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Model for Taylor-Couette flow
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Model equations for circular symmetric Taylor-Couette flow are derived in the narrow-gap limit
by a mode truncation of the full Navier-Stokes equations. For static Taylor numbers these model
equations can be transformed into the Lorenz equations for Rayleigh-Benard convection. Linear
growth rates of the most unstable modes and the torque on the cylinders evaluated within this model
reproduce well the known results. The response to periodic modulation of the forcing is different
from that of the convective Lorenz model.

I. INTRODUCTION

Taylor-Couette flow and Rayleigh-Benard convection
display hydrodynamic instabilities, which have been stud-
ied quite intensively. Although the origin of the instabili-
ties as well as the geometries differ, there are similarities.
It has been pointed out, ' that the Taylor-Couette problem
for narrow gap is analogous to that of Rayleigh-Benard
convection. Thus one might hope that approximations of
the flow in the latter system are also applicable in the
former. Such an approximation was suggested by Lorenz
for convection in a heated fluid layer close to threshold by
truncating the full hydrodynamic field equations to a few
modes. Here we shall derive by a similar procedure the
analogous model equations for Taylor vortex flow be-
tween concentric cylinders.

To that end we consider the narrow-gap case explained
in Sec. II. In analogy to the convective Lorenz model we
assume a free-slip boundary condition in axial direction,
i.e., in the turning direction of the Taylor vortex rolls.
Our mixed boundary conditions —the tangential ones are
rigid —and the mode truncation of the Navier-Stokes
equations are described in Sec. III. Linear and nonlinear
properties of the resulting set of model equations are dis-
cussed in Sec. IV. In Sec. V we investigate within our
model the stability behavior of the basic flow under
periodic modulation of the inner cylinder's rotation rate.
The validity of the performed approximations is summa-
rized in Sec. VI, and the Appendix deals with the linear
stability problem.

II. NARROW-GAP APPROXIMATION

Consider an incompressible fluid of density p and
kinematic viscosity v between two infinite, concentric
cylinders of radii R ~ and R2, where the inner one is rotat-
ing with angular velocity Ql and the outer one is at rest.
The problem is governed by the Navier-Stokes equations
and the incompressibility condition

B,U+U. VU= — VP+v bU, —1

P
(2.1)

V.U=0

(8, —8„—c), )U= (u 8„—+w B, )U —uB„Vo,

(8, —B„—B,)w+B,p= —(u B„+wB,)w,

B~Q+8 N =0.

(2.2b)

(2.2c)

(2.2d)

We have introduced the Taylor number T =(Q~R ~d/v) 5
and x =(r —R~)/d. Length, time, pressure, azimuthal,
radial, and axial velocity are measured in units of d,
d /v, pv /d, R~Q~, and v/d, respectively. Equations
(2.2) together with appropriate boundary conditions are
the starting point for further approximations.

III. MIXED BOUNDARY CONDITIONS
AND MODE EXPANSION

The natural boundary conditions are u, U, w, B„u =0 at
x =0, 1. An orthogonal set of functions satisfying these
conditions is, for instance, the system of hyperbolic tri-
gonometric functions commonly used in the Benard prob-
lem with rigid-rigid boundaries. Here we impose mixed
boundary conditions at the cylinder surfaces: No slip in
azimuthal direction, i.e., U =O, but free slip in z-direction,
i.e., B„w =0. Hence there are no axial friction forces act-
ing between the fluid and the cylinder walls. The effect of
free slip is to enhance the onset of Taylor vortices. For
5~0 the critical Taylor number and wave number for the
onset of Taylor vortex flow are T, =1695 and k, =3.12, '

respectively, if rigid boundaries are imposed, whereas for
mixed boundary conditions we have T, =654 and
k, =2.23 (cf. Appendix). That is in close analogy to the
lowering of the convective threshold in the Benard prob-
lem by use of free-free boundaries. With the above condi-
tions the axisymmetric Taylor vortex field can be decom-
posed into sine and cosine normal modes

