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Virtual Hopf phenomenon: A new precursor of period-doubling bifurcations
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A new type of noise-induced precursor of a period-doubling bifurcation is described. The usual
noise rise in the power spectrum at half the fundamental frequency, typical just before the onset of
period doubling, may be preceded by a pair of symmetrically located noise bumps characteristic of a
Hopf bifurcation precursor. The continuous evolution from the Hopf precursor to the period-
doubling precursor may be understood in terms of the behavior of the Floquet multipliers as a con-
trol parameter is varied. The necessary appearance of the virtual Hopf phenomenon may be proven
for a large class of low-dimensional systems, including the driven damped pendulum and the Lorenz
equations, between each successiue period doubling in the infinite cascade leading to chaos.

I. INTRODUCTION

This paper concerns the effect of external noise on sys-
tems that undergo period-doubling bifurcations. The bulk
of previous work on this topic focused on the dynamics of
discrete mappings, ' rather than differential equations,
subject to a random perturbative term. That body of
work emphasized the scaling properties for systems
displaying an infinite cascade of period doublings, which
accumulate at a critical parameter value marking the on-
set of chaos. A particularly interesting feature of this to-
pic is the interplay of truly random noise and underlying
deterministic chaotic dynamics.

More recently, a theory was developed to understand
the effect of noise near the onset of instabilities of period-
ic solutions of ordinary differential equations. Rather
than looking at an entire sequence of bifurcations (such as
the period-doubling cascade), the focus was on single bi-
furcations. It was found that external noise induced new
broadband lines in the observed power spectrum: The
nearer the bifurcation point, the more prominent are the
noise-induced lines. Furthermore, each general class of
instability —in the usual sense of bifurcation theory for
periodic orbits —has its own characteristic noise-induced
spectrum. These spectra have been computed for the five
most common codimension-one bifurcations: saddle-
node, transcritical, pitchfork, period-doubling, and Hopf
bifurcations. (The codimension-one bifurcations are the
instabilities typically encountered as a single parameter is
varied. )

It follows that, if external noise is present, the type of
instability to be suffered by a system can be deduced
before the onset of the bifurcation. The noise-induced
power spectra have consequently been named "noisy pre-
cursors" of their respective dynamical instabilities.

The theoretical predictions for the height, width, and
shape of the precursor peaks as the bifurcation point is
approached have been tested by experiments on voltage-
driven p-n junctions. The experimental results are in ex-
cellent agreement with the theoretical predictions, for the
two kinds of bifurcations tested, namely, period-doubling
and Hopf bifurcations.

Having decided that the theory of noisy precursors
gives a good basic understanding of the effects of noise
near the onset of simple instabilities, one can look for new
predictions based on the theory. One such prediction-
the "virtual Hopf" phenomenon —is the main subject of
this paper. Qualitatively, this phenomenon refers to a se-
quence of events (as some parameter varies) whereby the
noisy precursor of a Hopf bifurcation continuously
changes into the precursor characteristic of a period-
doubling bifurcation. Although experimental observation
of this phenomenon has not yet been reported in the
literature, one may prove that it must occur in certain sys-
tems (see Sec. III).

An understanding of the virtual Hopf phenomenon al-
lows one to make contact with a somewhat different prob-
lem, namely, the way in which noise makes unobservable
the very high period bifurcations in the period-doubling
route to chaos. As mentioned above, this is a prpblem
which has been directly addressed in previous work on
noisy discrete mappings. To describe this phenomenon,
Crutchfield and Huberman introduced the notion of a "bi-
furcation gap. " One way of understanding the gap is to
average the deterministic dynamical behavior over a win-
dow of parameter values' —this picture leads to good
quantitative results. In the present paper the bifurcation
gap is viewed in a new light by using the derived results
for the power spectra associated with the virtual Hopf
phenomenon. This is done by focusing on the driven,
damped pendulum, which is known to undergo an infinite
cascade of period doublings ' and also to undergo the
virtual Hopf phenomenon between each successive period
doubling (see Sec. IV).

