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—PH~The logarithm of the quantum Boltzmann density p r(X) = (X

~

e
~

X), where

H~ ——p /2m + V, is expressed as a cumulant expansion in powers of U = V —8' where
8'(x) = V(X)+ V'(X)(x —X)+ 2 V"(X)(x —X) is the local quadratic approximant to V(x) at the

point X. Where V"(X)&0, this expansion behaves "nonsecularly" as P—+ co (all its terms -P), and
thus remains a useful approximation scheme even as the temperature P '~0 (in that limit, it yields
Rayleigh-Schrodinger perturbation expansions of the ground state of H v). By Taylor expanding
U(x) about X in the cumulant expansion, we obtain an expansion which is a resummation over
powers of V"(X) of the Wigner-Kirkwood (WK) expansion of lnpl, this "renormalized" WK expan-
sion, whose coefficients are simple functions of V"(X), is as simple to use as the ordinary WK ex-

pansion, yet more accurate where V"(X)&0, and usable down to zero temperature where V"(X)& 0
(yielding, in that limit, WK-type expansions for the ground state of Hz). In lowest order, it yields
an approximation initially proposed by Miller.

I. INTRODUCTION

—1/2g —I —ti V(X)
P V, cl e

where

; 1/2

(1.2)

(1.3)

is the thermal wavelength (i.e., the de Broglie wavelength
at energy P '). Various improvements to pi, &

have been
proposed, ' notably expansions of pz(X), or of its loga-
rithm, in powers of R (Wigner-Kirkwood expansions),
and classical path approximations. '

In this paper, we obtain a new set of approximations by
applying cumulant expansion methods as used in the
theory of stochastic processes and the theory of relaxa-
tion. ' We use the path-integral representation" to facili-
tate our intuitive understanding. Our main result of prac-
tical interest is a resummation over powers of V"(X)
[V(x)—=d V/dx ] of the Wigner-Kirkwood (WK) expan-
sion, providing systematic corrections to an approxima-
tion initially proposed by Miller. This "renormalized"
WK expansion has been succinctly presented elsewhere
here we give the details of the derivation, and a more
elaborate physical discussion. The general approach fol-

The quantum Boltzmann density
2

p„(X)=(x~e '~X), H, = ~ +V,2'
where P ' is the temperature and Hi is the Hamiltonian
for a particle of mass m moving in one dimension over a
potential V(x), is of considerable practical importance,
but usually difficult to compute. Simple approximations
are thus most welcome. A basic approximation, valid in
the high-temperature limit (P~O) is the classical

lows a previous paper. '

We start from the observation that at high tempera-
tures, and also at low temperatures in certain cases, pi (X)
is mostly determined by the values of V(x) within a limit
ed interval (b,x)i tix around the point X. A useful ap-
proximation may thus be obtained by substituting for
V(x) another potential W(x), chosen such that
W(x)=-V(x) inside the interval hx, yet simple enough
that pii (X) is known exactly, i.e.,

pi (X)=pit. (X) . (1.4)

Three different forms for W(x) naturally suggest them-
selves: (a) a constant, (b) a linear approximant, and (c) a
quadratic approximant. The first choice yields the classi-
cal approximation (1.2), while the other two yield approxi-
mations initially introduced by Miller.

To obtain corrections to the approximation (1.4), the
straightforward procedure is to expand pv(X) in powers
of the "perturbation"

u(x)=V(x) —W(x) .

The terms of that expansion, however, behave secularly
(i.e., nth term -P") as P—woo, so that the expansion is
useless for getting approximations at low temperatures.

The difficulty is similar to that met in the theory of re-
laxation, ' and the same solution obtains; viz. , expand
input(X), rather than pi (X), in powers of u, thereby get-
ting a curnulant expansion. ' ' Because of the properties
of cumulants, that expansion behaves properly (all terms
-P) as 13—+ oo, provided the ground state of Hti is isolat
ed. The latter condition assures that the stochastic pro-
cesses associated with pit (X) have finite memories In the.
limit P~ oo, the above cumulant expansion in powers of u

becomes the Rayleigh-Schrodinger perturbation expansion
of 21n+(X) 13EV, where @(x)—and Ei are the ground-
state wave function and energy of Ht
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The terms of the cumulant expansion are of the form
00 T

d"x v(xi)v(x2) v(x„) d"t P„'(xi,ti,'. . .,'x„,t„)
00 0

(1.5)

of the results obtained also apply to the nondiagonal ele-
ments of the density matrix (1.8), provided some trivial
modifications are done. An appendix contains technical
details.

A (d/dX) and A V(X), (1.7)

where the renormalized parameters A and A' tend to A,

and P as P~O, but stay finite as P~ oo, provided
V"(X)&0. This expansion, whose coefficients are simple
functions of V"(X), is as simple to use as the ordinary
WK expansion, yet more accurate [where V"(X)&0],and
applicable down to zero temperature where V"(X)&0. It
is our main result of practical interest.

The above treatment could be extended to the case of
more than one dimension and to nondiagonal elements of
the thermal density matrix

pr(X, X') = (X'
~

e
~
X) . (1.8)

The evaluation of the terms of the resummed WK expan-
sion would then be much more involved, however. For-
mulas for the terms of the ordinary WK expansion in this
general context have recently been given in Ref. 5, and in
Ref. 6 if a magnetic field is present.

In Sec. II, we motivate in a heuristic manner the ap-
proximation pi —-pii where W(x) is a local approximant
to V(x). In Secs. III and IV, the direct and cumulant ex-
pansions of pi (X) in powers of V —IV are written down
and analyzed. In Sec. V, we study some general features
pertaining to the cases where W(x) is quadratic. In Sec.
VI, the generalized Wigner-Kirkwood expansions are con-
structed. The specific cases where W(x) is a constant, a
linear approxim ant and a quadratic approxim ant are
treated in Secs. VII, VIII, and IX, respectively. We end
with a short discussion in Sec. X, pointing out that many

(T=Pfi) where the functions P„' are combinations' of
propagators over the potential W'(x). With W(x) given
by one of the three choices indicated earlier [ W'(x) at
most quadratic in x], the functions P„' are known in
closed form. The integrals (1.5), however, can be evaluat-
ed in closed form only if v (x) is a polynomial in x. Oth-
erwise, (1.5) must be evaluated numerically; although this
is not impracticable for the lowest-order terms, much of
the simplicity of the initial approximation (1.4) (known
exactly) is lost.

But the fact that (1.5) is exactly calculable for v(x) a
polynomial suggests that closed-form corrections to (1.4)
be gotten by Taylor-series expanding each factor v(x;)
about X in (1.5). We thereby get a generalized Wigner-
Kirkwood type of expansion of lupi (X). In the case
W(x)=const, this is the ordinary WK expansion 6 in
powers, formally, of

A, (d/dX) and PV(X) . (1.6)

Because A, and p tend to infinity as the temperature tends
to zero, this expansion is not usable at low temperatures.
However, in the case where W(x) is a quadratic approxi-
mant, the above procedure yields a renormalized WK ex-
pansion (i.e., a partial resummation of the ordinary WK
expansion) which is in powers of

II. APPROXIMATIONS TO py(X)
VIA LOCAL APPROXIMANTS TO V(x)

Classically, the relative probability for a particle over a
potential V(x) to be found at the point X is given by the
Boltzmann factor e ~ ' ', and depends solely on the
value of V(x) at the point X. By contrast, the quantum

pi (X) is influenced by the values of V(x) everyivhere, as
evidenced by its path-integral representation '"

py(X) = f '
Vx (t) e ""'"', T=13fi (2.1)

where the functional

Si [x(t)]=f dt[2mx(t) +V(x(t))] (2.2)

(the superscript f is for "free particle;" the subscript X,
emphasizing the dependence on X, will usually be omitted
to simplify notation); this yields the classical approxima-
tion [Eq. (1.2)]

p (X)—=p t(X)= —,'m '
A, 'e8' (2.4)

The superscript 0 indicates that this approximation is of
zeroth order in the "perturbation" v (x)= V(x) —8' (x);
higher-order approximations pv"(X), n=1,2, . . . will be
constructed later on. (b) The linear approximant

is the action for motion over minus the potential V(x),
and the integral (2.1) is over all paths x (t), 0 & t & T, with
x (0)=x (T)=X.