Here we only consider axisymmetric fields in the narrow-
gap case, where the gap wjdth d =R2 —R& is small com-
pared to the radii. In lowest-order 5 of the small param-
eter 5=d/R~ &&1, one finds the deviations u=(u, u, w)
and p from the basic Couette flow having only azimuthal
component Vo(x) =1—x to satisfy the equations

(5, —8„—B,)u+B„p= —(u B„+wB, )u+Tu +2TV U,

(2.2a)
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u (x,z, t) = g g 2v 2u(n, m, t) sin(nmx) cos(mkz),
n=l m=1

I

v(x, z, t) = g V 2 g 2v(n, m, t) sin(nmx) cos(mkz)+v(n, o, t) sin(nmx) (3.1)
n=1 m =1

w(x, z, t)= g g —2v 2&(n, m, t) cos(nvrx) sin(mkz) .
n=1 m=1

Here the axial periodicity length of the Taylor vortex flow
state is 2m/k. In analogy to the derivation of the Lorenz
model for Rayleigh-Benard convection, we shall truncate
the mode expansion (3.1) of the velocity field and keep
only a minimal set. Linear stability analysis of (2.2) (cf.
Appendix) shows that to lowest approximation the critical
velocity field is given by the n =I =1 terms of the ex-
pansion (3.1). The corresponding neutral stability curve is

T, = (m +k ) /k, which is the same as for Rayleigh-
Benard convection. Thus the minimum T, = —,~ and
the associated critical wave number k, =rr/v 2 takes the
same value in both cases. A first approximation would be
to keep only the fundamental modes u(1, 1,t), v(l, l, t),
w(l, l, t) in (3.1). However, since Eq. (2.2) involves a
quadratic nonlinearity, these fundamentals are not able to
interact. To allow for nonlinear effects, we also keep
v(1,0, t) and v(2, 0, t). Projecting the Navier-Stokes equa-
tion (2.2) onto the above-mentioned modes we obtain

B,v(1, l, t)= —(m. +k )v(1, l, t)

(3.2a)+u(1, i, t)[1+v 2nv(2, 0, t)],
2

B,u(1, l, t) = —(~'+k')u(l, l, t)+ T v(1, l, t)
m. +k

16 2k+ T v( 1, l, t)v( l, o, t), (3.2b)3'(~'+ k')

a, v(1,0, t) = —~'v(1, 0,t), (3.2c)

B,v(2, 0,t) = 4mv(2, 0, t) —2v 2. mv(1, 1,t—)u(l, l, t),
(3.2d)

where we have used, that &( 1, l, t) =(rr/k)u(1, 1,t). Note
that v(l, o, t) is damped away exponentially. Therefore,
with the scaling

For static driving with constant e one can obtain the stan-
dard Lorenz model with Prandtl number o.=1 by the
transformation X—+x, Y—+y/(1+@), Z~z/(I+a)

x = —c7x +c6y

C1C7 C3C6
y = —C1y+ X 1+@— z

C6 C1C7
(3.6)

z = —c4z +c5xy

with constants c; explained in Ref. 4. Because of the rigid
boundary conditions one would expect that (3.6) yields
more realistic results than (3.4). This is true for the criti-
cal parameters, k, =3.1 and T, =2002 (6=0.1), but not
for the torque on the cylinders to be discussed in the next
section.

IV. PROPERTIES OF THE MODEL

A. Growth rates

To investigate the growth rates of the linearly unstable
modes for slightly supercritical driving, e = ( T —T, ) /
T, & 0, one may approximate the time evolution of X and
Y through exponential functions. Then one finds that the
wave number k for the mode with maximum growth
rate grows according to

~x = —x+y,
ry' = —y +x (1+@—z),
~z= —bz+xy .

Recently, Hsieh and Chen ' derived similar equations for
Taylor-Couette flow with rigid boundaries. For a narrow
gap and constant e their system can be written as

X =
2 u(1, 1,t), r=

2
2~ 1

m+k, m +k, k,
=(1+.)'", (4.1)

Y =2vrv (1,1,t),
Z = —~2m.v(2, 0, t), b =4vr r,

our model equations for the critical modes read

rX= —X+Y(1+m),

r Y= —Y+X(1—Z),
~Z = —bZ+XY' .

