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Renormalized theory of dissipative dispersive turbulent systems
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A systematic perturbation theory to deal with stationary, homogeneous turbulence in a dispersive
dissipative system is developed and is shown to be renormalizable. General properties of the renor-
malized equations are discussed, and for the specific case of Vlasov-Poisson turbulence, it is shown
that the present theory reduces to the conventional weak turbulence theory. Kramers-Kronig kind
of dispersion relations are derived for the nonlinear dielectric.

I. INTRODUCTION

There is a variety of models used to describe the non-
linear behavior of physical phenomena in different areas
of physics and engineering. Some of these systems, like
the Korteweg —de Vries equation (k-dV), have been exten-
sively studied to elucidate the properties of coherent non-
linear states, for example, the solitons. On the other
hand, Navier-Stokes equations and Vlasov-Poisson equa-
tions, etc., have been primarily investigated to study the
turbulent phenomena associated with these systems. It
may be noted that very specific conditions have to be
specified for a nonlinear system to allow a coherent solu-
tion. Thus one expects that the time asymptotic or
steady-state solution of a large variety of nonlinear sys-
tems will be a turbulent state; a small amount of dissipa-
tion could, in general, 'disturb the delicate balance between
nonlinearities and dispersion required to give rise to a
coherent state. To deal with the general problems, a very
elegant and formally powerful systematolog has been
developed by Martin, Siggia, and Rose' (MSR). However,
the MSR formalism is not easily amenable to applications,
and only lowest-order (in perturbation) solutions have
been obtained so far. Specifically, in Krommes, applica-
tion to the Vlasov-Poisson system, the nonlinear source
(defined in the text) has not been included in a solvable
form.

In this paper we take a less formal approach and
develop a systematic perturbation theory to deal with sta-
tionary homogeneous turbulence described by dispersive
dissipative systems with a quadratic nonlinearity. The
theory will contain Vlasov-Poisson, Navier-Stokes, k-dV,
and Boussinesq equations, etc., as its special cases.

To deal with a general statistical ensemble of tur-
bulence, we use a formal method called correlation expan-
sion to decompose the product of fluctuating quantities
into correlated and uncorrelated parts. This decomposi-
tion is carried out order by order using a diagrammatic
technique.

The existence of a formal reliable solution for the fluc-
tuating field requires that the theory be renormalizable,
which in the present context means that the compensating
term added to renormalize the linear part of the operator
must be canceled by appropriate contributions from the
nonlinear terms to each order. Thus, to each order in the

perturbation theory, the nonlinear term is uniquely split
into the coherent part, which is used to cancel the com-
pensating (or renormalizing) term, and the incoherent
part, which is to be interpreted as a nonlinear source. %'e
show, in this paper, that this is indeed possible. This
proof of renormalizability puts the perturbation theory on
a firm footing, and one can use it with great confidence.

The renormalized system, thus obtained, is-quite com-
plicated and not readily solvable. However, some qualita-
tive properties of the system can be discussed. For exam-
ple, the renormalized operator contains the entire infor-
mation about the response of the medium and can be seen
as a response function. ' This response function is shown
to be explicitly so for the Vlasov-Poisson case. This fur-
ther suggests that we could obtain relationships between
the real and imaginary part of the response function
(dielectric function) by invoking causality and thus obtain
a Kramers-Kronig kind of dispersion relation. This can
be quite important, because it allows us to determine the
real (imaginary) part of the response if the other is given
(say experimentally). The constraint of causality is also
necessary for the self-consistency of the system.

In Sec. II we develop the general theoretical framework
for dealing with a dissipative, dispersive system with a
quadratic nonlinearity. This kind of nonlinearity corre-
sponds to a Yukawa-type interaction. In Sec. III we dis-
cuss the general properties of the renormalized equations
and derive Kramers-Kronig dispersion relations for the
nonlinear dielectric function. Section IV is devoted to a
discussion of the Vlasov-Poisson system as an application
of our formalism and Sec. V contains a brief summary
and conclusions.

