a factor of two corresponding to two elec-
trons in the E shell. It may be noted here that the param-
eter A, in potential (1) is so chosen that the theoretical and
experimental ionization energies become the same.

III. DETAILS OF CALCULATIONS

For ionization of not too heavy atoms one may use non-
relativistic wave functions for the atomic electron. So we
determine the E-electron wave function variationally. :

The nonrelativistic variationally determined wave func-
tion and the corresponding energy for the K electron are
given' by

[—2 V]+ &(r] )—E]%(r])= ao(Z —1) —a0~.,0 l
(

I"

(9)
We find y(r]) from this equation by the least-squares ap-
proximation. We choose y(r]) in the form

y(r]) =(c]+C2r]+c3l ]+c41]cos8]2

+c5r]cos 8]+ . )e2 (10)

where p is set equal to a]]Z for ionization from the- K
shell and the complex parameters c~, c2, c3, c4, c5, etc.,
are determined by minimizing the quantity

d r] r]
l c]y]+c2y2+C3qr3+c4lp4+c5lp5 F

l

3 2 2

o——,V] — yc(r] ) =Expo(r] )
r]

and the equation satisfied by lpf (r],o 1 ) is

[ 2 Vl+ I ( 1)]f'f(rl 1) pf( 1 1)

so that p(r]) vanishes at infinity and describes the contin-
uum state at short distances. The equation satisfied by
y(r]) is

where

m/a]

3'
a& ——ao Z—

and

e; = —(a&Z) /2+A. a0(Z —1) . (5b)

where yc(r]) is the nonrelativistic Coulomb wave func-
tion satisfying the equation

In our present calculation we determine the continuum
state wave function for potential (1) also variationally.
Actually we set

gf(rl, o])= [lpc(r, )+]p(r])]u, (p),

where

a0(Z —1)F= e ' 'qc(r])

and y s are the terms obtained by operating
[——,V]+ V(r]) E] on the ith te—rm in expansion (10).
In our calculation it was found that the first four or five
terms in the expansion are sufficient for converged results.
So we recorded all our numerical results corresponding to
five terms in expansion (10). Subsequent calculation is
straightforward and leads to an expression for the triply
differential cross section. Integrating this we get results
for the doubly differential cross section and further in-
tegrations give the total cross section. One may note in
this connection that here the energy conservation- relation
1S



J. N. DAS AND S. CHAKRABORTY 32

wf +w =w; +[I—(aoZ) /2+ aoA(Z —I )], (12)

where w;, wj, and w are the energies of the incident elec-
tron, scattered electron, and ejected electron, the corre-
sponding kinetic energies are Eo, Ef, and E, respectively. & 300-

IV. RESULTS

Differential as well as total cross sections have been cal-
culated following the steps indicated in the last section.
The present calculation is most suitable for the study of
the total cross section, particularly for medium-heavy
atoms, in view of the approximations used. So we present
here a considerable amount of results for the total cross
section. Contrary to this we present one set of results for
a doubly differential cross section just to illustrate the
quality of results obtained for this from the present calcu-
lation.

We present our computed total cross section results for
Cu, Ag, and Au in Figs. 1(a)—1(c), respectively. Re-

sults for Ni, Ag, and Au and some other atoms are
presented in the Table I. In the above figures we also
present the experimental results of Davis et al. ' and of
Rester and Dance' and in case of Ag an additional re-
sult of Fischer and Hoffmann. ' The theoretical results
of Scofield and of Das are also included for comparison,
whenever available. The reason for inclusion of these two
sets of results and not some others' ' ' is that the cor-
responding calculations are closely related to the present
one in some respect or other.

In the case of Au our results agree better with the ex-
perimental results compared to those of Scofield, or of
Das (or of any other calculation). In the case of Cu the
agreement of our results with the measured values of
Davis et al. ' is also good. But in the case of Ag, the
experimental results of Rester and Dance' better fit with
the results of Scofield for 200, 250, and 300 keV energies.
Below 200 keV energy and for 2 MeV energy our results
agree satisfactorily with the experimental results and some
times in a better way. If we compare our present results
for Au with those of Das it will be clear that the
screening effect is most important at lower energies and
that the present way of taking this effect into account is
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FIG. 1. Comparison of the total cross section for the K-shell
ionization of {a) Cu, (b) Ag, and (c) Au for different ener-
gies of the incident electron. Theory:, present calculation;
————,Scofield (Ref. 7); ———,Das (Ref. 3). Experiment:
$, Rester and Dance (Ref. . 15); ~, Davis et al. (Ref. 14); &,

Fischer and Hoffmann {Ref. 16).