However, at high temperatures, and also at low tem-
peratures in certain cases, it is essentially the values of
V(x) inside a limited interval (bx)i px about X which
determine pv(X). Indeed, at large temperatures, the time
T in (2.1) is small, so that trajectories which wander far
from X must have large kinetic energies, " whence small
weights e "; the interval M is here determined mostly
by the kinetic part of the action, and a rough estimate
may be gotten from the uncertainty relation Ap )bc=-A
with (bp ) /(2m) =P ', yielding b,x =(Pirt /2m)' = A, .
In the high-temperature limit P~O, M shrinks to zero
and the classical approximation (1.2) obtains.

At low temperatures, the time T is large, so that the ki-
netic part of the action is small [note that

f dtx(t) —T ']; here it is mostly the potential part
the action which determines M, which thus consists
mostly of regions "downhill" of X. If X is near a
minimum of V(x), then Ax is again a relatively small in-
terval around X.

The above suggest that if W(x) is another potential
such that P

~

8'(x) —V(x)
~

&& 1 for x HM, then one can
approximate pi(X)—=pir(X). This will be of practical
utility if the local approximant W(x) is such that p~(x)
is known exactly. Three different such choices of 8'(x)
will be considered (see Fig. 1). (a) The simplest choice is
the constant approximant

Wg(x) —= V(X) (2.3a)
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Wx(x) = V(X)+ V'(X)(x —X)

yields the approximation

pv(»=p

'exp[ —PV(X)+ —,', P A. V'(X) ] .

(2.3b)

(c) The quadratic approximant

IVx«(x) = V(X)+ V'(X)(x —X)+—,mcox(x —X)

(2.5)

(2.3c)

"m

FIG. 1. Potential V(x) and its constant, linear, and quadratic
approximants at X.

cox —= V"(X)/m

yields the approximation

pv (X)=p «(X) =p (~),
where (setting 0=Pfico, X=X/A, )

(2.6)

p (x)=(x ~e "~x)= ~
'

Q
sinhQ

1/2

exp[ ——,X Qtanh( —,'0)] if Q ) «r—
(2.7)

co if 0'& —«r

is the quantum Boltzmann density for the harmonic oscil-
lator

V(x), where the latter is usually well approached by its
harmonic approximant.

2

H„= +V„, V (x)= —,'mco x
2m

(2.8) III. EXPANSION IN POPPERS OF V —8'

In (2.6), the argument Introducing V = 8'+ v into (2.1), we rewrite it as
T

pv(X) p~(X)(exp —5 ' I C(U(x(t)), (3 ()
0 8'

where the averaging operation ( ) iv is defined by'

~s Ix(t}j

(F[x(t)] ) (3-2)
( )

—fi (s)v[x(t))
X,Q

for any functional F[x(t)] (we shall usually omit the sub-
there is no risk of ambiguity). The
) completely. characterizes the sto-

random variables and processes will
with a caret). Expanding the ex-
btain the "perturbation expansion"

(2.9)b,X—= V'(X)/V"(X) =X—x

is the distance between the point X and the bottom, or
top, x of the harmonic approximant (2.3c) (see Fig. 1).
When V"(X) is negative, co is imaginary and the hyperbol-
ic functions in (2.7) become circular functions; if, more-
over,

0 =(Pficox) =2k.~PV"(X)( 17—(2.10)

(3.3a)

then (2.6)-(2.7) diverges and cannot be used. script Won ( ) when
The approximations (2.5) and (2.6) were proposed by statistical average (3.2

Miller. ' Approximation (2.6) may, unlike (2 4) and chastic process x (t) (

(2.5), be expected to often be usable down to zero tempera- always be identified
ture, since pv(X) then concentrates near the bottom of ponential in (3.1), we o

. . J
T T T

pv(X) =piv(X) 1 fi ' f dt(v(t) ) iv+—,' fi f dti f —dt2(v(ti )v(t2) ) iv+

T (x)
1

T
=piv(X) 1 —iri

' f dt f dx v(x)Pi(x, t)+ ,'A f d—tfd x ( vx) i( vx)Pz( zi,xti', xt 2)+2 (3.3b)

where we use the abbreviations

f d"t= f dt, f dt, . f dt„,

f d "x=f" dx, f" dx„,
v(t)=v(x(t)) .

In (3.3b), we introduced thejoint probabiIity densities

xn 4)

=ProbIx(t; ) =x;, i =1,2, . . . , n ]

= (&(x(t$ ) —x $ )5(x(t2) —x, ) 5(x(t„) x„))

(3.4)

(3.4')
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&X,o~x], t/)&x$, t$ ~x2, t2) . &x.,t. ~X, T)
(X,O iX, T)

(3.5)

In (3.5) we assumed 0&t& (t2« t„&T, and denot-
ed by

(x', t' [x",t")=(x'
(
e ~x") (3.6)

s~—[x(t))/S
x tex', t'

the relative probability for a path to go through x" at
time t", if it was at x' at t'. We have

(3.6')

(F(x(t&), . . . , x(t„)))
=fd"xF( x&, . . . , „x)P„( x&, t&, . . ., „x,t„) (3.7)

f dxJP„(1;.. . ;n)

for any function F(x t, . . . , x„), and (abbreviating
xt, tt =t)

(b)

X
4L

rJ
~«'J

r
r

A x' +a'
cl

r ~X,
~«~J

r
r Xr

r
J

I
I \I

l~ gl
lt It

Iax}

=P„~(1;.. . ;j—1;j+1;.. . ;n), j= 1,2, . . . , n

(3.8)

f d"xP„(Ix;,t;J)=1 .

A typical P~(x, t) is shown in Fig. 2. Using an overbar to
indicate time averaging, i.e.,

T Tf(t„.. . , t„)=T "f, dt, — -f dt„f(t„. . . , t„)

(3.9)

we denote, for any function F(x t, . . . ,x„),
((F(x„.. . , x„)))

FIG. 2. Shape of the densities P~{x,t) and H&{x) for the case
8 {x)= 8"(x) linear in x. Note that P~(x, t)—+6(x) as t~O or
t~T. Dashed curves in the (x, t) plane in both (a) and (b) are
the maximum value and (maximum value)/e contours of P](x,t)
[i.e., the middle curve is x,'~(t), and the other two are
x,'~(t)kcr'(t) (see Sec. V)]. Dotted curve in the (z,x) plane in (a)
is z = H&(x), and the full curve in the plane t =0 is z =P[(x,0).
[The dashed contours in (a) and (h), and the corresponding
values of P&(x, t), are calculated; the other values of P](x, t), and
the curve z = P' ~(x), are rough estimates. ]

H „(x), . . . ,x„):P„(x), t ),'. . . ,'x„,—t„)