II. GENERAL THEORY

The nonlinear system under investigation could be writ-
ten as

Ly(x) =Ay(x),
where y(x) is a typical field variable (flow velocity, tem-
perature, electromagnetic fields, etc.), x =(x,t) denotes
the space-time coordinates, and L, and X are, respectively,
the linear and the quadratically nonlinear operators. As
usual, we transform this equation to Fourier space, where
all differential operators become algebraic. The
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transformed equation becomes

(G' ') 'g
k)

(k2 ——k —ki)

k(, k29 k)V k2 ~ (2)

Notice that pk is unrandom but has a k dependence. The
ensemble averaging (& )) yields the following equation:

where (Gk ') ' is the transform of the linear operator I.,
and the right-hand side is the convolution term obtained
by transforming the nonlinear terms. Vk k is the

strength of the coupling between different modes, and
k =(k, co) is the wave four-vector. The superscript (0) for
Gk is to explicitly display that it is unrenormalized or
the bare linear propagator. The wave yk is divided into
two parts, a random part yk and what we call an unran-
dom (for want of a better term) part pk,

quantities, for example, the nonlinear dielectric response,
etc.

This program is best accomplished using diagrammatic
techniques (Ref. 3). Let a solid line be used to denote ei-
ther Gk (when it occurs as a trunk including the top line)
or q&k (all others), the dotted line 2/k, and a bubble il k.
Then Eq. (6) is formally equivalent to

(t) (2) (5)

g + +
I I

kg

where the regular vertex represents the strength Vk k of
the interaction. Successive iterations of Eq. (7) will gen-
erate higher-and-higher-order terms. %'e display a typical
term which arises when the term (2) in Eq. (7) is iterated,

k)
(k2 ——k —k) )

k(, k~4'k(4'k2
+ 0 ~ 0

(G(0))—(-
k)

(k2 ——k —ki)

kk), k2~ k2f'k

k)
(k2 ——k —k) )

The equation obeyed by the random part will then be

The displayed term has two vertices and consequently
represents a second-order process, that is, the strength of
the process is quadratic in V. In addition, the process
represented by Eq. (8) has two distinct parts, one in which
the inner lines are contracted and the other in which they
have no correlation. That is,

kl
(k2 ——k —k) )

Vk (,k~'pk )'pk2 (4)
(k, } (9a)

(kk}

'Pk Gk 2
k,

(k~ ——k —ki)

k), k20k& pk2

Defining the renormalized propagator

G„=[(G„"')-'+'1 ] ',
we express Eq. (4) as

where the first term on the right-hand side denotes that
part of the process for which k& +k2 ——0 and contributes
to the self-energy of the system. The second term is the
rest of the process with (k() and (kz) implying that
k, +k2&0 for this diagram. This is essentially the
essence of the "correlation expansion" we described ear-
lier, and in terms of field amplitudes this reads

k)
(k2 ——k —kl )

V sky +6 iI„g (6)
0'k, 'Pk «Pk, Pk»+('Pk, )(+k (9b)

Equation (6) is the basis of developing a systematic per-
turbation theory. For this purpose, we very closely follow
the methodology of Ref. 3. Essential steps in this process
are

(1) Successive iterations of Eq. (6) to an appropriate or-
der;

(2) Making use of "correlation expansion" to separate
the terms into correlated and uncorrelated parts;

(3) To each order, canceling the compensating term
with the correlated parts, thus obtaining an expression for
iI k to the appropriate order;

(4) Showing that this canceling can be indeed accom-
plished to any desired order, thus proving the renormal-
izability of the theory; and

(5) Obtaining expressions for physically interpretable

where « )) is the correlation function to the second order
(in this case), and (yk ) and (g&k ) are uncorrelated, i.e.,

(10)

h-k)-kg k-k)

k-|t;Q k-k) kg + soo (ll )

or

where & ) is the ensemble average.
Following this procedure, we can prove the full cancel-

lations of the diagrams containing (iI k) with those dia-
grams containing self-energy, which yields
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After the full cancellation, the remaining part will be

+ «~) + +

k
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We notice that in Eq. (12), which is an expression for yk,
no sub-self-energy terms [see Eq. (13)] appear. In fact, the
general rule for constructing terms in Eq. (12) is to retain
all kinds of topologically allowed diagrams which do not
contain self-energy structures. All external lines are un-
correlated. The correlated parts have been drawn explicit-
ly in terms of internal lines and multiwave structures.
The general construction rules, as well as the proof of re-
normalizability to any arbitrary order, very closely follow
the procedure discussed in Ref. 3. Referring the reader to
Ref. 3 for all details, we simply sketch the major steps in
the renormalization program. The proof is based on the
following observations which are a manifestation of our
iteration procedure.