Here we have introduced

e=(T —T, )/T, .

(3.3)

(3.4)

(3.5)

with an initial slope of a= 4. This result is in excellent
agreement with a high-precision numerical calculation of
Dominguez-Lerma based on the linearized version of
(2.1) with the natural boundary conditions; in the range
0 & 5 &0.3 the difference is less than 0.5%%uo. Even for 5 as
large as 0.9 the difference in a is only about 6%%uo.

B. Torque

The torque on the cylinders shows a characteristic
change, when the driving becomes supercritical. Hence
comparison between numerical data and predictions of the
model are another test for its validity. The only contribu-
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tion to the torque in infinite systems comes from nonos-
cillatory (in z-direction) modes. In reduced units the
torque on the inner cylinder reads

Stokes equations in the presence of modulation to the
same set of modes kept in the static driving case. We ob-
tain

G —Go ———(1+2Z) . (4.2)

It is useful to define g =(G —Gp)/G„where Go and G,
are the torques due to the laminar Couette profile and its
critical value, respectively. Here we have

vX= —X+pY(1+e),
rF= —F+qX —XZ,

zZ = —bZ+XF,
(5.3)

g 2
1g2

26 (4.3)(I+e)' '
In the limit 5~0 Davey and Stuart found g/e=1. 528
and 1.4472, respectively, using rigid boundaries. Thus the
transport of angular momentum from the inner to the
outer cylinder, measured by g, is favored in the presence
of free slip in z direction. This result is in analogy to the
Rayleigh-Benard problem, where the corresponding quan-
tity, the Nusselt number, measuring the amount of con-
vective heat transport, is enhanced by free boundaries. '

In the limit 5~0 the model proposed by Chen and Hsieh
yields g/e=6. 5, which is much bigger than all previous
results. This value for g/e seems to be caused by too high
amplitudes: Calculations of the radial velocity in the
middle of the gap show that the value obtained from (3.6)
is about six times bigger than ours.

In general the model (3.4) is affected by mode trunca-
tion and the choice of boundary conditions. Linear stabil-
ity analysis (cf. Appendix) suggests, that for static driving
modes with n & 1, play a minor role for small e, and the
main difference to the rigid system arises from the mixed
boundary conditions.

V. PERIODIC MODULATION OF THE INNER
CYLINDER'S ROTATION RATE

Q&(t)=Q& I+ERe g a„e
n=1

(5.1)

with relative amplitudes Aa„. Then the time-dependent
Couette solution is

A. The stability problem

Of great interest is the behavior of the system under
external modulation of the driving frequency Q&. In par-
ticular the stability boundary of Couette flow has attract-
ed much research activities. ' ' Let us consider a
periodic modulation of the inner cylinders rotation fre-
quency with period 2mlco,

with abbreviations

T
C

p= e + tan( y/ ) —incoge
i 1 —y /4n y/2

(5.4)

~ ~ p ' 1~X+ 2 —~—X+-
p

4

1 —~——pq(1+@) X=0. (5.5)

This equation describes a damped harmonic oscillator,
where the strength of the potential and damping are expli-
citly time dependent. The corresponding equation for the
convective Lorenz model has a constant damping term
and only the potential is modulated.

B. Stability boundary for small 6

To investigate the stability boundary of the X =0 state,
we expand the reduced threshold Taylor number or e, and
the solution X in terms of the small parameter b. ,

X=X' '+LY'"+6 X' '+ . .
(5.6)

requiring that to each order in b, the "coefficients" X'"'
are marginal, i.e., periodic. That yields e,' '=0. Further-
more, with the Fredholm alternative one finds e,'"=0 as
well as

n=1 1+ Pl 67K

2

-, 1+'"
9'n

—2 Re
Pn-

9'n
&0,

00 a
q=Re 1+6, g

i 1 y'—/4

T,' ' is the static threshold Taylor number and
T =(Q&R&d/v) 5. The stability of the basic flow Vo(x, t)
is then governed by a second-order differential equation
for X,