(3.11)

xE x(, . . . ~x~ ~ x), . . . ~x~

where the time-averaged density

(3.10) is obviously symmetric in its arguments, and satisfies rela-
tions similar to (3.8). Equations (3.3) may then be written
as

p r(X) =pg (X)[1—p(( u (x ) )) + —,
' p (( u (x, )u(x2 ) )) + ]

=p~(X) 1 pf dx u—(x)p'i(x)+ —,'p fdxi fdx2u(xi)u(x2)%2(x&, x2)+

(3.3c)

(3.3d)

f d "t( (ut&)u(t )2. . u(t„)) —T"
n«(" ) (" ) (".)»-«

~

(")
~

&)"
(3.12)

At first glance, one would expect to improve the ap-
proximation pr -—ptt by truncating expansion (3.3) later
than its first term. This, however, is true only at high
temperatures; at low temperatures, the "secular" behavior
(where —means "of roughly the same size as")

~g -=Pi/AEg, (3.13)

The situation is similar to that met in the theory of re-
laxation. ' There, the remedy is to perform a cumulant
expansion, ' which is "nonsecular, " provided that the sto-
chastic processes involved have finite memories. But this
is also the case here if the ground state of H~ is isolated,
the memory of the stochastic process Ix(t), ( ) ~J then
being

i.e., the fact that (3.3) is roughly in powers of
p((

~
u(x)

~
))z, renders that expansion useless when p is

large.

where EE~ is the energy gap between the ground and
first excited states of H~, indeed we have, from (3.6) (P"n
and Eg the eigenstates and energies of H~), '
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(x', t'
~

x",t")=gPu, (x')P~(x")e P„(1;.. . ;n) =P~(1;.. ;.m)P„(m +1;.. . ;n)

if
~

t +] t —
~

)&1$y, n &2, m =2, . . . , n —1, (3.14)

yp (»)yp (»»} (t t )Eg /A which is the habitual characterization of a finite memory
process.

for
~

t" t'
~

—&)A'/bZup

from which we readily deduce (abbreviating x;,t; =i)

IV. CUMULANT EXPANSIONS

Expanding ln(exp[ fdt u(t)]) in powers of u, we
rewrite (3.1) as

T
pv(X) =p~(X)exp exp —A' ' f dt u(t) —1

cIuI-
T T T

(X}ex —~ dt u(t) —+ dt dt u(t )u(t } +pw p f, ( &+, f, , f,
=pu(X)exp —A ' f dt f dx u(x)P, (x,t)+ ', A —f d t fd x u(x, }u(x2) Pz(x„t, ; xz, t 2) + ~ ~ ~ (4.1b)

where ( ),(„) denotes the cumulant "average", ~p i.e.,

(u&.(.) =&".&, &-uP, &,(.) =&u, u, &
—&u, ) &u, &,

(123)c——(123)—(12)(3)—(1)(23)
—(13)(2) +2(1)(2)(3),

or, in terms of the densities P„[Eq. (3.4)],

Pt(x, t) =P&(x,t},
Pp(1»2) =P2(1,2) —P)(1}P)(2)»

(4.2) P'(1,2, 3)=P (1,2, 3)—P, ( 1 )P (2, 3)—Pq(1, 2)P, (3)

—Pz(1,3)P)(2)+2P)(1)P((2)P)(3),

(4.4')

The brackets I I contain the cumulant arguments, i.e., the
variables with respect to which the cumulants are built
(e.g., if u~ ——x and u2 ——x, then (uu2), („)= (uu2)—(u$)(up) =(x ) —(x )(x), while (U]up), („)=(x )—3(x )(x)+2(x) ). In cases where the cumulant ar-
guments are the blocks of all similarly indexed factors, we
shall also use the notation ( ) „e.g.,

For any set of functions f;(x), we have

(
n n

Qf;(x(t;)) = fd" xg f;(x; P}„'(j x;, t; I) .
i=1 i=1

(4.5)

& x~x2y, & —= &x)xzy) & ( y,
= (x,x,y, ) —(xly) ) (x,),

(4.3)

In general, we shall append a subscript or superscript c
to identify objects constructed with the cumulant algo-
rithm (4.2) or (4.4') from an initial family of objects. For
example,

~ n (x I». . . » x»» ) =P»» (x I» t
~ . . . ,'x»»» t»» )

X —X. (4.6)

In (4.1b), we introduced cumulant "densities"
n

P„'(x, ,t„'. . . ;x„,t„)= /f5(x(t;) —x;)
t." I 5I

is related to the time-averaged densities H„[Eq. (3.11)] in
the same manner as P„' is related to the P„, and Eq. (4.1)
may be written

p (X)=p (X) p[ —P(( ( )»+ —,'P'&( (" ) (" )»,*+ ]
r

=pg (X)exp Pfdx u(x—)H;(x)+ ,'P fdx)—fd x2(ux) |(upx)Hp( )x, x)2+

(4.1c)

(4.1d)

We have [compare (3.8)]

f dx P', (x, t) =1, f dx Hi(x) =1; (4.7)

f dxJP„'(x„t,;. . . ;x„,t„)=0

f dxj H'„(x„.. . ,x„)=0 'J'=1,2, . . . , n, n )2 .

(4.8b)
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Equations (4.8) follow from the basic property of cumu-
lants of vanishing if their arguments separate into two or
more independent subsets thus, e.g.,

n n

f dx, +5(x(t;)—x;) = 1+5(x(t;)—x;}
eI5) ; 2 cfI 5j

=0 ;

they imply that the H'„, n &2, assume both positive and

negative values. We therefore expect the cumulant in-
tegrals in (4. ld) to usually be less, due to the oscillations
of &'„(x&, . . . ,x„), than the moment integrals in (3.3d)
[note that H„(x{,. . . ,x„)&0], and accordingly approxi-
mations obtained by truncating the cumulant expansion
(4.1) to be better than approximations obtained by trun-
cating the moment expansion (3.3).

But more importantly, in the cases where the stochastic
process Ix(t), & }ivI has a finite memory i.~, the basic
property of cumulants mentioned above implies that

& u(t& )u(t2) u(t„)},(, I
~0 '

or t„—t] &&nw~ 0&t] (t2 & - (t„&T
P„( x), t),'. . . , x„,t„)~0

(4.9)

since when (r„ti)»—nriv, there is at least one gap
(rj+~ rj ) &&r~, —i.e., the set I x(t& ), . . . , x(t„)I separates
into at least two mutually independent subsets. The fact
that the quantities in (4.9) are sizable only if the times
t„.. . , t„rae clustered together implies [compare (3.12)]

f d "t&u(ri)u(t2) u(t„)),(„)—Trav '

T~ |x}

E~p 1f E~ 1S 1solated

P otherwise . (4.15)

According to (4.12), the cumulant expansion (4.1) is
roughly in powers of A«

~

U(x)
~
}}.

V. GAUSSIAN CASES

Equation (4.12) can be made to also cover the infinite
memory cases if we define more generally

(4.10)

Hence, when gatv is finite, all the terms of the cumulant
expansion (4.1) grow linearly with P as P~oo, so that
(4.1) stays a usable perturbation expansion even as the
temperature P '~0. In that limit, it becomes the
Rayleigh-Schrodinger expansion of 2 in@(X)—PEv, as is
clear from considering

pv(X}=g [0v(X}]'e

When the potential W(x) is at most quadratic in x, the
densities P„and P„' are exactly calculable, and have re-
markable properties. For studying these, it is convenient
to introduce an auxiliary stochastic process.