This paper is organized as follows. The main ideas and
predictions of the theory of noisy precursors are summa-
rized in Sec. II. The virtual Hopf phenomenon is intro-
duced in Sec. III, where its existence is proven for a
specific example, namely, the driven damped pendulum.
Section IV gives a discussion of the bifurcation gap: First
a brief review of the gap based on scaling ideas for
discrete mappings is presented, and then the gap is recon-
sidered in terms of the virtual Hopf scenario. Finally, a
discussion centered on the generality of the virtual Hopf
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phenomenon —and the likelihood of observing it in
experiments —is presented in Sec. V.

II. REVIEW OF NOISY-PRECURSOR THEORY
(REF. S)

The theory of noisy precursors examines the effect of
external random noise on the power spectrum of nonlinear
systems having periodic output. In the absence of noise
the power spectrum consists of sharp spikes at integer
multiples of the fundamental frequency. Imagine that as
a parameter A, is varied, the deterministic system can un-
dergo a dynamical instability at some critical value ko.
Then for A, near A,p, external noise induces new broadband
peaks in the power spectrum. These lines become more
prominent as A. approaches A,o.

To gain a qualitative understanding of the origin of the
noisy-precursor lines, consider the situation depicted in
Fig. 1. For definiteness, suppose that the system is close
to the onset of a period-doubling instability, and focus on
an initial condition qp lying just off of the stable T
periodic orbit xp [Fig. 1(a)]. As the orbit through qp re-
laxes to the limit cycle xo, it repeatedly intersects the
Poincare section I', at points q{,q2, q3, . . . . Figure 1(b) 11-

lustrates that successive intersections approach the fixed
point q in an alternating fashion. (This is why a period
doubling is sometimes called a "flip bifurcation" in the
theory of discrete mappings. ) Consequently, the transient
part of the orbit is a damped, 2T-periodic oscillation.
The power spectrum of such an orbit will have a broad
peak at circular frequency {o=n/T—that is, at half the
fundamental frequency of the stable orbit xp. In a purely
deterministic system the trajectory would settle down to
the attractor xp for all times, and the transient would con-
tribute only negligibly to the measured power spectrum.
The effect of external noise is to continually kick the sys-
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FIG. 1. {a) Stable limit cycle xo is cut by the Poincare section
P: An orbit through qo relaxes to xo as t ~ ao. {b) Successive
intersections q; of the orbit through qo with the section P. Near
a period doubling, the q; approach q =xoAP in an alternating
fashion.

tern off of the stable orbit, so that the transient behavior
contributes significantly to the observed spectrum.

The quantitative analysis of the above model begins
with the set of differential equations governing the deter-
ministic system, augmented by a small stochastic term

(r),

x=F(x;A, )+g, xC R
where A, is a tunable parameter, and g' is white noise,

& g(r) & =0, &g, (r)g,.(r+r) & =r,,S(r),

(2.1)

(2.2)

so that the I;~ give a measure of the strength of the noise.
Let xp be a T-periodic solution of the noise-free system:

xp(t+T)=xp(r) . (2.3)

For small deviations q=x —xo, one may linearize Eq.
(2.1) about xp, with the result

g=[DF(xp,'A, )] ri+g',

where DF is the matrix of periodic functions

(2.4)

(D F)~J ——

~+j X=XO
(2.5)

For convenience, assume time is rescaled so that DF has
period 2n Equati. on (2.4) is linear with periodic coeffi-
cients, and an exact solution can be constructed using the
results from Floquet theory. " It is the Floquet
multipliers pk that play the central role in such an
analysis: They are defined in terms of special solutions

fk of the homogeneous equation associated with Eq. (2.4),
with the property

tpk(t +2m) =pktpk(t) . (2.6)

Since Eq. (2.1) is real, the multipliers p, k are either real or
come in complex-conjugate pairs. Moreover, stability of
the basic oscillation xp requires that all of the pl, lie inside
the unit circle:

(2.7)

An instability occurs when one or more of the pk exits
the unit circle—close to the onset of the instability, it is

.the near-critical multiplier(s) {Mp that dominate the ob-
served power spectrum. For codimension-one bifurca-
tions, there exists only a single critical {u,p (saddle-node,
transcritical, pitchfork, and period-doubling cases) or a
critical pair pp, {L{,p (Hopf case). Figure 2 summarizes how
the noisy-precursor lines depend on the value of pp. The
size and shape of the precursors depend on the distance of
pp from the unit circle—writing

~

{L{,p ~

= 1 —e, the precur-
sors sharpen and grow as the bifurcation point e=O is ap-
proached. The position of the precursors depends on the
argument 8 of pp.