Obseruation (i) To a give.n order all possible self-
energy structures must appear except those (and neuer
those) that contain self-energy substructures. Henceforth,
an allowable self-energy structure (in which no self-energy
substructure can be isolated) will be called a completely
overlapping diagram.

Observation (ii) Agiven .diagram can appear only

once. There is no repeated diagram.
Obseruation (iii) For n. on-self-energy diagrams con-

taining self-energy substructures, all types of self-energy
structures produced in the lower perturbative order are
reproduced totally in the higher perturbative order.

Obseruation (iu) In the hi.gher-order diagrams there ex-
ists no new type of self-energy substructure which has the
same order as the self-energy structure that has already
appeared in a lower-order diagram. The details of proof
for these observations can be seen in Ref. 3.

Observation (i) suggests the choice of il k to b—e the
sum of all types of possible self-energy structures that
must be overlapping in topology. For example, the fol-
lowing diagrams, which we call sub-self-energy diagrams,
are prohibited:

(13)

The combination of the observations (ii), (iii), and (iv)
means that as soon as the cancellation takes place for the
lowest-order diagram containing iI k, the same cancella-
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III. GENERAL PROPERTIES,
KRAMERS-KRONIG RELATIONS

An examination of Eq. (14) reveals that even in the
lowest order, the system is quite complicated and not easy
to solve analytically. To obtain the spectrum Ik, and oth-
er higher correlation functions, one will eventually have to
resort to numerical techniques. In this paper, however,
we discuss only the general aspects of the nonlinear equa-
tions. We begin with categorizing the nonlinear systems
which can be studied within the framework of our equa-
tions. There are two principal categories.

Self excited -turbulence In this .case the source of tur-
bulence is some store of free energy in the system which
drives one or more of the unrandom modes of oscillations
unstable. For example, spatial inhomogeneities or veloci-
ty space anisotropy can provide free energy for a host of
plasma instabilities. Notice that the unrandom modes of
oscillation need not be linear; they could be nonlinear
coherent modes like the solitons provided the original
equation I.@=Xqv allows a soliton solution. In this case
the soliton solutions are to be interpreted as nonlinear nor-
mal modes, and the turbulence built around them will be
called soliton-excited turbulence. We remind the reader
that one of the principal aims of turbulence studies is to
determine the effect of turbulence on the properties of the
ambient system; it could be to determine turbulent trans-
port or the effect of turbulence on the structure of the sol-
itons. It is simple to find the conditions under which tur-
bulence does affect the initial unrandom state. Making
use of Eq. (9b), we write Eq. (3) as

«k"» '4k= k), k20k)'Pk2
k)

(k2 ——k —ki )

tion occurs for the higher-order diagrams that have struc-
ture plus iI k with the diagram with that structure plus
all self-energy structures.

The spectrum equation to the lowest order is readily
found to be

k= IGk i'Q
I k, k k, I'ik k, Ilk, I',

k)

where Ik = ((gkf&k )) in Eq. (14) is the fluctuation spec-
trum. Notice that Gk is a functional of the spectrum Ik.
For higher-order solution, it will turn out to be a func-
tional of the spectrum as well as higher-order correlations.

pie). Clearly, there is a back reaction only for k =0 or the
dc component of the original state. However, if
Vz z

—0, the initial state is unaffected by the presence of
turbulence. Thus we conclude that Vz ~&0 is required
for the turbulence to cause either anomalous transport or
distort the structure of the soliton. To determine these ef-
fects, we need to know the spectrum I&, and it is to deter-
mine Iz that the renormalized equations are derived.

Externally excited turbulence. In several problems of
interest, the turbulence is not due to an internal source of
energy, but is caused by an external stirring source. This
situation occurs, for example, in plasma heating experi-
ments in which high-amplitude electromagnetic waves are
excited in antennas or waveguides placed near the plasma
edge. The propagation characteristics of these waves in a
turbulent plasma (the turbulence is created by these waves
only) can also be studied within the framework established
in Sec. II.