A. The process Iy(t), & }~]
We shall denote by x f(x', r';x", r";r) the classical tra-

jectory from (x', t') to (x",t") over minus the potential
8 (x). Let us denote concisely by

~[gv(X)]'e as P~ co, (4.11)
x,i(t) —=x f(X,O;X, T;r)

the classical trajectory from (X,O) to (X,T), and set

where Pv(x) and Ev are the eigenstates and energies of
Hv.

For discussion purposes, it is convenient to combine
(4.10) with the corresponding relation for small T as [gen-
eralizing to any set If;(x) I ]

(4.12)

where A is a (smooth) function of P chosen such that
9P~P as P~O and A~rivlfi as P—mao,' a natural
choice is

(4.13)

where E~~ is the mean thermal energy measured relative
to the bottom 8';„of 8'(x) (we indeed have E-f3 ' as
P~O and E-Eg W;„-=bEiv——Air@ —as P~ cn). In
the quadratic case (2.3c), we have (for co real)

, fico as P~ Oo-
E„~= —,

'
%co coth( ,' Pico�)~—

(4.14)
P ' as P~O.

y(t)—:x(t) —x,~(t) . (5.1)

%"e identify with a tilde the average over the stochastic
process y(t); thus,

& F[y(t)] }= &F[ (r)—,(t)]},
& F[x(t)]}= &F[x,~(r)+y(t)] }

(5.2)

for any functional F[ ]. Equivalently,

O, T —spy(c))yte I" y t
&F[y(r)]}= '

~ „,l, (5.3)

f Wy (t)e

where the integrals are over all paths y(t), 0(t (T, with

y (0}=y ( T)=0 [compare (3.2)], and the (time-dependent)
potential

8'(y, t) = 8'(x,&(t)+y) —W(x,i(t)) —y8 '(x,t(t)) . (5.4)

We associate with the process Iy(t), & }iv} the same ob-
jects and operations, identified with tildes (P„, H„,
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P„(Ix;,t; I )=P„(Ix;—x,l(t;), tiI ) .

Also, for any function F(xi, . . . , x„)
«F( I

";
I ) » = «F( I .(t;)+y; I ) »

(5.5)

, etc.) as were associated with x(t); the tilded densi-
ties possess all the properties of their untilded counter-
parts [(3.8), (4.7), (4.8), etc.].

In view of (5.2), the densities P„(I x;, t; I }are expressible
in terms of the densities P„(Iy;,t; I ) as

& x(tl )x(tz) x(t„)&,(„)=0 for n )3 .

The densities P„(for W quadratic, again) are easily
shown to have the expressions

(5.11)

Pn (y 1» t 1 » ~ ~ ~ »yn» tn )

P„(Ix;,t; ) ) are exponentials of quadratic forms in the x;;
this defines x(t) as a Gaussian stochastic process '.0 A
basic property of such processes is that

= Jd"y F(Ix,l(t;)+y; I)P„(Iy;,t; I) . (5.6)
(det "A }' exp —Q "Aiiy,

In the special cases where x,l(t)—=X is stationary, the
time-integrated density R„ is simply expressible in terms
of Hn (but not otherwise), and we have

Hn(X1, . . . ,Xn}=An(X1 —X, . . . , X„—X), (5.7a)

«F(xl, . . . , x„)» = Jd "y F(IX+y; I )H„(y„.. . ,y„) .

(5.7b)

Ai, i + lyiy(+1
i=1

(5.12)

where "A is a symmetric matrix of elements (we set to ——0,
t„+1——T, yo ——y„+1——0, and abbreviate y;, t; =i)

2

z [S,l(i —1;i)+S,l(i;i +1)],
(5.13)

B. 8'(x) quadratic
2

n nA;+1;——Tfi
~y'i dyi+1

S,l(i;i + 1),
We now consider features specific to the cases where

JY(x) is quadratic. Henceforth, in this section, all quanti-
ties refer to the potential

W(x) =a +bx + —,me@ x, 8'(y) = —,
' mt' y . (5.8)

Here W(y) [Eq. (5.4)] is free of x,l(t), implying that the
operation & & [Eq. (5.3)] is independent of X and of the
constants a and b.

With W(x) quadratic, the propagator (3.6) is given by'
1/2

&& exp[ —lrt 'S,l(x', t';x",t")], (5.9)

and S,l(y', t',y",t"} is the classical action from (y', t') to
(y",t") over the potential —W(y). The elements of the
matrix "A not displayed in (5.13) are zero. Note that "A

does not depend on the y;, since the classical actions are
quadratic in the latter.

The Gaussian densities P„[Eq. (5.12)], and also their
time integrals H„, have the symmetry

n( yl tl ' yn»tn ) Pn(yl»tl» ~ ~ ~ »y t n)»n

(5.14)

&n( —yl» ~ ~ » yn) ~ (ynl »»yn)

implying

S„(x',t';x",t")=S[x„(x',t';x",t";t)] . (5.10)
for gm; odd . (5.15)

More precisely, (5.9) holds if the classical trajectory mini

mizes the action S, i.e., if S is bounded below; otherwise,
&x', t

~

x",t"& is infinite.
The classical action (5.10) is'a quadratic form in x' and

x". It then follows from (5.9) and (3.5) that the densities

«A 1P 2 A )»» 0

The associated cumulant densities P '„and P' '„ inherit the
symmetry (5.14), whence relations similar to (5.15); com-

bining these with the Gaussian property (5.11), we have

for gm; odd or Im;=1, i =1,2, . . . , n, n)3I . (5.16)

1. Discussion

Pl(x, t) =m 'r'cr(t) 'expI —[x —x,l(t)] lo(t)'I, (5.17)

where the "thermal quantum dispersion function"

The probability density Pl(x, t)=ProbIx(t)=xI may
be written in the suggestive form

a(t)='All' is given by
2

[o(t)] = —,'A' '
~ [S,l(0,0;x,t)+S,l(x, t;O, T)] .

(5.18)

A typical shape of Pl(x, t) was shown in Fig. 2. We shall
denote
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~= max
I
x.,(t) —X I, A = max

I
a(t)

I0&t&T 0&/&T
(5.19)

(a} pp
These may be regarded as two components of the interval
(bx)~&x (discussed in Sec. II) spanned by the thermal
quantum wanderings over the potential W(x): a is the
extension of the mean wandering, and A the dispersion
about that mean [see Fig. 2(b)).

The densities P„(x&,t&,'. . . ,x„,t„) are centered about
(x,i(ti), . . . , x,&(t„)), and of extent roughly A in each x;.
I.et us consider [y;:—x; x,i(t; —)]

Pz(x~, t~,'xz, tz)= n. '(det A)'

Xexp( —A))yi —2 A)zy(yz —Azzyz) .2 2 2 2 2

(5.20)

Because Pz is integrable [Eq. (3.8)], the curves in the
(x~,xz) plane corresponding to constant values of the ex-
ponent in (5.20), i e , the .c.ontours of Pz, must be ellipses
[see Fig. 3(a)] (if they were parabolas or hyperbolas, Pz
would not be integrable). These ellipses are centered at
(x,i(ti ),x,i(tz)), and tilted relative to the x, and xz axes
due to the cross term 2~2y~y2, because 3~2 &.0 in gen-
eral [see Eqs. (7.3) and (9.11)], the major axes point from
the ——to the + + quadrants of the (y ~,y z ) plane.

Thus, Pz(x~, t~,xz, tz) is maximum when x~ and xz lie
on the classical trajectory x,i(X,O;X, T;t). As x~ and xz
depart from x,&, Pz decreases, faster if x, and xz are on
opposite sides of x,~ (because trajectories passing through
x~ and x2 must then have larger kinetic energies, hence
smaller weights), and slower if xi and xz are on the same
side of x,i, that is, x ~ and xz are correlated (due to ~A &z).