For example, a period-doubling bifurcation corresponds
to a single multiplier exiting the unit circle at -1, so a
noisy-precursor line occurs at co= —,

' = half the fundamen-
tal (and at odd-integer multiples of this frequency). A
Hopf bifurcation corresponds to a pair of critical multi-
pliers exiting at e', e ', yielding pairs of precursor lines
at {@=8and 1 —8 (and at m+8 for all positive integers
m).
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FIG. 2. (a} Scaling of the height, width, and area of the
Lorentzian precursors as a function of I, the external noise
strength, and e, the distance of the near-critical multiplier po
from the unit circle. (b) Position of the precursors depends on 0,
the argument of po.

FIG. 3. Behavior of the Floquet multipliers (left-hand side)
and the corresponding power spectra (right-hand side) for the
virtual Hopf phenomenon. As a parameter is varied, the pre-
cursor characteristic of a Hopf bifurcation (a} changes into the
precursor of a period-doubling instability (d).

The basic predictions of Fig. 2 are in excellent agree-
ment with experiments performed on driven p njunc--
tions. We therefore conclude the following: To under-
stand the effect of noise on a dynamical system, under-
stand first the behavior of the Floquet multipliers. It has
been emphasized elsewhere that the effect of noise de-
pends intimately on the Liapunov exponents of the under-
lying dynamical system. " In the present case, in which
the system possesses a stable periodic orbit, there is a sim-
ple relationship between the Floquet multipliers pk and
the corresponding Liapunov exponents A,k.

» IPk I

=~k . (2.8)

Physically, —Ao gives the relaxation rate (near a bifurca-
tion) for the noise-free system after experiencing a small
impulse perturbation.

III. THE VIRTUAL HOPF PHENOMENON

We are now ready to launch into a description of the
main subject of this paper: the virtual Hopf phenomenon.
Specifically, consider the sequence of events illustrated in
Fig. 3. The left-hand side of Figs. 3(a)—3(d) shows the
hypothetical behavior of a pair of near-critical Floquet
multipliers as some parameter is varied, and the corre-
sponding power spectra one would observe if noise was
present are shown on the right-hand side.

Initially, the complex-conjugate pair lies very close to
the unit circle [Fig. 3(a)], a situation that generally occurs
just before the onset of a Hopf bifurcation. However, in-
stead of exiting the unit circle, the multipliers move along
the circle

~ p ~

=1—e [Fig. 3(b)], until they meet on the

negative real axis [Fig. 3(c)]. The corresponding power
spectra show the precursor bumps shifting and then merg-
ing at half the fundamental frequency co=coo/2. Upon
changing the parameter further, the two multipliers split
up along the negative real axis [Fig. 3(d)] until one of
them crosses the unit circle at p = —1, heralding the onset
of a period-doubling bifurcation. During this last phase,
the power spectrum shows the usual noisy precursor
characteristic of a period-doubling instability.

The sequence of power spectra in Fig.-'-'3 is referred to as
the virtual Hopf phenomenon, since the noisy precursor of
a Hopf bifurcation —instead of giving way to the actual
Hopf instability —changes continuously into the precursor
of a period-doubling bifurcation.

The following question now arises: Is the sequence of
events of Fig. 3 a common precursor of period doubling,
or does it represent a very rare phenomenon? It is now
shown that the virtual Hopf phenomenon is not rare.