Thus this is a large body of physically interesting prob-
lems which can be studied by making use of the renormal-
ized equations derived in Sec. II. Continuing with our at-
tempt to delineate general structural properties of the
equations, we now derive for the nonlinear system an ap-
propriate version of the Kramers-Kronig dispersion rela-
tion. In their simplest form the Kramers-Kronig disper-
sion relations are nothing but an expression of causality.
The final result of Sec. II can be schematically written as

g(k, a)) =G(k, co)S(k,co), (16)

g(t)= f G(r)S(t —~)dr, (18)

and we can use the above equation to obtain the con-
straints on G(co). For our purpose, it turns out to be
more convenient to deal with the inverse causal equation

0
S(t)= f G '(r)q(t r)dr—

where p(k, co) is the response, S(k, co) is the nonlinear
source, and G(k, co) plays the part of the dielectric func-
tion. Since G is a function of co, it implies that the rela-
tionship between @(t) and S (t) will be

y(t)= f G(r)S(t r)d~. — (17)

The above response can be made causal, i.e., the value of
@(t) at any time is determined solely by the value of the
source at times previous to the time of observation, by
demanding that G (~)=0 for r & 0. Thus

ki
(k2 ——k —ki )

Vk, , k, lk, &«i+k2) because we are interested in determining the constraints
on G '(co). The Fourier transform of Eq. (19) is obvious-
ly

k)
(k2 =k —kl ~

k), k~4'k)'(k~
S(co)=G '(co)y(co)

with

(20)

+ g Vu ~I~5
P

0
G '(co) = f dwG '(t)exp(ivor) . (21)

where the second term on the right-hand side determines
the back reaction of turbulence on the unrandom state
(plasma distribution function, or a k-dV soliton, for exam-

We notice that under reasonably mild conditions, i.e.,
G '(v)~0 sufficiently fast as r~oo, G '(co) is an ana-
lytic function of m in the lower half plane including the
real axis. Cauchy's theorem now leads us to
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1 6 '(co')dco'6 co
277l Q) —Cd

(22) I [.p( k)]
1 f +~ Re[iI (co k)]

(25)

where the closed contour consists of the real axis and the
great semicircle at infinity in the lower half plane. It is
useful to subtract the asymptotic value
[6 '(co)]„„=—[G '(co)]„ from both sides of Eq. (22).
This step followed by the substitution of the expression
for 6 '(co) [Eq. (5)] leads to

i I (co,k):6—'(co) —[6 '(co)]„y

=iI (co,k) i[—I (co,k)]„y
1 ~ il (co', k)

d,
' d'

2&l CO —CO

(23)

Realizing that I"(co,k) goes to zero as co~ oo, we can fol-
low the usual procedure to obtain the required dispersion
relations (P denotes the Cauchy principal value)

relating the real and imaginary parts of the renormalizing
factor i I (co,k) W. e remind the reader that Re[iI (co,k)]
implies a frequency shift (dispersion), and Im[iI (co,k)]
represents resonance broadening (absorption). The essence
of the Kramers-Kronig dispersion relations (a direct
consequence of causality) is that any resonance broaden-
ing must necessarily be accompanied by a frequency shift.
In addition, if either of these is known, the other can be
automatically calculated. Thus these relations can be used
as an important practical tool when some empirical
knowledge of the system is available. At the very least,
they are an important constraint which must be obeyed by
any physically reasonable theory. We end this section by
obtaining an explicit expression for il"„„From. Eqs.
(lla) and (lib) we notice that as co~Do, only the first
term will contribute to il (co,k) because all other terms
have higher powers of co in the denominator. Therefore

+k, k) I
q'(col~k)

I ~k) —k)
i [I (co,k)] = dco&dk&

co —co~ —f(k—k~)+iI (co —co~, k —k~)
(26)

1 A (k)d~ldk 1 ~k, k) ~k, —k) I q (coi, k i ) ! (27)

where A (k) is real, which helps us rewrite Eqs. (24) and
(25) in the form

which is of the same form as Eq. (6) if we make the fol-
lowing transformation:

R [.~( k)] A(k) 1 f d, Im[iI (co', k)]
q k ~fki 0k ~f0~ ~k), k2 L(k i )Ok, (33)

(28)

1 p f d, Re[I (co', k)]—A (k)/co'
t

(29)

IV. VLASOV-POISSON SYSTEM AND NONLINEAR
DIELECTRIC RESPONSE

In this section we demonstrate the scope of our formal-
ism by applying it to the Vlasov-Poisson system. The per-
turbed Vlasov equation (k&0)

We must keep in mind that Ok does not act on the propa-
gators which are produced by iteration. As usual
Gk = [(Gk ') '+il k] ', and in this case (Gk ')
=co—k v.