The cumulant", density" Pz(x~, t&,xz, tz) [Eq. (4.4)] [see
Fig. 3(b)] is a measure of this correlation, being the differ-
ence between Pz(x~, ti,xz, tz) and the uncorrelated prod-
uct P( x&, t, ) P( xzt z), whose contours are ellipses with
axes parallel to the x

~
and xz axes [Fig. 3(a)].

VI. GENERALIZED WIGNER-KIRKWOOD
EXPANSION

I.et us introduce the dimensionless quantities [see
(5.19)]

z(t):y(t)/A, b,x,i(t) =[x—,&(t) —X]la .

FIG. 3. Contours of P2(y], t~,y2, t2), P&(y&, t&)PI(y2, t2), and
P2(y&, t&,y2, tq) for the case 8 (x)=—0, at t] ——T/3, t2 ——2T/3
(X—= 1}. (a) Full ellipses are contours of P2(y], tl,y2, t2), dashed
circles are contours of P] (y&, t& )P&(y2, t2). For the special values
of t&, t2 chosen here, the contours of P2 are tilted by 45', and the
contours of P]P~ are circles (in general, the tHt of P2 can be any
angle, and the contours of P~P& are ellipses with axes parallel to
the yI,y2 axes). At (0,0), P2 ——0.41 and P]P~ ——0.36. (b) Con-
tours of P z(y&, ti,yz, tz) fi.e., the difference of the contours in
(a)]. Solid curves are positive values, dashed curves negative
values; the lang-dashed hyperbola, whose asymptotes are the
dotted straight lines, is Pz ——0. [The curve P z

——0, and the
minima and maxima, are calculated; the other (approximate)
contours were deduced from the intersections of the contours of
P 2 and P iP, in a denser version of (a).]

We identify with an acute accent ( ) the statistical aver-
ages, densities, etc., associated with the process z(t); we
have, e.g.,

Using (5.6) in the form

Ux,it; +Az; (6.3)
P„(Iz;,t, I ) =A"P„(IAz;, t; I ),
H„([z;J)=A"H„(IAz;J) .

(6.2) in (4.1c), and Taylor series expanding in powers of A, we
get

co
( p)tl

pr(X) =pp (X)exp g, g, ff [u,i' (t;)] Q[z(t;)]n=l (m;&OJ i' i=1 i=1 c* (6.4)

=pii (X)expI Pv, i(t) —,
' A [P—v,'i(t)(z(—t)z)' —P u,'i(t()u,', (tz)(z(t, )z(tz) )']y . (6.4')
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(v '=d u/dx ) where we denote

u,)'(t)—:u '(x,)(t))=u '(X+)(M,)(t)) . (6.5)

Equation (6.4 ) pertains only to the case of W(x) quadratic, as we invoked (5.16) to eliminate' a number of terms of (6.4);
in particular, only euen powers of A appear [by (5.15) also, a number of cumulants have become ordinary moments, e.g. ,

(z(ti)z(ti)),'=(z(t))z(ti))']. The cumulants (g,.[z(t;)j ')'„are all calculable in closed form (for 8' quadratic).
Since the dispersion of the process y(t) is of order A, that of z(t) is of order 1, so that by (4.12), expansion (6.4) may be
viewed as in powers of A (d/dx) and 3P u (x). Note the intuitively appealing "classical path" approximation

pv(X) =—pw(X)e

We now expand each u,~'(t) in (6.4) in powers of )(; we get
r

(6.6)

ao
( P)N

p v(X) =pw(X)exp
n

(m;+r,)'.
X A ' ' ''rI,

, II[~ ( )j' II['"(')] '

(m, +r,. po) g=1 & ~' j=1 i=1 c

=p)i (X)exp[ —Pu(X) xPv'(X)b—x,)(t) ——,'A [Pu"(X)([z(t)] )' —P u'(X) (z(t, )z(tp))']

——,
' a.

f3u "(X)[bx,)(t)] ——,
' ~ Pu"'(X)[bx,)(t)]

,
'

gcA [P—v"'(X)bx„(t)([z(t)])' —2P u'u "bx,)(t, )(z(ti)z(tz) )']+ (6.7)

~(d/dX), A (d/dX), Au(X) . (6.8)

Since
~

lac,)(t)
~
(1, this expansion may be viewed as in

powel's of
where A, is the thermal wavelength (1.3). Thus, )(f=O,
Af=A, . The elements of the matrix A [Eq. (5.13)] are
(for tp)t, )

VII. THE CASE 8'{x):—V{X)

2~f &~ 2

4
Tt2

ti(tZ t,)—

(T (t)=2k, [t(T—t)/T']' ', (7.2)

In this section, we consider the case
W(x)= Wf(x)= V(X). The classical action from (x', t')
to (x",t") over the potential —Wf(x)—:0 [see (5.4)] is

5 f)(x', t', x",t")= ,' m(x" x—') /(t"—t') . (7—.1)

The classical trajectory from (X,O) to (X,T) is just
x,)(t)—:X, and the thermal quantum dispersion functionf
[Eq. (5.18)]

T(T t,)—
22 4 (&—tp)(tp ti) '—(7.3)

Af = ——A,12=
4 (tz t,)—

Note that the "correlation coefficient" ~A i (see
V B 1) does not become much smaller than zA~i) and ~A zz
as

~

tq —ti
~

~ oo, i.e., the stochastic process x f(t) has an
infinite memory.

The cumulant expansion (4.1d) may be written as [using
(5.7) and (6.2)]

p~(X)= —,'m. '~
A, 'exp p fdz V—(X+A@)H,(z)+ ,'P fdzi—fdz (zuX~+) )( u+X~ )~zz'( zziz)+ ' ' ' (74)

V(X)=(( V(x)))f= fdz V(X+AS)wf(z) . (7.6)

We denote by pfi"(X) the cumulant approximation of order
n in u. The zeroth-order approximation p) (X) is just the
classical approximation (2.4). The first-order approxima-
tion may be written in the intuitively appealing form

gi(X) 1 —)/2g —1 —PV(X) (7.5)

where

I

The dimensionless density

H, (z) = —,
'

m
' f ds[s (1—s)]

&&exp[ ——,'z /[s(1 —s)]J (7 7)

1/2 —3z 2/'2is more or less similar' to the Cxaussian (3/2m )' e
The approximation (7.5) is analogous to the classical ap-
proximation (2.4), but with V(X) replaced by its average
over the "zeroth-order" thermal quantum wandering
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+ 4so + + ' ' ' )] . (7.8)

The approximation (7.5) yields (being obviously exact to
first order in 0 )

x (t), which amounts to a local average over a spread A, .
This allows one to visualize nicely how the quantum ef-
fects alter pI,I(X) (see Fig. 4).