To show that it happens at all, consider the equation

pLpc5 +pc5+5(1+pL cos5)+sin5=I (3.1)

which was first studied in connection with a dc-biased
Josephson junction circuit. The solutions of Eq. (3.1)
show a wide variety of dynamical behavior as the three di-
mensionless parameters pL, pc, and I are varied. Of
relevance here is that, for most values of pt. and pc stud-
ied, a simple oscillation 50(t) undergoes a period-doubling
bifurcation as I is lowered from a high value. ' ' This
system is particularly noteworthy because it has proven
possible to accurately determine, using anaIytE'c calcula-
tions, both the basic oscillation 50(t) and the value of I at
which the onset of period doubling occurs. ' ' The suc-
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x=F(x, t), xH I
with

(3.3)

(a) 8 F—
8

6I

—p8 —coo sin 8+2 +Bcos t2 (3 4)

(b)

(e)

FIG. 4. Computed behavior of the Floquet multipliers for the
system (3.1), with Pi ——3.0, P, =0.1, and (a) I =10.0, (h)
I=7.5, (c) I =5.1, (d) I =5.0, (e) I =4.9.

The dynamics of this system has been documented exten-
sively in the physics literature. ' As the four parame-
ters y, coo, 3, and 8 are varied, the system exhibits a
variety of instabilities. Of particular interest here is the
observed cascade of period doublings leading to chaos as,
say, the parameter 8 is increased from zero.

The main point is this: Between any two period dou-
blings in the infinite cascade, the Floquet multipliers
behaue as in Fig 5. .Consequently, in the presence of
external noise, the power spectrum will show the virtual
Hopf sequence over and over again.

The proof of this assertion relies on a theorem" con-
straining the product of all the Floquet multipliers pk.

X T
ff p, i, =exp J div F(xa)dt (3.5)
k=1

where xa(t) is a stable T-periodic solution, and F is the
vector field of the governing differential equation [see,
e.g., Eq. (3.4)]. The constraint Eq. (3.5) has a simple
physical interpretation. ' ' The left-hand side gives the
factor by which volumes of phase space expand or con-
tract under one iteration of the Poincare return map (see

cess of the analytic approximations rests on the fact that
50(t) has very little higher harmonic content. The reliable
representation for 5a(t) means that one may reliably com-
pute the Floquet multipliers pk for this system. As was
shown in an earlier paper, for PL, ——3.0, Pc ——0. 1, the pk
behave as in Figs. 4(a)—4(e) as I is lowered from 10.0.
This is essentially the same sequence as Fig. 3 and
represents a directly calculated example of the virtual
Hopf phenomenon.

[A technical point should be explained here. In systems
governed by autonomous equations, such as (3.1), there is
always a single multiplier at @=+1. Geometrically, this
corresponds to the fact that the orbit is neutrally stable to
perturbations along the limit cycle. The chief effect of
this multiplier is to broaden the sharp lines in the power
spectrum arising from the basic oscillation xa. The
remaining features of the noisy-precursor spectrum are
governed by the behavior of the other, unconstrained mul-
tipliers, as summarized in Sec. II.]

In general, the direct analytic computation of pk is im-
practical, since one must first compute explicitly a stable
periodic solution of the governing nonlinear differential
equation. Nevertheless, it will now be shown that the
behavior illustrated in Fig. 3 must occur in one of the
most pedestrian of dynamical systems, namely, the driven
damped pendulum

~+y0+~osinO=A+Bcost . (3.2)

This may be written in the standard form

(a) Re
hatt.

(c)

(e)

FIG. 5. Behavior of the two Floquet multipliers for the
driven, damped pendulum (3.2), between any two successive
period-doubling bifurcations.
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div F=Tr (DF)= —y, (3.6)

and since the system is two dimensional, there are only
two Floquet multipliers, so Eq. (3.5) becomes

p~p2 ——e r & 1 (3.7)

since we assume that the pendulum is truly damped, and
thus y &0. From Eq. (3.7), one may conclude two impor-
tant facts regarding the Floquet multipliers for this sys-
tem.