Diagrammatically, the dotted line used in Sec. II is now
changed to a shaded bubble to denote the zero momentum
quantity fo with the operator L(k) acting on it. For ex-
ample, typical terms in Eq. (12a) change as

(co k'»fk =«»fo—4k+ p L(k1 )fk k&0k&—
k(

(k)~k)
and the Poisson equation

(30) (34)

(31)q k=Okfk

where L(k) =( q/rn)k. d, and Ok—=(4mq/k )fdv (with

q and m as the charge and mass of the particles, c) as the
gradient in velocity space), can be combined to yield

k

(kI)

kq)
(35)

fk =GkL(k)foOkfk

+6k g L(k))fk k, Ok, fk, +GkiI kfk
k)

(k)~k)
(32)

We remind the reader that the terms depicted in Eq. (34)
have only one external line which must carry momentum
k, while the terms depicted in Eq. (35) belong to the class
of terms which contain more than one external line, none
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fk=ff+fk=~fk+fk . (36)

Taking all the coherent parts to the left-hand side, we ob-
tain

of which could carry momentum k. It is, indeed, in this
sense, that the former (with only one external line) are
called the coherent terms and the latter the intrinsically
incoherent terms. Formally we break up fk into a
coherent (fk) and an incoherent part (fI, ), i.e.,

of 8'k.
In the limit of weak turbulence we write down 8'k for

the Vlasov-Poisson system

et =Ek +2+ Ek, , k, k—lk,
(l) (3)

k)
(42)

where ek'=1+(4m/k )fdv Gk 'k dfo is the usual linear
dielectric function, and

sk, , —k, ,k= —
2 dvGk ki'~(3 ) 2' (o)

(1 ~)fk =fk . (37)

Making use of Eqs. (12a), (34), (35), and (37), we can write
down the diagrammatic structure of 3:

+ + + +

XGk 'k, (k BGk 'ki

+k, .BG„"'k) Bf, (43)

Okfk Ok~fk =0k Ok~Ok g k

=(1—
Ok A)V k Okfk—— (39)

Operating both sides of Eq. (37) with Ok, and using Eq.
(31), we obtain

with Ik = (pkyk ) as the spectrum of the perturbation.
Generally, wave-particle systems cannot be treated by

the simple formalism described here if the propagating
characteristic of the wave is taken into account. For ex-
ample, the system

i + —go=0,
Bx2

where A =AOk.
Symbolically, Eq. (39) can be cast into a form

+k9 k 0'k ~ (40)

where 5'k=—1 —OkAk is the dielectric function used by
Dupree. cpk is thought to be the clump function. How-
ever, this definition for the dielectric function given by
Eq. (40) is not the same as that in statistical mechanics
by7

ax2

which can be used as a model to describe Langmuir tur-
bulence cannot be treated by our theory because for this
system the renormalization of a "particle" propagator is
not sufficient. Any attempt to shrink the wave propaga-
tor would cause a Fermi-type interaction which is un-
renormalizable in the systematology given in this paper.

V. SUMMARY AND CONCLUSIONS

k
vT' $((pk {e) o

(e)

gf (@(e))='+Ok (.)
&f'k q "=O

(41)

where q&" is the unrandom external field associated with
the bare source p" within the plasma. The plasma, thus,
shields the bare source. Because the source is unrandom,
the shielding, or the induced field, is coupled to the back-
ground plasma. This coupling gives a contribution to 8'k
[defined in Eq. (41)] which results from the correlation
between the incoherent waves. In the Appendix we shall
show a derivation from Eq. (41), in which 8'k goes over to
5'k [Eq. (40)] in the limit of weak turbulence, when this
coupling is turned off. In the general case, this coupling
does exist, i.e., the dielectric function defined by Eq. (40)
is not the dielectric function defined in statistical mechan-
ics. The point of defining this dielectric (in Dupree's
sense) is that it is a measure of the average dielectric
response of a plasma to internally excited fluctuation
which could be thermally excited or be due to an instabili-
ty. For example, the simulation has shown a granulation
structure for (fkf k ). In the approximation of the
clump model the separation to the coherent and in-
coherent parts still makes sense, of course, not in a sense