The approximation (7.5) may be hoped to usually be a
substantial improvement over p I,I(X), for the terms
neglected in expansion (7.4) are expected to be relatively
small, not only on account of their higher order in v, but
also because of the oscillatory nature of the densities
P"„(n & 2). For example, let V(x) = —,

'
mao x . The exact

p~(X) is then given by (2.7), or, in expanded form

V

X3
=X

FIG. 4. Typical segment of a potential V(x) and probability
density P II(x). With V(X)= f dx V(x)P/1(x —X), it is easy
to see that V(XI) & V(XI), whence pI'(XI)(pI, i(XI) [case
V"(X)&0], y(X2)= V(X2), whence py (X2)=py, t(X2) [case
V"(X)=0], and V(X3)( V(X3), whence pI'(X3) &pI. ](X3)
[case V"(X)(0]. The first-order effect of the curvature V"(X)
on p~(X) is displayed explicitly in the WK expansion (7.11).
The slope V'(X) clearly has no effect on V(X), and thus affects
pv(X) to only second order, as seen in (7.11).

pt '(X)= —,
' ~- I "X-Iexp( ——,', n2 ——,

' n2X 2)

=-p,I(X)exp( ——,', Q2) . (7.9)

The linear potential Vk(x)=kx is a case where (7.5)
brings no improvement over pI, I, since Vk(X)=Vk(X).
However, because of the Gaussian property (5.11), the
second-order cumulant approximation is exact here, i.e.,

T I'

pk (X)=—,'m '
A, 'exp —/3yk(X)+ ,'P f—dtIf dt2(v k(tI)v k(t2)), (, )

'exp( PkX+ —,', P—A, k ) =p'„""'(X) (7.10)

[vk/(x) =k (x —X)]. By contrast, all the terms of even order in expansion (3.3) are nonzero; here the superiority of the cu-
mulant expansion is manifest.

The expansion (6.7) ( Iy= 8" ) is the ordinary Wigner-Kirkwood expansion:

pI (X)=—2'm 'i 1, 'expI —py(X)+A, [——,py" + —,', p (V') ]+A,"[——,', p (V') V"+ —,'op V'V'"+ —,'op (V") —~ py ]

+g6[ &7 p4( yr )2( Vis)2+ & p4( yi )3 yrii 29 p3 ys yttyrir & p3( yt)2 VIV

133( yzi)3+ 23 p2( yiii)2+ & p2yi yV+ & p2yii VIV & @VVI]+ (7.11)

[all derivatives of V evaluated at X; V —=d V/dx, etc.].
This expansion may be viewed as in powers of the param-
eters in (6.8), or in (1.6) since v=O, A=A, , and A =P
here.

p„(X)=p„,i(X)exp( —„X0 ),
while

p (X)=p (X)exp( ——I202 — X20')

A'=W~=X, 2= —,'X'Pi y'(X)
i

.

In the case V(x) = —,
'

mco x, we have

(8.2)

vIII. THE cAsE e (x)=v(~)+(~ —x)v'(x)

With W(x) = W'(x) [Ecl. (2.3b)], we have 8"=8'~, so
that the process y '(t) =y ~(t), o'(t) =cr (t), etc.; the differ-
ence between the processes x (t) and x/(t) resides solely
in the classical trajectories, here given by

x,j (t) =X+X213V'(X)[t ( T t)/T'] . —(8.1)

The density P, (x, t) [Eq. (5.17) with (8.1) and (7.2)] is that
shown in Fig. 2. %'e have

[compare (7.8)]. It is instructive to contrast this with the
classical path approximation (6.6), which yields p'„' but
without the term ——,', Q, showing that the latter stems
from deviations of the process x (t) from the classical
path (8.1).

The generalized WK expansion (6.7) ( 8'= W ) is iden-
tical to the ordinary WK expansion (7.11), and simply
corresponds to viewing the latter as in powers of the three
parameters in (6.8) ( 8'=8') rather than of the two in
(1.6); it gives, however, information on the physical and
mathematical structure of (7.11), showing, e.g., that the
factors V'(X) (i.e., ~ ) in (7.11) originate in the x,I part of
the thermal quantum wanderings.
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IX. THE CASE 8'(x) = W~(x) o, , )/4 )/z —(x/z. )z/2
p~(x) =m' A,~ e (9.9)

We now consider the case (2.3c) (Fig. 1). The classical
action from (x', t') to (x",t") over the potential
—W~(x)= ——,'mco x [see (5.8)] is (bt=t" t')—

SQ](x7t 7x7t )h(Q)
&& I[(x') +(x") ]cosh(co b, t) 2x—'x"I .

(9.1)

1/2
AA'

2'A~= (9.10)
(2mE„,)'"

where A and E t3 are given in (4.13) and (4.14).
The parameters of the two-point joint density

P)(x), t),x z, tz), tz & t „are [these go to (7.3) as co—+0]

of the harmonic oscillator H [Eq. (2.8)]. More generally,
A~ at any temperature is the de Broglie wavelength corre-
sponding to the mean thermal energy of the oscillator, i.e.
[compare (1.3)],

(x', t'~x", t")=~ if co (t" t') & ——rr'. (9.2)

If V"(X)&0, then co is imaginary and the hyperbolic
functions in (9.1) beco7&:e circular functions. If moreover
(cob.t) ( n, th—en (9.1) is not a minimum, but only a sta-
tionary point of Se[x (t)]', . The latter is in fact unbound-
ed below when (cobt) & rc, an—d it then follows from
(3.6') that"

sinh(cotz )
A 11 sinh(cot) )sinh[co(tz —t) ) ]

1 2 1
312————A,

sinh[co(tz —t) )]
sinh[co(T t))]-

A zz
———,A.

sinh[co(tz t) ) ]si—nh[co( T —tz ) ]

(9.11)

Hence, io~,(X) [Eq. (2.6)] and the operation ( ) ~, [Eq.
(3.2)] are undefined when (2.10) holds.

The classical trajectory from (X,O) to (X,T) over the
potential —W't(x) is [see (2.9) for notation]

sinh(cot)+ sinh[co(T —t)]

—1'T~ =7~=CO

in accord with (3.13), since b,E)). fico here. ——
(9.12)

If co is real and positive [V"(X)&0] we have A)z=-O,
'/I)) =cT(t)) ', and '/lzz=c7(tz)
»co '; whence (3.14) (n =2, m = 1) with

and the dispersion function [Eq. (5.18)]
' 1/2

2)/z& sinh(cot)sinh[co(T —t)]ot t =2
sinh(co T)

(9.3)

(9.4)

where we denote
1/2

=A,(2/0)' (9.5)

Since cr~(t) and
~

x~)(t) X~ are maximum —at t = ,' T, we-
have [see Eqs. (5.19)]

ccq=
)
~

/ /

sech( —,
' 0)—1

[

A'=A, „[tanh( —,
' Q)]'/z .

(9.6)

Cc:4l pi V(X)
i (1 48Q+ 57600''')

A'=X(1 ,', nz+ „—', —n'
(9.7)

When 0 ( n, ic~ and A~ —are undefined (the thermal
quantum wanderings being infinitely spread out). At
small Q,

881;
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whence ~~~~ —+0 and Aq —+A,—+0 in the high-
temperature limit p—vO. In the low-temperature limit
P~ ao, and provided V"(X)& 0, we have

A~~A, „asP~ ~ [V"(X)& 0] . (9.8)

Thus, in contrast to the free-particle and linear-potential
cases, cc't and A~ stay finite as p—+ oo [if V"(X) & 0]. No«
that A,„is the width, or "wavelength, "of the ground state

X~ X Xo

FIG. 5. Potential V(x) and its harmonic approximant 8'~(x)
at X are displaced along the time axis to generate sheets on
which the classical trajectories (X,O)~{X,T) are drawn. In the
case T =T~, the trajectories x,&(t) and x,& (t) are not very dif-
ferent, although the latter extends a bit farther since its potentia1
energy decreases faster. But in the case T = T2, x,~ (t) extends
much farther than x,~(t).
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A. Cumulant approximations (discussion)

In view of (9.2), and as already mentioned in Sec. II, the
approximation p~z (X) [Eq. (2.6)], and likewise
p»z', p»~, . . . , are undefined when (2.10) holds. To see
what happens, let us refer to Fig. 5, and consider pi (X).
For X as in Fig. 5, we have pi (X) &pi, i(X) because quan-
tum paths can wander beloio V(X), thereby decreasing the
action Sv via its potential term. The larger T =PA' is, the
farther paths can wander, such as to decrease Si ~«
without unduly increasing S~k;„, however, there is no ad-
vantage for paths to go beyond the minimum xo. Hence,
at large T, the important paths (X,O)~(X, T) over V(x)
first relax from X to the vicinity of xo, hover there for a
while, and then climb back to X (the important paths are
more or less clustered about the classical paths; the latter
are shown in Fig. 5).