(i) If p~ and pz are complex ( and therefore p~ ——pz)
then they lie on the circle

(3.8)

which lies inside the unit circle.
(ii) If p~ and pz are real, then stability of the basic solu-

tion xo requires
l pk l

& 1, so

e ""&ink I
&1 k=1». (3.9)

Together, Eqs. (3.8) and (3.9) demand the occurrence of
the virtual Hopf sequence between any two successive
period doublings. Consider the parameter window
B& &B &Bz, where B~ and Bz are the bifurcation points
for consecutive period doublings. For B slightly greater
than B&, one of the multipliers must lie near + 1 (since,
by decreasing B, the system would undergo a pitchfork
bifurcation). If e denotes a small, positive number, then
one may write

(3.10)

How can one of these multipliers move continuously
from the positive real axis [Eq. (3.10)] to the point p = —1

and still satisfy the necessary constraint conditions (3.8)
and (3.9)? The only way is [see Figs. 5(a)—5(e)] for them
to meet at p=e r, move along the circle (3.8) as a
complex-conjugate pair until they meet again at
p= —e, and then split up along the negative real
axis. Figures 5(c)—5(e) are precisely the virtual Hopf se-
quence depicted in Fig. 3, as claimed.

Note that the above proof rests on only three facts: the
existence of consecutive period doublings, the two-
dimensional governing equation (so that there are only
two multipliers), and that div F is strictly negative. As a
result, the argument holds for other driven oscillators as
well (such as the driven Duffing oscillator' ' ). More-
over, since autonomous systems necessarily have one mul-
tiplier constrained to be p=+1, the proof is easily ex-
tended to include third-order autonomous systems with
div F &0 that display successive period doublings, such as
the Lorenz equations ' and the Koch-Miracky equation
(3.1).

The question as to whether the virtual Hopf

Fig. 1). The right-hand side is the change in the infini-
tesimal comoving volume V,

1 dV =div F(xo(t) },
V dt

integrated over one period of the orbit xo.
For Eq. (3.3), div F is a constant,

phenomenon might occur in higher-dimensional systems
is addressed in Sec. V.

Note that it has been assumed implicitly that the damp-
ing is finite, y= —divF& oo. Otherwise, a multiplier
could pass continuously from + 1 to -1 along the real
axis without violating constraint (3.7). In terms of the
Poincare return map, this implies that phase-space
volumes contract by a finite amount per iteration. This is
clearly a necessary physical property for flows, since one
must be able to follow trajectories uniquely both forward
and backward in time. In the more general study of
discrete dynamical systems, however, it is possible to have
infinite contraction, allowing eigenvalues to pass through
the origin.

IV. BIFURCATION GAP REVISITED

g2/y
K2p

(4.1)

where 5 is the familiar Feigenbaum constant
(5=4.69920. . . ), and y is a new scaling exponent intro-
duced to describe the scaling between the noise strength
and the parameter value for which the Lyapunov charac-
teristic exponent first becomes positive. This exponent
was determined from numerical simulations to be
y =0.82+0.01, so that Eq. (4.1) becomes

Aside from being an interesting phenomenon in its own
right, the virtual Hopf sequence provides a new way of
viewing the so-called bifurcation gap first described by
Crutchfield and Huberman. This section begins with a
brief review of the basic features of the bifurcation gap.
Then, the gap is reevaluated in terms of the noisy-
precursor picture, and an explicit expression for the power
spectrum during the virtual Hopf sequence is produced.
The two views are compared briefly in Sec. V.

A. The bifurcation gap

In the absence of noise the period-doubling route to
chaos consists of an infinite number of bifurcations which
accumulate geometrically at some critical parameter
value. ' Crutchfield and Huberman first studied the
effect of random noise on a differential equation known to
possess a period-doubling mscade: a driven, damped os-
cillator in a quartic potential. That work, mrried out on
an analog computer, showed that thy noise truncates the
observable sequence after a finite number of bifurcations.
The authors introduced the notion of a bifurcation gap to
describe the manner in which noise washed out the fine
structure of the deterministic bifurmtion diagram. The
simulations showed evidence that the size of the bifurca-
tion gap scaled with the input noise level.

One way of quantifying the effect of the noise, and the
one of interest for this paper, was based on extensive digi-
tal computations performed for the discrete logistic map. '

First, one defines ~~ as the maximum input noise strength
for which one can resolve an orbit of (at most) period p.
That is, the slightest increase of noise above ~~ will wash
out the period p orbit, making the largest observable
periodic orbit —,p periodic. Scaling arguments lead to the
result'
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a=6.62 .
K2p

(4.2)

Thus, raising the noise level by 16.4 dB should obscure
the highest-order period-doubling bifurcation.