Vo(x, t) =Re Vo(x) I+6 g a„e
n=1

~'

+& y a;„„,sm[y(1 —x)]
n=1 sing

where

tan(y/2)
y/2

a„ 1

1 y /4~—
(5.7)

(5.2)

where y =(into)', leading to Eq. (2.2) with Vo(x, t) in-
stead of Vo(x). The following projection procedure is
analogous to Sec. III, i.e., we truncate the full Navier-

an 1

1 y /4n—
Thus the shift of the threshold for onset of vortex flow
due to modulation is
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0.05

0

g (A,,u)
Q2

Therefore, the stabilizing effect of the model (5.3) is
due to our truncating the radial modes at order n =1.
The mixed boundary conditions, on the other hand, do not
qualitatively alter the stability properties, except that

~
e,' '(co~0)

~

is smaller by a factor of —17 from the re-
sults of Hall, and Riley and Laurence for rigid boun-
ds es.

VI. CONCLUSION

—0.05

]0 '20 30
I

40

FIG. 1. Reduced threshold shift e, (A, ~)/6 as function of
the modulation frequency of the inner cylinder's rotation rate co

for small modulation amplitude: a, present result, a& ——I; b,
Hall (Ref. 12); and e, Riley and Laurence (Ref. 10).

e, (A, to)=h e,' '(to)+O(b, ) . (5.g)

Odd terms in 6 vanish because 6—+ —6 only adds a con-
stant phase factor in (5.1). For an application of this
technique to the convective Lorenz model see Ref. 15.
For negative e, ( 6,cu ) the basic flow is destabilized,
whereas positive e, (b„cu) means a stabilization of the
basic solution. The first nonvanishing correction to the
static threshold e, (b, ,cv)=0 is at order 6 with E,' ' giving
the relative strength of the threshold shift. Here the
threshold shift is always positive with a maximum for
small co and vanishes for co—+0, oo [in Fig. 1 e, (b„co)/b,
is plotted for the case of harmonical modulation with
strength a~ ——1 (curve a)]. Therefore, within our model
equations, modulation has a stabilizing effect. The con-
vective Lorenz model for o = 1 shows a stabilization, that
is similar in the high-frequency range. However, its low-
frequency stabilization is much larger with a maximum
e,' '(co~0) =0.125.

Hall' and Riley and Laurence' investigated the stabili-
ty of Couette flow using the narrow-gap approximation,
too and found e, (A, co) &0. The destabilization was maxi-
mal for co~0 and vanishes for co~oo. Carmi and Tus-
taniwskyj" verified this behavior for finite gap width.
Figure 1 shows the low-frequency modulation expansion
of Hall (curve b) and a value for e,' ' given by Riley and
Laurence (curve c).

Both results contradict ours. To decide whether this
discrepancy stems from mode truncation or changed
boundary conditions, we carried out a linear stability
analysis for the narrow-gap Eqs. (2.2a)—(2.2d) and modu-
lated angular velocity with the full set of modes (3.1).'

Technically we truncated the expansion at increasing or-
der. Already the inclusion of the second harmonic
( n =2) in radial direction leads to a destabilization
e,' '(co) &0 rather than stabilization of the Couette flow,
and furthermore, e,' '(co~0) remains finite. Including
higher modes, n ~2, leads to a well-converging series of
stability boundaries that do not differ qualitatively from
the truncation at order n =2.

ACKNOWLEDGMENT

I am grateful to M. Liicke for stimulating discussions.

APPENDIX

Here we present the linear stability analysis of (2.2)
with the mixed boundary conditions u =U =B„u =0 at
x =0, 1. After linearizing we get

(a, —a„' —a,')(a„'+a,')u =2TV Bv,v,
(8, —8„—B, )u =u .

(Ala)

(A lb)

Since we have identical boundary conditions for u and
v, it is convenient to write Eq. (Al) as one equation for u.