But if we now replace V(x), which is bounded below,
by its harmonic approximant IV)(x) at X, which is un-
bounded below (Fig. 5), paths then have advantage in go-
ing ever lower, i.e., farther from X, as T increases; and, in
fact, once 0 & —ir, they have advantage in going right

to oo, thereby making the action S~ infinitely nega-
tive [note that when 0 & —ir, x»&(t), the classical tra-
jectory over —8'»(x), is an oscillation, which obviously
does not minimize S]. Thus, in replacing V by 8'», we
overdo the quantum wandering effect, and infinitely so if0 & —m.

We therefore expect the approximations pf (X),
n =0, 1,2, . . . to be good when P is such that the impor-
tant quantum paths over V(x) or W»(x) extend not far-
ther than halfway to xo, say; to get worse as I3 increases
further; and to be completely erratic at 0 & —ir . How-
ever, because regions V"(X)& 0 are usually high-potential
regions, it should usually happen that when P is so large
that 0 & —ir, then pi (X) is small and of minor import.
Hence the approximations pP should usually be usable
down to zero temperature. In that limit, they become
Rayleigh-Schrodinger approximations. '

B. Renormalized Wigner-Kirkwood expansion

All the terms of the generalized WK expansion (6.7)
( 8'= W») can be calculated in closed form; we get

pi (X)=(2ir) '~
A~ '(sinhQ) '~ exp[ —(~/A, „) tanh( —,0)——,PV'"(~) F,(0)—PV"'~ A~i(0)

——,PV' (~) it~ (Q) ——,'PV' A~ (0)——,PV ~A~ (0)

——„PVv'A~ (0)+—„P'V"'A,„'0-'F,(0)+ ]

(all derivatives of V evaluated at X), where the F„(0)are simple functions:

(9.13)

Fi(0)=(0 sinh 0) 'I 0[——,
' sinh(30) ——,

' sinh(20)+ —", sinh(Q)]+ [—',, cosh(30) ——,cosh(20) —", cosh(—0)]+—", J,
Fq(0) =(Q sinh 0) '[ —,i cosh(2Q) ——,cosh(0) —

~ 0 sinh(20)+ ~ ],
F3(0)=(0 sinh 0) 'I ——„sinh(3Q)+ —„sinh(20) —~, sinh(0)+0[ —,

' cosh(3Q)+ —,'cosh(20) ——,
' cosh(0)+ —,]I,

F~(0)=(0sinh20) 'IQ[ —,+ —,cosh(20)] —+sinh(20)I, (9.14)

F5(0)=(0 sinh Q) 'I[ „'0 cosh(30) ——', cosh(20)+ —„cosh(0)]——„0[sinh(3Q)+3 sinh(Q)] ——,
' I,

F6(0)=(80 sinh 0) 'I 0[—,
' cosh(30)+ —', cosh(0)] ——,", sinh(30) ——', sinh(0)I,

F7(Q) =(0 sinh3Q) 'I —I» cosh(30)+2cosh(2Q) —~ cosh(0)+0[ —,', sinh(30)+ —„sinh(0)]+ —, I .

At small 0, the F„may be expanded in powers of 0 [see
(A3) in the Appendix], and (9.13) converts into the ordi-
nary WK expansion (7.11). At large 0 (real), we have [see
(A4)]

in[@(X)]=In[P'„(~)]——,", (f )-'V"'(~)'
——„(fico) ' V"'~ A,

(f )
—2( Pvi )2g6 +l

F„(0)~(const)0 '+const, Q~ oo (9.15) E~= —,fico ——,V"'(~)'——,
' V"'~A, „'

(9.16)

so that all the terms of (9.13) become linear in P as
P~oo, in accord with (4.10). The terms 0 ' and 0 in
(9.15) lead to terms independent of P, and proportional to
P, respectively, in expansion (9.13) as P~ oo,' in view of
(4.11), these two classes of terms constitute WK expan-
sions of 21n[@(X)]and of —PEV, respectively. Explicit-
ly [we display the terms coming from Fi, F2, and F7 in
(9.13)],

(~)—i( Viii)2g6 +
[P„(x) is given in (9.9)]. Observe how the combinations
PV=(T/iii)Vin (9.13) have become (fico) 'V=(r„/fi)Vin
(9.16), as announced by (4.10). Expansions (9.16) are what
one would obtain if one Taylor-series expanded the pertur-
bation v~= V —8'~ around X in the Rayleigh-Schrodinger
expansions of in[@(X)] and Ei [Eqs. (9.16), of course,
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pertain only to the case co &0 real, since V"(X) &0 with
P~ oo implies Q & —ir, and to =0 implies
'r~ =cu = oo ].

Expansion (9.13) may be viewed as in powers of the
three parameters in (6.8) ( W= W«), or, because
~ —~(A ) AV'(X)

(
[since ~

)
—,'A. Pv') as /3 0,

K«) V'/V") =
(

~A, (fico) 'V') s P oo], s

powers of just the two parameters in (1.7). Observe that
the limit of (6.8) (co &0) is

~m~dldX, Xz(d/dX)i, (f ) 'u«(X) (9.17)

are resummed over n [e.g., (P/6)V'"(V'/V") Fi(Q) in
(9.13) resums all the terms of the form V"'(V') ( V")" in

(7.11)]. The resummation over p, i.e., over powers of
V'(X), may also be performed by simply regrouping
terms, as it is easy to see [from the fact that the expansion
parameters are (9.17) and v «'(X) =u «"(X)=0] that

p & g,.m;, i.e, in (9.13), each combination g,.V '

(m; 3) comes multiplied by a polynomial in V'/V" of
finite degree & g,.m;.

The results of this section have until now been con-
sidered as pertaining only to the case Q & —m, since oth-
erwise the averaging operation ( ) ~, [Eq. (3.2)] is unde-

fined. But nothing prevents us from formally extending
the domain of expansion (9.13) to the range Q & ir, as-
its terms are all finite there [except at the discrete values
Q = —(nn. ), n =1,2, . . .]. In fact, it is clear that (9.13)
is the resummation of the ordinary WK expansion (7.11)
over powers of V"(X) also at Q & —ir, simply because
{9.13) (Q &ir ) is the analytic continuation of (9.13)
(Q & —ir ). However, this analytic continuation lacks,
because (hx) «= oo at Q & —ir, the physical grounding
whereby the original expansion was motivated (in Sec. II),
and it is not expected to yield useful approximations [a
truncation of (9.13) when (Pfico) & —m yields an approxi-
mation which oscillates with P, and tends to no definite
limit, as P~ oo].

X. COl4CLUSION

The renormalized Wigner-Kirkwood expansion (9.13) is
our main result of practical interest. It is as simple to use,
yet more accurate than the ordinary WK expansion,
which is already known to often be very good; moreover,
(9.13) is usable down to zero temperature near well bot-
toins, where pi (X}concentrates.