A similar understanding of the bifurcation gap based
on the effect of noise on a one-dimensional finite-
difference equation has also been reached using nonequili-
brium field-theoretic techniques and via a
renormalization-group approach, the latter approach
yielding sc to several significant figures: ~=6.61903.

Strictly speaking, Eq. (4.1) holds only asymptotically as
p~ oo, since it is based on scaling arguments valid in this
limit. Nevertheless, such scaling arguments often give
quantitatively good results away from the accumulation
point for the period-doubling cascade. Indeed, the predic-
tion Eq. (4.1) agrees with measurements made on a
periodically driven p -n junction. 5

B. Power spectra for the virtual Hopf sequence

Now consider the effect of noise on the period-doubling
cascade in terms of noisy precursors. In particular, con-
sider the driven pendulum, Eq. (3.2), immediately after a
period-doubling bifurcation to an orbit of period T. The
multipliers thus sit as illustrated in Fig. 5(a). Consequent-
ly, there is a noise bump centered at the new fundamental

frequency coo 2m/T. S——ince the deterministic frequency
spike at coo grows continuously (as a function of parame-
ter A.) from zero height at the bifurcation point Ao, one
must sweep the parameter some finite amount past the bi-
furcation point in order to unambiguously view the new
frequency spike above the background noise.

As A, is increased further, two things happen to help
resolve the new spike above the noise: the spike at coo con-
tinuous to grow, while the precursor bump diminishes.
The key point here is that the growth of the spike and the
diminution of the noise bump may be insufficient to en-
able the spike to be unambiguously observable above the
noise background. This would effectively wash out the bi-
furcation.

To determine the condition for obscuring the spike at
a/o, consider again the virtual Hopf sequence of Fig. 5 and
see what happens to the noise level at co=coo. Between
Figs. 5(a) and S(b), the precursor bump, centered at a/0, di-
minishes. Between Figs. 5(b) and 5(d), this bump splits in
half, and the two daughters shift their centers continuous-
ly, without changing their size and shape. During this
phase, again, the amount of noise at coo steadily decreases.
Just at Fig. 5(d) the daughters merge into a single bump at
co=coo/2, and this bump grows [Fig. 5(e)] as the next
period doubling is approached. During this final phase,
the noise level at co=coo essentially remains constant (in
fact, it increases slightly) even though the precursor bump
becomes narrower.

Consequently, the minimum noise level at coo during the
virtual Hopf sequence occurs when the two multipliers
meet on the negative real axis. The noise spectrum at this
parameter value is now computed explicitly.

Assume, first of all, that the stable T-periodic solution
80(t) of Eq. (3.2) has been found. For convenience, imag-
ine that time is rescaled so that T =2m—the task then is

to find the value of the power spectrum S(a/) at co= 1.
The deviation g from the periodic solution satisfies the
linearized equation

i)+yg+ [a/0 cos 80(t) )g =g(t), (4.3)

where the noise g(t) is taken to be zero mean and 5 corre-
lated with variance I:

(pr) ) =o, (g(i)g(i') ) = I &(t —r') . (4 4)

The homogeneous equation associated with Eq. (4.3) has
the special Floquet solutions

X/, (t + 27r) =p/, X/, (t), k =1,2 .

In general, the p~ satisfy the constraint [see Eq. (3.7)]

(4.5)

(4.6)

C(r) = ( (g(t)g(t +r) ),„,), , (4.8)

where the ( ),„, denotes an ensemble average and ( ),
denotes a time average. The general derivation of Ref. 5
may be immediately applied to the special case of two
multipliers, yielding

(r/(/)g(i+r)), „,= g I h, (t)h/, (t+r)e
r, k =1

X f e ~" "g„(t')g/, (t')dt',
(4.9)

where the limit Eq. (4.7) has been taken, and where the
functions h„(t), g„(t ) are 4m-periodic functions of time,
such that

h„(t +2~) = h„(t), —

g„(t'+2m)= —g„(t') .
(4.10)

A detailed derivation of Eq. (4.9) can be found in Ref. 5:
As will be seen, an explicit representation for the func-
tions h„,g„ is unimportant for the present purposes.

