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Local conservation laws for the Maxwell-Vlasov and collisionless kinetic guiding-center theories
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With use of a recent variational formulation of the Maxwell-Vlasov and guiding-center theories
[D. Pfirsch, Z. Naturforsch. A 39, 1 (1984)], the energy-momentum and angular momentum tensors
for such theories are derived and the corresponding local conservation laws are proven. The
energy-momentum tensor is shown to be symmetric in its spatial components while the angular
momentum density is naturally antisymmetric.

I. INTRODUCTION

In this work we use a recent variational formulation for
the Maxwell-Vlasov equations and related theories (Ref. 1,
henceforth called I) to obtain local conservation laws.
This formulation differs from previous such theories. In
particular it differs from the well-known Low-Lagrangian
formulation in that it is not only an Eulerian description
for the electromagnetic fields, but also treats the particles
or guiding centers in an Eulerian manner. This facilitates
application. The formulation of I differs from another
Eulerian variational principle given in Ref. 3, which is
based upon a noncanonical Hamiltonian description. In
Ref. 3, the particles are treated in an Eulerian manner by
decomposing the phase space density into "Clebsch-like"
potentials, while in I the Eulerian description of the parti-
cles is based upon a Hamilton-Jacobi theory, which plays
the role of a tool; all final expressions are expressible in
normal terms.

The problem of obtaining conservation laws for
guiding-center theories can be characterized as follows:
given the solutions of the collisionless kinetic guiding-
center equations —i.e., the guiding-center phase space den-
sity fg„(x,v~~,p, t) for particles of species v—one can im-
mediately write down expressions for the guiding-center
charge and current densities

pg ——g f fggv~~BdiJ, ,

3g g ev f (vD„+v~~)f, jv~~B dp, (1)

where the vD are the drift velocities for particles of
V

species v. The real charge and current densities differ,
however, from these expressions by certain polarization
and magnetization contributions

expressions for the energy and energy fiux densities were
determined. Here the full energy-momentum tensor and
the angular momentum tensor are obtained via Noether's
theorem. The appropriate symmetries of these tensors are
shown and the local conservation laws are proven. These
results are of importance for applications; e.g., knowledge
of the total angular momentum combined with the energy
can lead to an "energy" principle for linear stability
analysis.

The tensors are obtained in the usual way by first deter-
mining the general expression for an arbitrary variation of
the total Lagrangian density in normal position space x.
We note, however, that there is a slight complication be-
cause the "particle" part of the Lagrangian is primarily
defined on an extended space y=(yi, y2) where yi is iden-
tical to x and y2 is an additional coordinate that is needed
in order to describe guiding centers. By means of transla-
tional invariance in x space and time, and rotational in-
variance in x space the canonical tensors are obtained.
These tensors are not gauge invariant, but each can be
split into a divergence-free gauge-invariant part and a
divergence-free non-gauge-invariant part. The gauge-
invariant energy-momentum tensor turns out to be sym-
metric in its spatial components. This is shown to follow
from its relationship to the gauge-invariant part of the an-
gular momentum tensor. All of these expressions are also
applicable to relativistic theories.

Two applications are considered: first we treat the
Maxwell-Vlasov equations and show that the gauge-
invariant parts of our tensors reduce to the usual well-
known expressions. Following this we treat the Maxwell-
kinetic guiding-center theory based on Littlejohn s
guiding-center equations of motion. "

II. VARIATION OF THE LAGRANGIAN DENSITY

p=pg —V P, j=jg+ +V)&M .
at

The problem is then to find the correct expressions for the
electric polarization P and the magnetization M such that
all the necessary conservation laws hold. These quantities
were obtained in I where the new method generalized pre-
vious results by also including the polarization drift. This
difficult problem resisted solution until now. Also in I,

A= f Wdtd' , x

where

(3)

In this section we review the variational principle of I,
establish some convenient notation, and obtain an expres-
sion for 5W that is used in Sec. III.