From a conceptual point of view, the renormalization
of the WK expansion (7.11), with the sharp contrast be-

tween the cases Q & —ir and Q & —ir [where
Q =P fi V"(X)/m], constitutes a nice example of a
resurnmation procedure which in one case is physically
motivated, and leads to useful approximations, and in the
other case, is purely formal and yields no useful approxi-
mations.

i.e., the expansion parameters of (9.16).
Expansion (9.13} is a resummation over powers of

V"(X) of the ordinary WK expansion (7.11), i.e., all the
terms of the form

m. '
QV ' (V') (V")", m;&3, p, n integers

We considered three types of cumulant expansions:
(4.1) in powers of Au; (6.4) in powers of A (d ldX)2 and

Au; and (6.7) in powers of ~d/dX, A (dldX), and A'v.
These expansions also apply to the off-diagonal elements
of the density matrix pi (X,X') [Eq. (1.8)], if only we re-
place (X,T) by (X', T) in (3.2), (3.5), etc. , let x,~(t) be the
classical trajectory from (X,O} to (X', T), and replace

p i (X) and p ii (X) by p i (X,X') and p ii (X,X'), respectively,
in (4.1), (6.4), and (6.7) [the processes y(t) and z(t) remain
unchanged]. The expansion (4.1) (X'&X) has been dis-
cussed in Ref. 13, for any W. Expansions (4.1) and (6.4)
(X'&X) with W(x) =0 are identical to the expansions de-
rived in Ref. 5 (the multidimensional case is treated there,
and extended to the presence of a magnetic field in Ref.
6). With W(x) = W (x)—:0, the classical trajectory from
(X,O) to (X', T) is

x'„(t)=X+(X' X)(t/T—), a-'= iX' —X
i

and expansion (6.7) (X'&X} is then in powers of
~X' —X

~

dldX, A, (dldX), and Pv(X); this expansion,
which may be found in Eqs. (7)—(10) of Ref. 4, is thus us-

able only for
~

X' —X
~

sufficiently small [indeed, if
~X' —X

~

is large on the scale of variation of V(x), the
latter cannot be replaced by a local approximant at X, be-
cause pv(X, X') is determined by the values of V(x)
within an interval (bx) i ti x x which contains the interval
(X,X')]. This circumstance precludes, in particular, the
applicability of WK expansions to the exchange effect in a
gas of strongly interacting particles. i5 Expansion (6.7)
[X'&X, W(x)=0] may nevertheless be useful because

pv(X, X') is sizable only for ~X' —X
~

(A, at high tem-
peratures; it may be resummed over powers of V"(X) by
letting W(x)=WX(x) be the quadratic approximant to
V(x) at X. To deal with ~X' —X

~

large, one may use ex-
pansions (4.1}or (6 4), with W(x)—:0 as in Refs. 5 and 6,
or with W(x) equal to some quadratic approximant
[chosen, e.g. , as that best fitting V(x) inside the interval
(X,X')].

APPENDIX: EXPANSION (9.13)

We here give the details of expansion (9.13). We
display the terms required for exactness to sixth order in
A, [from Eqs. (9.7), hx, &{t) (or ~) is of order A, , and y(t)
(or A) is of order A j. Taking account of
u«(X) =u«'(X) =u«" (X)=0, we have

pv(X) =
~ ir A, expI ——,

' ln[(sinhQ)/Q]

—(~/A, „)'tanh( —,
' Q)

+&i+&2+ . +lI + I

(Al)

+1 6 PV"'[lixoi(t)]'= —
6 PV'"(m)'Fi(Q),

B2 ———, l3V'"hx, )(t)([y(t)] )—
= ——,PV"' ~ A,~p(Q),

+3 4 ~v [~d(t) j ([y{t)]
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= —,' —pv"(~)zz~,(0),

B,= ——pV"&[y(t)]'& = ——,
' pV'vs~, (0),

4t

B,= ——pV M,&(t) & [y(t)]'&

(A2)

[(n —1)!!= 1&(3&(5X &((n —1)]. To evaluate B7, we
will use the result I

f d f d 3 3 ax—' zb—xy —cy

', zr(—&I&'~ )[3+5(b /&)], (AS)

where

= ——,PV ~A~ (0),

B,= ——pv" &y(t)'& = ——,', pv"a~, (0),

»= —'p'v"'&[y(t )l'[y(t )]'&

= —,', P (V'") A, 0 'F (0)

[see (3.9), (2.9), and (9.5) for the notation], where the func-
tions F„(0)were displayed in (9.14). At small 0,

a b
ac —b =det

b c (A9)

hx, )(t)=~f(cot),

o( t) =2'~ A,~(pzt),
5=det 2A

(A10)

We now have, from Eqs. (9.3), (9.4), and (9.11) (a =cot,
0=a)T),

6 & 8Fl (0) 1lzp + 8p64 0 +
E2(Q) —

6p 0 + ~ppsp 0 +
F3(0)=,~ 0 +, F4(0)=—„0—

zIp 0 +
(A3) where

sinhQ
sinh(a ) )sinh(az —a) )sinh( 0—az)

(az ~ a~),

(Al 1)

F,(n)= —„',n'+, F,(n)= „',n'+

F7(0) &izp 0 +
and as 0 —++ oo,

F, , (0)~—1+—", 0 ', F2(0)~ ——,
' + —,'0

F,(n) ,' ,", 0—-—',—F,(0)

Fz(0)~++ —„8 0
By introducing into (Al) the expansions (A3) and

2 & 4 j 6in[(smhz)/z] = 6z —
»p z + z83, z + ' ' '

(A4)

f(a) =[sinh(a)+sinh(n —a) —sinh(0)]/sinh(0),

g (a)= [sinh(a)sinh(0 —a)/sinh(0)]'~2 .

Thus, for n even,

(A12)

[~.(t)] &[y(t)]"& =2 " '[( —1)!!][M.(t)] [ (t)]"

=(n —1)!!(~)k" 'F(0) (A13)

F(0)=0-' f, da[f(a)] [g(a)]". (A14)

This formula covers the first six terms in (A2). As for the
seventh, we have, on using (AS) with a =22 t&, b =2Azz,
c = 222 [Eqs. (9.11)],and (Al 1), for tz & t„
&[y(tt)j'[y(tz)] & 8( ~12/~)[3+5('~12/~)]

and using the relations

0 =2k, PV", ~=2P(A, jn) V', A,„=2k, /0 (A6)

one readily verifies that the terms displayed in (A3) and
(A5) lead to the terms displayed in the ordinary WK ex-

pansion (7.11). By using (A4) and tanh( —,
' 0 )~ 1,

(0/sinhn)' —+(20)'~ e as Q~pp in (Al), we get
(4.11) and (9.16).

1. Sketch of calculations

To evaluate the first six terms in the list (A2), we need
the formula

where

G(a~, az)

=A~G (cot(, cotz ),

=(sinhn) [9sinh a ~sinh(az —a
& )

X»nh (0—az)sinhn

+15sinh a~sinh (0—az)] .

Whence

&[y(t~)]'[y(tz)]'& =2k,„'0 'F,(0),
where

(A15)

(A16)

(A17)

& [y(t) j"& =~ '"[a«)j ' f
0, n odd

(A7)
2 "~z[(n —1)!!][a(t)]",n even

0 a&0 'F7(0)=0 f daz f da~G(a~, az) (A1S)

[we used f (t&, tz) =2T f dt2 f dt,f (t&, tz), hence
the factor 2 in (A17)].
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