In any measurement of a power spectrum one needs to
take a time series of much longer duration than any
relevant characteristic time of the system being studied.
Consequently, the following ordering is appropriate:

t»y »T . (4.11)

In the case of light damping (y « 1), the integral appear-
ing in Eq. (4.9) has a simple form. The integrand is the

There is a technical point to consider: The existence of
two linearly independent solutions of the form Eq. (4.5)
requires that the two multipliers be distinct, in which case
the results of Ref. 5 are immediately relevant. However,
the case of interest here corresponds to

(4 7)

To rectify the situation, the calculation will be carried out
for the p/, sitting on the negative real axis, with pi&@2
[as in Fig. 5(e)], and taking the limit as pi~pz.

We are now in the position to compute the correlation
function C(r):
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product of a fast oscillating factor and a slow decaying
exponential. In view of the ordering (4.11), one has

e ~" ' 'g„(t')gt, (t')dt'=
0

(4.12)
y

where Q„t, is the average value of the oscillating function

g, ( t') gt ( t').
Equation (4.9) thus becomes

(7)(t)7J(t+r)).„.= y r -h. (t)hk(t+r)e
r, k=&

(4.13)

C(r) =—e t~ 'A(r), (4.14)

where

2

A(r)= g (Q„t,h„(t)ht, (t+r)), (4.15)

is a 4m-periodic function of r, such that

and the correlation function C(r) is the time average of
this,

of Eq. (4.2),

= (6.56)
K2p

(4.19)

which should be compared with Eq. (4.2).
In summary, the result (4.19) rests on three facts. First,

an understanding of how the precursor peaks vary be-
tween each bifurcation in the infinite cascade tells one to
focus on the calculation of the power spectrum at the
point where Eq. (4.7) holds. Second, this calculation
shows that the minimum noise level at the fundamental
frequency is just proportional to I . Finally, the universal
scaling of successive spikes in the power spectrum leads to
Eq. (4.19).

It should be emphasized that Shraiman et al. first
pointed out that the scaling argument leading to Eqs. (4.1)
and (4.2) agrees numerically very closely with the ratio of
successive subharmonics in the power spectrum. In one
sense, the derivation leading to Eq. (4.19) simply exploits
this "coincidence. " On the other hand, the derivation of
Eq. (4.19) shows that this is not merely a numerical coin-
cidence: Feigenbaum's subharmonic scaling relation, to-
gether with the theory of noisy precursors, leads to Eq.
(4.19) without any additional scaling hypothesis.

A(r+2~) = —A(~), (4.16)

this last fact following from Eq. (4.10). Expanding A(r)
in a Fourier series yields

A(r) = g a„e'"', a „=a„',
1l odd

(4.17)

the even-n terms in the summation being absent owing to
Eq. (4.16).

Finally, the power spectrum S (co ) is given by the
Fourier transform of Eq. (4.14),

(4.18)

so that the broadband part of the power spectrum is a
sum of Lorentzians centered at ~=n/2, where n is an
odd integer.

From Eq. (4.18) come two important facts. First, the
output noise level at any fixed value of co is proportional
to the input noise intensity. Second, for small damping
(y « 1), the noise level away from the frequencies
co= n/2 is essentially independent of y.

Equation (4.18) gives the smallest value for the noise
spectrum (at co= 1) during the virtual Hopf sequence.
The next question is as follows: How large does the spike
at co=1 grow, and will it become larger than the noise lev-
el at ~=1'7 The answer comes from a result originally
due to Feigenbaum, which gives a scaling relation for
the maximum amplitude attained by successive subhar-
monics in a period-doubling cascade. The result states
that the maximum power level drops by a factor of (6.56)
at each bifurcation.