Consider variation of the following action:
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~=~M+ g f d"'y2~p,

(E' &—'),1

8m

a4 1 aA
ax c at

duce the following notation:

Qp=P, Qp ——S„(&b,) =( —4,A),

(z,")=(ct,x), (z")=(ct,y),
where ct =z =z, = —z, o ando o

~P=~P+g P(y2)~M (10)

and

BS
Wp= —P — +e„C

Bt

as.
+H~

Bx
v BS
c ' By2'

where gp(y2) is an artifice that is used to align the parti-
cle and field regions of integration. It is arbitrary except
for the requirement that

y2 gp(y2 )

I3

For any quantity Q

The Hamiltonian for the "particles" of species v is given

If Q is independent of y2 then also

aQ
az~

(13)

H =e4+H p — A, P2, E, B
C

where in general H could also depend upon derivatives
of E and 8, but this is unnecessary for our present appli-
cations. Here p=—P& is canonically conjugate to x=y&
and P2 is canonically conjugate to the variable y2 that is
needed for guiding-center theory. In the formulation

presented in I and also here H does not depend upon y2
but does depend upon P2. However, if desired, the mean-
ing of y2 and P2 can be interchanged. The quantity S„ is
the Hamilton-Jacobi function and P„ is a density function.
Both are functions of y=(y&, y2), t, and a set of constants
of integration a=(a~, a2) that are needed for complete
solutions S„of the Hamiltonian- Jacobi equations
aS„/at+H„=O The label f.3 is used as a shorthand for v

and a. Also gp is used to mean g„f d ' 'a, where
n ~ is the dimension of the vector space y~

——x (i.e., n, = 3)
and n2 is the dimension of the vector space y2.

The quantities to be varied in Eq. (3) are N, A, P, and
S . Their variations must vanish at certain times t&, t2
and on certain surfaces in y space so that surface terms
can be neglected upon partial integration.

In order to simplify subsequent calculations we intro-

(14)

Thus

E;=Fo;, i ——1,2 3

.kIF ' i=123

where etkI =e; (ek)&er) for i,k, i =1,2, 3 and the e; are
constant orthonormal unit vectors in x space.

Given the above notation we can write the Lagrangian
density as

W=y f d"'y2Wp,
P

t

(16)

using Eqs. (10) and (4). Its variation is given by

In addition, we use the summation convention. (Some-
times indices occur twice when summation is not intend-
ed, but this will be obvious from the context. ) Finally, the
fields E and 8 are given by the electromagnetic field ten-
sor

amp a amp amp5W= g f d 'y2 5tfip, ——,. +5@2
ay', a.~ asap' ac.

a~p a,. a~p
5P'pa," ae, ,„a" asap„

a~p 'a~p'
+ $(P& +QzP

QZg 0@PP QZ e Pflc
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Here the last term arises due to explicit dependence of
Wp upon zp. From Eq. (17) we see that variation of the
action given by Eq. (3) yields the following Euler-
Lagrange equations:

BWp

aq,'
BWp =0,

az~ a@,'„
(18)

BWp =0.B~ BC,„

6W= g f d 'yz 5gp
,. BWp

azp

a a pM~
azg g, p

(19)

In Eq. (19) we have neglected the explicit part since it is
zero for the applications we present here. The first term
of Eq. (19) is easily integrated over yz. Thus if we neglect
yz-space boundary terms B/Bz" can be replaced by B/Bz,".
(In the guiding-center case y2 has only one component,

vII. As
~ vII I ~ oo or ~y2 ~

—+ oo there is no surface con-
tribution because any physical fg must vanish in this lim-
it.) Our final expression is

Equations (18) are equivalent to the Maxwell-Vlasov or
related kinetic equations, depending upon the choice for
H . These equations contain the expressions for the elec-
tric polarization P and the magnetization M. This is
shown explicitly in I. Now using Eqs. (18), we obtain
from Eq. (17) the nontrivial relation

Bgp BWp

p Bzg Bgp p

aw,
W—Pppa@ p (24)

is the canonical tensor. This result was obtained by other
means in I. We note that OP has no clear physical signifi-
mnce since it is not gauge invariant. However, we show
how this tensor can be split into the sum of a gauge-
invariant part and a non-gauge-invariant part, each of
which is independently conserved. In I this was done only
for the Opo components.

Observe that W~ does not depend upon g~p, thus we
only have the i =2 component gp p

——S,~. Furthermore,

= —p, ( &p),
v,P

(25)

n a p
Tp" ——g f d 'y

P za

e„BMOC
B1(~„

where (Vp)=(c, V ). The quantity V, is defined by

V„;=BH,/B(BS /By~;) and it corresponds to the velocity
of particles of species v in x space. Observe that
BWp/BS„p is gauge invariant. Similarly,

1 BWp BE p BWp
(26)

BN 2 BF B4 „BF„
is also gauge invariant. With this insight we let

&p
——T"+NpP, whereP P

,. a~, aw,g f d 'Zz ~0'p; +&C'~
a@Bz~ p Bfp p A, , /l

(20)
B p+ (@~,P

—C'P, ~) B@A, ,p

(27)