TABLE I. Comparison of the present (P) cross section for the approximate Thomas-Fermi calculation with those of the Dirac-
Hartree-Slater calculation of Scofield (Ref. 7) (S) for the E-shell ionization of atoms by electrons (cross sections are in barns).
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P
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P
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203
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46.4
62.8
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58.7
56.4

49.7

47.5

67.6
61.0
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51.6
49.4
48.5
48.3
48.6
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29.3
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16.4
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14.6
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15.2
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15.5
15.8
16.5
17.1
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6.52

7.64
8.24
8.77

9.32
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11.4

6.77
7.56
7.98
8.32
8.64
9.24
9.78

11.9

5.32

6.83

7.34
7.73
8.18
9.63

5.07
5.95
6.41
6.76
7.08
7.64
8.14

10.0

3.82
4.13

3.38
3.86
4.20

4.75 4.49
5.16 4 97
5.51 5.39
6.27 6.90
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better. Here it may be recalled that the present calcula-
tion and the calculation of Das are the same except in the
treatment of the screening effect. A look at Table I will
convince one that the present results compare favorably
with the results of Scofield for heavier elements, say for
Z) 56. At lower energies the present results are a little
larger and are expected to be a little better compared to
those of Scofield [cf. Fig. 1(c)]i It may be noted further
that our results for Cu agree satisfactorily with the ex-
perimental results of Davis. But in this case there are no
results of Scofield. However, for Ni for which the value
of Z is just less by unity our results significantly differ
from those of Scofield. Unfortunately in this case there
exists no recent measurements, say by Davis. The old ex-
perimental results are disfavored by both the calculations.
So new measurements are needed to clarify the situation.
The 2 MeV energy for the electron is quite high. At this
energy one may expect very little effect of screening. As a
result the present calculation, the calculations of Scofield
and of Ndefru, Wills, and Malik, and of Davidovic and
Moiseiwitsch give nearly identical results (cf. Table I).
The agreement with the measurements of Li-Scholz
et a/. is also very good. In the above theoretical calcula-
tions exchange has not been included. When this is in-
cluded, the results at lower energies will be a little less, say
by 10% or less.

Differential cross sections depend sensitively on the
quality of the wave function used in the calculation. In
certain cases the effect of exchange is also very important.
Our present calculation is not expected to give a highly
accurate differential cross section except at small angles,
since on the one hand exchange is neglected and on the
other relativistic effects have been neglected when the
bound and ejected electron wave functions are calculated.
So in general we get results for differential cross sections
whose accuracies are similar to those of Das except for
the changes which occur due to the different way of treat-
ing the screening effect. Thus the results for the doubly
differential cross section d a/dE~d cosOt for Au for
300 keV electron energy and 20 scattering angle, present-
ed in Fig. 2, show a peculiar depression around 180 keV
energy, not present in previous theoretical results of Das
or of Das and Chakraborty, ' but give better agreement
with the experimental results of Komma and Nakel ' for
intermediate and lower energies. For high energies the re-
sults of Das and Chakraborty' give better agreement.
This last calculation uses a relativistic Sommerfeld-
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FIG. 2. Comparison of the doubly differential cross section
for the K-shell ionization of Au for different energies of the
detected electron. Theory: Pr, present calculation; D, Das (Ref.
2); DC, Das and Chakraborty (Ref. 10). Experiment: $, Kom-
rna and Nakel (Ref. 21).

Maue wave function for an approximate Coulomb po-
tential.

V. CONCLUSIONS

From the discussion of the last section it is more or less
clear that the present calculation gives good results for to-
tal cross sections, especially for medium-heavy elements.
The close agreement between the present results and the
results of Scofield is also highly encouraging. Thus the
way in which the screening effect is taken into account is
quite satisfactory. Moreover we do not face the sort of
difficulties mentioned in the Introduction. During our
calculation of the continuum-state ejected electron wave
function by the least-squares method we also face no trou-
ble and find very quick convergence with four or five
terms in expansion (10), at most. Salient relativistic ef-
fects have been included in our calculation. For better re-
sults for differential cross sections one needs to include
the exchange effect properly, and secondly, the bound and
ejected electron wave function need to be calculated in-
cluding the relativistic effects properly, possibly by solv-
ing the relevant equations variationally for the screened
Coulomb potential (2), especially for heavier atoms. Fi-
nally it may be stated that the calculation may be easily
extended for ionization from other shells.
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