Thus, suppose the noise level given by Eq. (4.15) is suf-
ficiently large that the frequency spike at co=1 cannot be
resolved. Then, since Eq. (4.18) varies linearly with I, in-
creasing I by a factor of (6.56) will surely obscure the
previous period doubling as well. In terms of the notation

V. DISCUSSION AND CONCLUSIONS

The theory of noisy precursors studies the effect of
noise on ordinary differential equations (ODE's). One
finds that the central role in the analysis is played by the
Floquet multipliers. The virtual Hopf phenomenon corre-
sponds to a specific behavior of the multipliers preceding
a period-doubling bifurcation, in which the power spec-
trum first shows precursors characteristic of a Hopf bifur-
cation, but then evolves into the period-doubling precur-
sor. Not only is the corresponding behavior of the multi-
pliers hypothetically possible, but (as demonstrated in Sec.
III) it must occur between each successive period doubling
in the driven, damped pendulum. The proof of this was
possible because of the low dimensionality of that
system's governing equation —in low-dimensional systems,
Eq. (3.5) is a very severe constraint. The proof also re-
quired that the dissipation was finite. While this might
strike one at first as a somewhat technical point, a
moment's reflection shows that it is related to the practi-
cal issue of the likelihood of experimentally resolving the
virtual Hopf phenomenon. The magnitude of the dissipa-
tion [y in Eq. (3.2)] determines how close the complex-
conjugate multipliers are to the unit circle during the vir-
tual Hopf sequence. Thus, the size of the precursor
bumps depends on the dissipation [Fig. 2(a)]—the smaller
the dissipation, the more prominent the precursors. Con-
sequently, while the dissipation for an ODE will naturally
be finite, the probability of detecting the virtual Hopf
phenomenon above the background will be enhanced if
the dissipation can be lowered as much as possible. It
should be clear that the proof of Sec. III is easily extended
to all second-order nonautonomous systems, with positive
dissipation, which are known to undergo successive period
doubling s. Furthermore, the argument extends to all
third-order autonomous systems with positive dissipation
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[such as Eq. (3.1) and the Lorenz equations] which might
undergo successive period doublings. This is because
there is an additional constraint in the autonomous case
that one multiplier always be + 1.

Is the virtual Hopf phenomenon thus limited to
second-order nonautonomous and third-order autonomous
systems? (It cannot occur in still-lower-dimensional sys-
tems, since it requires the existence of a pair of complex-
conjugate multipliers. ) This remains an open question;
however, it is tempting to think that, since systems under-
going period-doubling cascades often behave like very-
low-dimensional systems, the virtual Hopf phenomenon
might be fairly typical.

A theory analogous to that developed for ODE's is pos-
sible for discrete mappings subject to noise, the central
role being played by the eigenvalues of the mapping
linearized about the bifurcating fixed point. Such a
theory will have all of the same codimension-one precur-
sors derived in Ref. S. A linear-response calculation,
representing an important start in this direction, has been
carried out for period doubling of a one-dimensional
discrete mapping. There is one interesting difference be-
tween the noisy precursors for the two cases, however.
While period doubling can occur in one-dimensional map-
pings, the virtual Hopf phenomenon requires at least a
two-dimensional (real) mapping. This is because the ex-
istence of a pair of complex-conjugate eigenvalues re-
quires at least two eigenvalues, which in turn requires that
the mapping be (at least) two dimensional. In contrast,
the lowest-dimensional ODE allowing period-doubling bi-
furcations (second order, driven) can also show the virtual
Hopf phenomenon.

This last point suggests a "test" for our understanding

of the bifurcation gap. Suppose we have a high-
dimensional system of ODE's that is known to undergo a
period-doubling cascade. It is often pointed out that these
systems behave very much like a corresponding low-
dimensional system, for example, a one-dimensional
noninvertible mapping. But it could be, in order to prop-
erly capture the effect of external noise, that the system
behaves more like (say) a two-dimensional mapping that
shows a virtual Hopf sequence. Perhaps this point should
not be emphasized too greatly, for even if it is true, the
much simpler one-dimensional map might prove perfectly
adequate so far as deterministic effects are concerned.

Finally, the virtual Hopf sequence provides one with a
new way to view the period-doubling bifurcation gap.
The two viewpoints described in Sec. IV- one based on
discrete mappings, the other on the noisy precursors for
ODE's—share some things in common. In particular,
they both rely on the deterministic scaling laws of sys-
tems. On the other hand, the former understanding rests
either on the notion of averaging the deterministic dynam-
ics over a range of parameter values to model the effect of
noise or on additional scaling laws for the noisy map-
ping, whereas the latter is based on the role of transient
orbits and their contribution to the observed power spec-
trum in the presence of noise.
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