III. THE ENERGY-MOMENTUM TENSOR

We first construct the canonical energy-momentum ten-
sor. This is obtained from Eq. (20) by considering a varia-
tion of the entire physical system through an infinitesimal
distance d' in the space z, . A scalar function E(z, ) is
thus transformed according to

F(z, ) =E'(z, +e), (21)

and the function F' differs infinitesimally from F by the
following:

and

Xp=Q f d $72
e„aw, aw,

(28)
c P ayp'„P' BC~ p

BX~

Bz~ y„ f d"'y, '"e,„ e, B BWp+
c Bz& BS.„

BWp B BWp+ pl@Bc + pA,
p Bzg g )M

(29)

Taking the divergence of Eq. (28) with respect to z,"yields

&F(z. ) =E'(z. ) —E(z. ) = —O' F(z. ) .B

ZQ

(22) Using Eqs. (18), (10), and (7) we have

Applying this formula to the quantities W, g&, and N~
for arbitrary d' yields the loml conservation equations

BWp BWp e, BWp
Bz~ BC,,„= BC,

=
~ BS., (30)

BQ~)"
P 0

Bz,"
where

(23)
Thus the first and last terms of Eq. (29) cancel. Again
from Eq. (18) for the case i =2, and the recognition that

Wp does not depend upon S, we find that the second
term vanishes since
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f da2 v@ a aW
-c & g,~ as.„

e~ a

asap

'ayj a(aS„/ayJ )

aX|'/az,"=0 yields

(x "Tt' x'T—g') + Qg =0,
Bz," '

Bz,"
where

(38)

=0 (31)

Tg=g f d y2
p

The index j in Eq. (31) is summed up to n2 T.he third
term of Eq. (9) vanishes by virtue of the fact that C&z k„ is
symmetric in A, and P while asap/ac k z is antisymmetric
[cf. Eq. (26)]. Thus the physical energy-momentum ten-
sor is given by Tz, which can be rewritten as

e asap
c ~ BSv~p

aug;
a.: y f d"'y, e,

asap

e asap
c afP k W~P i

a~p a~p
ae + 'a (39)

In Eq. (38) terms have canceled due to the antisymmetry
of asap/a@; &, also the last two terms were obtained
using Eq. (18). Finally, from Eq. (29) we see that the
right-hand side of Eq. (38) vanishes. Thus

a~p+ Fkp —W&~ .
BFq„

(32) (x Tt' x'Tg)—= Ti" Tt, =0-
az~

(40)

In Sec. IV we will ascertain the symmetry of Tz by means
of the angular momentum tensor.

IV. THE ANGULAR MOMENTUM TENSOR

~+i ~ij+k~ &ik = —~ki~ I = 1,2, 3 (33)

then the variation of scalars is still given by Eq. (22) but a
three vector such as @l will change according to

~+'l = ~ikxk@'l, i +~lk ~ k ~ l = 1~2~ 3

Using Eq. (34) and the variations

(34)

aw aw a5W = —5x; = «kxk — = —«k (xkW),
xi Bxi Bxi

As usual the angular momentum tensor is obtained
from infinitesimal rotational invariance. If we rotate our
system in I space according to

Mg =x "Tt' x'Tf .— (41)

V. EXPLICIT FORM OF THE ENERGY-MOMENTUM
TENSOR

Consider now the first term of Eq. (32). Using Eq. (25)
and

as„ as„
P =w„f„a&,a2, „oa ~ oa2

(42)
a's.

aalu ay

and we have established that the energy-momentum ten-
sor is symmetric in its spatial components. The form of
the angular momentum tensor is simply given by

2 — 251IP= eikxkfP i

&@'o= —& k &k @o,

together with Eq. (20) yields

ek (x W)
Bx.

asap

asap
yz«'kxk PP, i

a 2 + k, i aC,Z," p pp kp

(35)
where ui„ is the Van Vleck determinant and f„ is a gen-
eral constant of motion closely related to the distribution
function (see I for details), we obtain

g f d 'yq(S, ~
— @~)

p c ~ BS

= —g f d ' 'ad 'y2 S„p— 4p V"i'„f„.
c

(3 p„gf d y2&ik@k aC,Bz," p
(36)

k ix 0'"—x Ok
az~

Since e;k is antisymmetric but otherwise arbitrary, upon
making use of Eq. (24), Eq. (36) leads to

The quantities S, i,
—(e /c)@i, are given by

e 1 BS,
Sv, o

— @o= +eve = Hv~ p=0
c c Bt c

(43)

(44)

asap

asap—g f d' yak a@p l,P k,p
=0 ~ (37)

S p
— @p——pp — Ap, p= 1 2 3

c c

Inserting 0"; = Tp'+ N/' into Eq. (37) and using
The second term of Eq. (32), with the aid of Eq. (16), can
be rewritten as
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(45)

am& a r aw aw
y2 F2p aF =Fop aF =Fop

a +Fip
p Ap gp Op IJM

aw+F(

g f d"'+"'ad"'y, w f„EX
V p

p=O, p=1,2, 3 (57)

The last term of Eq. (45) can be evaluated using

Frp=eplB'=(BXep). e~, p, I=1,2, 3 .