We have developed a systematic renormalized theory to
deal with stationary homogeneous turbulence described by
dispersive, dissipative systems with a quadratic nonlinear-
ity. The nonlinearity is broken into two parts, a coherent
part which modifies the "dielectric function" and an in-
coherent part which serves as a nonlinear source. Several
general and structural properties of the renormalized sys-
tem are discussed, including. the constraints imposed by
causality which leads to Kramers-Kronig type of disper-
sion relations for the nonlinear dielectric function. Thus,
nonlinear dissipation (or frequency broadening) is related
to nonlinear dispersion (or frequency shift) and either of
these can be calculated when the other is known. We have
also demonstrated that the nonlinear dielectric function ck
defined in our formalism is generally not equivalent to the
standard definition in statistical mechanics, but is a mean-
ingful description of the average dielectric response to
internal plasma fluctuation. We have obtained an expres-
sion for Fk in the weak-turbulence limit for the Vlasov-
Poisson system. We have also shown that our results in
the appropriate limit are in complete agreement with the
results of the conventional weak-turbulence theory. We
believe that the set of Eqs. (11), (12), and (27)—(29) can
provide a very firm starting point to deal with a broad
class of turbulent problems.
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APPENDIX: THE NONLINEAR DIELECTRIC
FUNCTION IN THE LIMIT OF WEAK

TURBULENCE

(at+v V)fa —0. The equation for f' in the Fourier repre-
sentation (with k&0) is

f' = —G"'k af()Pk —QG»"ki afk k, Pk,
ki

(A2)

with Gk '=(co k—v+is) ', k&0, p» =pk(p"). The
Poisson equation in the presence of an unrandom source
1s

In the first part of this appendix we shall show that the
dielectric function defined by Eq. (40) is not the same as
that defined by Eq. (41). The difference comes out of the
coupling of the induced wave to the background wave. If
this coupling is turned off, the contributions to kk only
come from the coherent part. When the coupling is
resumed, the calculation started from Eq. (41) gives the
result in agreement with Refs. 2 and 8. Obviously, the
8' ' term in the expression for kk in Refs. 2 and 8 stands
for the correlation of the induced wave to the background
wave.

In the second part of this appendix we derive the spec-
trum equations in weak turbulence starting from Eq. (40).
The same scheme can be generalized to the second order
in the renormalized theory. It is found that Eq. (A22)
still holds for the renormalization with the same defini-
tions for 8'k, 8''k, 'k, 8''k, 'k k, , and 8''k', in which Gk

' is

replaced by the renormalized propagator Gk.
The Vlasov equation in the presence of an unrandom

external source P" is

[ar+v V+Vy(y").a]f(y")=0

(q =m = 1 for simplicity). We define f' =f(P")—fs
where fz = (f(P"=0) ), as usual, satisfies

l

2 f dv f„'(0)+gj 2
k 54''k'

y =O

=4'»+0k

where

fk(0) =—fk(P"'=0), 0'k =fk(P"=0),
and

'(t'k = g ~kk'
{e)

k 5$» y(e) p

Substituting Eq. (A4) into Eq. (A2) yields

f„= G„'"k.af",—(y, +y, )

G„'"k, af„„,(y„,+y, , ) .
ki

Iterating Eq. (A6) to the second order gives

4'k=y'k' —,J dvfk .

For an infinitesimal p'k', fk is expanded to get

(A3)

(A4)

(A6)

fk= —Gk k afPP» —Gk k af P

+ g Gk"k, aG„'",
, (k —k, ) af,(4„„,+y„„)(y,+y, )

ki
{k&~0,k

k), k2
{k~~0;ki~O,k)

I

k, (k—k —k ).af (p, +p„, )

X (0»2+4»2)(4'k —ki —»2+4» —ki —k2)+
(A7)

where the ellipsis represents unspecified higher orders which are neglected in the standard weak-turbulence theory. En-
semble averaging both sides of Eq. (A7), we obtain

(f„')= G„' 'k.af (p„)+— g G' 'k, .aG„' ', (k —k, ) af (p,p, )
ki

{ki~O,k)

Gk 'ki aG» 'k, k2 aG» 'k, k, (k —ki —kp). afc
k), k2

{k2+0;ki %0,k)

X((4»ip»24» k| »2)+(/k')(4»2$» ki »2)

+ (4k~ ~ (4'»i''k —»i —k2 ) + ( 4'k —ki —k~ ) ( 4k|4»2 ) ) + ' ' ' (A8)
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where the ellipsis represents unspecified nonlinear terms in ((t. In obtaining Eq. (A8) we used the decoupling conditions
(i)

(Qkpk &
= (fk & (pk &i ((t)kp»2$»3 & (4k & &'P»24'»3 &

and (ii)

(yk &=O.