Thus for I,p=1,2, 3

(46)

—g f d ad y2W~f~ BX
V .P

p=1,2, 3, p=O (58)

aw
aF,„= X

gg p I (47)
—g f d ' 'ad 'y2w„f, E.

V

and the following relations for FlpaW/aF~& hold:

aw B aw
~ B aw

'paF aB p" "aBlp P

p=p=0 . (59)

Here we have used P„=w„f .
It remains to determine the last term of Eq. (32),

aw
lo gFlp

aw
as &E, p=O, p=1,2, 3

(E2 B2)
Sm'

aw aw
aE

ip
p=1,2, 3, p=O (50)

—g f d"' 'ad 'y2w~f~

aw aw
Fio =E' p=p =0

BF(0 BE
(51)

S —e„@o+H Sp .
Bt

(60)

Evaluating Eqs. (48)—(51) for the electromagnetic field
portion of W, W~ =(1/8n )(E —B ), yields

1 g2
(EpE„+BpB„)— 5', p, p =1,2, 3 (52)

4~ »'

As a consequence of the Euler-l. agrange equations, Eq.
(18) with E =1, t'he last term of Eq. (60) vanishes and we
are left with

1 (EXB)„, p=O, @=1,2, 3

1

4m
(EXB), p=1,2, 3, p=O.pP

E2 p p 0
4m.

(53)

(54)

(55)

WS,"= (E'—B2)S, .

In I it was shown that one can replace

f d"'a, d"'y, w„f.

(61)

Evaluating Eqs. (48)—(51) for the particle portion of W,
y~ f d"'y2W~, yields the following for Eq. (45):

n
$ +n2 n2 ~+V ~+V—g f d ' 'ad 'y2w„f„Ep " B„—~BE„"BB

aa+ 8 5@V

p,p = 1,2, 3 (56)

f d'Sf. . (62)

where d p is a p-space volume element and f (x,p, t;a2)
is the distribution function for "particles" of species v de-
fined on normal phase, x,p. The quantity a2 ——P2 is the
constant value of P2 corresponding to the independence of
H of y2. This constant is to be chosen so that the
correct equations of motion for the particles is obtained.
This means that f is proportional to a 6 function in a2.
In the p representation, S„p is given by Eq. (44). We can
now write down the explicit form of the energy-
momentum tensor T~&.

t

To ——g f d pd 'a2f„H~ E" + (E—2+B2),
BE 8~ (63)

&To=+ f d pd 'a2f. H. &".+«X + (EXB)„, I =1,2, 3
BB p 4m

(64)
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Tp ———gfdpd'a2f, c pp — Ap + BX 1
(EXB)p, p=1,2, 3

4m
(65)

Tp= g f d pd azfv pp
e„dH„dH dH,

+ (EpEp+BpBp) — (B +E )&", p, ,p=1,2, 3 .
1 1

s~ (66)

Equations (63) and (64) agree with the expressions for the
energy and energy flux densities of I, while Eqs. (65) and
(66) are new.

(VD —VE) XB,aa

VI. THE MAXWELL-VLASOV THEORY
dH

BB
mvU mvc

(VD —VE ) — (VD —VE) X E
v g2

For the Maxwell-Vlasov equations we restrict our gen-
eral results by setting y=x, a=a&, f d"a2 . ~1
and BH /BE=BH„/BB=O. In this way Eqs. (63)—(66)
yield the well-known expressions

T', = g f d'p f.H„+ (E'+B'),

2mv+ vE (vD —VE)b+pb,
v

ev
p — A=I„(u~~b+VE),

C

V„=uiib+v D

(6&)

cTO= y f d pf H &"+ (EXB)p, @=1,2, 3
4m.

(67)

2 (u~(+uE)+P» b=B/B .

In these expressions the quantity a2 has already been as-
signed its appropriate value. Also, one can replace

T = —yfdpfc p
—"

C -P f d'pd"'a, f„. .

1
(EXB)p, p=1,2, 3

4m

where

T,"=-y f d'pf. p—
e

v~
C B ~~=b VX

m e
(uiib+ VE ) B,

ev
(70)

+ (EpE„+BpB„)
1 and fg„(x,u~~, p, t) is a solution of the kinetic guiding-

center equation

(E +B )bp, p,@=1,2, 3 .
8m.

dfg„ dfg. . dfg
+(vD +uiib) +uii =0 .

Bt
(71)

VII. KINETIC GUIDING CENTER—MAXWELL
THEORY

dp, dull fgv=ngv(x t ) (72)

Expressions for
U~~ and vD can, for instance, be found in

V

I. The normalization of fg is such that

Using Wimmel's variational formulation for Little-
john's guiding-center equations of motion that include
polarization drifts, one has as shown in I

where n „ is the guiding-center density of particles of
species v. We can now write the energy-momen-
tum tensor:
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To= g I Bv~~dPdu~~ fgv (u~~+UD ) (v—D v—E) +PB + (E +B ),
V

v v (73)

CTo = g Bv~~dp du~~ fgv
mv

(U+UE)+pB (VD +U~~b)@+[pB+2mvvE (VD —VE)]uE

2mvc mvU~IC c
2 IEX [(vD —vE) XE]lp — [EX(vD —vE)]„+ (EX8)„, @=1,2, 3 (74)g2 v P

1
Tq ———g B,~~dpdu~~ fg~m, (u~~b+VD )q (EXB)p, p=1,2, 3

4~ (75)

Tp ——g Bv()dp du(( fgvmv (U)(b+VD ) (p(U[b+ DV)p —UD UD +UE UD
V

+ 2 [Ep(VD XB)p+B„(VD XE)p]+ 2 (EpEq Ebpb—p)

1+ 2vE'(vD —vE)+ PB (Pp bpbp) —vE'(vD —v—E)6q

+ (EpEp+BpBp) (E +—B )8', p,p=1,2, 3 . (76)

It was shown in Sec. IV that the expression given by Eq.
(76) is symmetric in p and p. This property is not ap-
parent because it is hidden in the special forms for the
drift velocities. For the case where vD ——vE, the symme-

try can easily be shown directly. Also for E=O the sym-
metry is obvious.

VIII. SUMMARY

By means of a variational formulation for the
Maxwell-Vlasov and related theories, which describes
both the fields and the particles in the Eulerian picture,
the canonical energy-momentum and angular momentum
tensors were obtained. This was done by applying the
field-theoretic method that relates invariance properties
and conservation laws. The tensors found this way were
not gauge invariant. Splitting the canonical energy-
momentum tensor into a divergence-free gauge-invariant
part T~ and a divergence-free non-gauge-invariant part
had the consequence that the angular momentum tensor
likewise split up in a natural way into a divergence-free
gauge-invariant part Mg,: (k,i = 1,2, 3, @=1,2, 3,4) and a
divergence-free non-gauge-invariant part. Mg is related
to TI' by Mg; =x "TP x'Tg'. From th—is the relation
T; =Tk follows immediately. This is a result that ap-
pears to be not easily proven explicitly. T~z was expressed
in normal terms and explicit expressions were given for
the Maxwell-Vlasov theory and a Maxwell kinetic
guiding-center theory based on Littlejohn s guiding-center
equations.

Finally, we comment about two examples to which the
formalism presented here is applicable. By appropriate
choices of H the energy-momentum and angular
momentum tensors for relativistic systems, or systems for
which the particle Hamiltonian depends upon derivatives
of E and 8, are easily obtained. The former case is im-
mediate by making use of Eqs. (63)—(66), while the latter

requires a slight generalization. The relativistic Maxwell-
Vlasov equation is an example of the former case. It can
be formulated in a covariant manner by rewriting the par-
ticle portion of the Lagrangian density, Eq. (7), with a
particular choice of H . The electromagnetic field por-
tion of course requires no alteration. For a single species
the appropriate particle form is

2 1/2
aS e

A +mpcax c
+el&+cas

at

aS e
a~~ c

aS e 2+mpc
ax@ c

The equality here follows from the substitution

as —e@+c
at

2 1/2
aS e

A +mpcax c

where

aS e-u"=

is the velocity four-vector.
Note added in proof. Results similar to those obtained

here have recently been obtained by P. L. Similon
[Lawrence Berkeley Laboratory Report No. 19633, 1985
(unpublished)] for relativistic guiding-center theory using
a Lagrangian variable approach.

which introduces the quantity g that is (like S) a Lorentz
scalar invariant. Upon variation we see that P satisfies a
covariant continuity equation

a (gu") =0,
ax~
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