Because of the homogeneity in space and time (&t k (t k & =Ik 5(k) + kz ); thus, Eq. (A8) is reduced to

G("1, aG„"'„,I,.a
k), k2

(k2%0;k)&O, k)

xGk —k) —»2(~ ~) ~2)'afo'&4'k, 4k,0k —k, k, &—

G„'"l,.aG, „ 1 .aG, , ( —1,) af,I, &y„&
k)

(k)~p, k)

Gk 'k( aG» k, ( —k() aG»k af Ik &(T(k&+ (A9)
k)

(k) ~O, k)

where the ellipsis represents unspecified nonlinear terms in ()). In obtaining Eq. (A9) we noticed that the choice k( —k
has been excluded.

Taking the functional derivative of fk with respect to (t)'k', we have

(o) . (o) . (o)= —G, 1 af, —g G, l, .aG, „,[1 aG, ( —1,)+(—1,) aG, 1 ] af,I,,5(t'k $(4)=0 k 5y(4')
y&e) O

(A10)

where

= —Qk5$" . 5(t '„' y(e) p

(Al 1)

Q„=—G,"'
1 .af, + g 1, aG„"',

k)

x[1 aG"'„(

The nonlinear terms in (t vanish when (t"=0. We
rewrite Eq. (A10) in the form

Equation (14) leads to

4m
Kk = 1 + d v QkQ2

(A15)

where Q» is defined by Eq. (A12). This derivation justi-
fies Eq. (42). However, when the coupling is resumed, i.e.,
(pkpk & cannot be decorrelated, a further iteration gives
the same result as obtained in Refs. 2 and 8, for kk.

In the following we show that the expression of ek
given by Eq. (39) is in agreement with the wave energy
equation of weak turbulence. From Sec. IV, the wave
equation is

+( —1 ).aG' '1] af I Ek(tk = (1 4k~ )4k =o«fk— (A16)

Substituting Eq. (A5) into Eq. (Al 1) yields

&&f4), 4 ) (
&fa

)

(A12)

(A13)

Writing the right-hand side of Eq. (A16) explicitly in the
limit of weak turbulence, we have

sk4k =
2 I "v Gk g &) aG» k, '—2

k)

~1) afofk)4'k —k)

Integrating Eq. (A13) over velocity space, and making use
of Eq. (38), we obtain

2

(Ek
' —1)= f dv Qkek (A14)

4~

Here we noticed that

Multiplying (t)k on both sides and ensemble averaging
yields

E»I»= z I dv6» 'gk) aG» 'k,
k)

x(l —I, ) af, &y, ,y„,,(t,*& .

k k
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The term (pk pk k pk) is calculated in the standard

weak turbulence by using the quasi-Gaussian approxima-
tion

4k"=—(2)

k)
(k2 ——k —ki )

(2)
Eki k2

Nk&kk2 ~ (A19)

~'(t'k)4k k(—4'k ~ = ~4k) '(bk —k)4'k ) + (kk)fk —k)'(bk )

+&Ok, Ok k.Ok*"'&

Defining

«",'k, —=—,f dvG„"'1,.aG„",'1, af, (A20)

with
and substituting Eqs. (A19) and (A20) into Fq. (Alg), we
obtain

k),k)
(k2 ——k —k),
k,' =k-k', )

(2)g
k)k2

ek&, k2 +~P (4'k&dk24'k~ 4k~ ~+
1 2

kl

(k' =k —k' )2 I 1

~(2)
I
2

1 2
1

k( k)
(k2 ——k —k) (k' =k —ks )2 2 1

(2)
I I
1 2

1 2
2

(A21)

4k), k —k) ~k, —k(
(2) (2)

k) ~k —k)

k)
(k2 ——k —kl )

2
~

e(2)
~

2

k& k2 . (A22)

The correlation function (pk pk pk pk ) is determined by
the Gaussian process, and then Eq. (A21) becomes

Substituting the expression for ek of Eq. (39) into Eq.
(A22), we just obtain the wave energy equation in the
standard weak-turbulence theory. The above exposition
clearly shows that the c,' ' term in the coefficient of Ik of
Eq. (A22), i.e.,

(2) (2)
k&, k —k) k, —k)

4& (n
k) &k —kl

is irrelevant to the dielectric function ck. It is contributed
from the interaction of the source term with the wave.
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