(For the rigid boundary case see Ref. 1.) Using the expan-
sion (3.1) with m =1, k variable, and v(n, l, t) =u(n, 1)e ',

we are left with

a (o,n, k)u(n, 1)= TB„„v(n', 1),
where

(A2)

(o+n n. +k ) (n m+k .).
a (a, n, k)=

4k

and the symmetric matrix B„„satisfies

4, n =n'

&„,„=,0, n —n' even, nonzero
4n'n

n —n odd .
n"(n n')—(A3)

The solvability condition

The presented treatment of the transition from Couette
flow to Taylor vortex flow in the narrow-gap limit starts
from two simplifications, i.e., mixed boundary conditions
and mode truncation. The resulting set of model equa-
tions confirm previous results in the case of static driving.
Similar to the convective Lorenz model, the difference of
k„T„and g to the rigid system are caused by the
changed boundary conditions. The truncation approxima-
tion, on the other hand, influences only slightly the criti-
cal values. However, in the case of time-dependent driv-

ing, the threshold shift is more sensitive to mode restric-
tions and the second harmonic has to be taken into ac-
count. The discrepancies in e,' ' between mixed and rigid
cases that remain for X~ co, are then due to boundary
effects. A natural consequence would be to investigate a
model with more than three modes, which is under
present consideration.
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TABLE I. Numerical values for the critical Taylor number T„wave number k„and relative ampli-
tudes x„=v(n, 1)/u(1, 1) of harmonics within the marginally stable solution of (A2). N is the number
of harmonics kept in (A2).

k,

2.2214
2.2272
2.2272
2.2272
2.2272

Tc

657.511
654.2S7
654.256
6S4.2S6
654.2S6

1.383
1.383
1.383
1.383

10 x3

2.126
2.129
2.129

10 x4

2.167
2.167

107xs

1.053

det[a (o =0, n, k)5„„—TB„„]=0
yields the curves of marginal stability for different eigen-
modes of (A 1) in the ( k, T) plane. Because our basic func-
tions (3.1) are not eigenfunctions for the problem (Al),
B„„contains off-diagonal elements. However, they de-
cay like

~

n n'
~

.—Thus we approximately solve (A4)
by truncating the infinite matrices to NXN square ma-
trices, where N is the number of harmonics retained.
This approximation converges quite rapidly, as can be
seen in Table I. For %=1 weget

&2

For X & I the marginally stable solution obtained by solv-
ing (A2) contains higher harmonics of small amplitude,
the relative size being less than 0.015 (see Table I). They
cause corrections to the first approximation for T„which
are of order 10 . Thus it seems reasonable for a first ap-
proximation to restrict oneself on the fundamental mode,
if model equations for T immediately above T, are inves-
tigated.

S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability
(Clarendon, Oxford, England, 1961}.

E. N. Lorenz, J. Atmos. Sci. 20, 130 (1963).
D. Y. Hsieh and Fengsu Chen, Phys. Fluids 27, 321 (1984).

4F. Chen and D. Y. Hsieh, A Model. Study of Stability of
Couette Flow, Feb. 1983 (unpublished).

5M. A. Dominguez-Lerma, G. Ahlers, and D. S. Cannell, Phys.
Fluids 27, 856 (1984).

A. Davey, J. Fluid Mech. 14, 336 (1962).
7J. T. Stuart, J. Fluid Mech. 4, 1 (1958).
V. W. R. Malkus and G. Veronis, J. Fluid Mech. 4, 225 (1958).

A. Schliiter, D. Lortz, and F. Busse, J. Fluid Mech. 23, 129
(1965).

P. J. Riley and R. L. Laurence, J. Fluid Mech. 75, 625 (1976).
S. Carmi and J. I. Tustaniwskyj, J. Fluid Mech. 108, 19
(1981).

~P. Hall, J. Fluid Mech. 67, 29 (1975).
J. I. Tustaniwskyj and S. Carmi, Phys. Fluids 23, 1732 (1980).

~R. J. Donnelly, Proc. R. Soc. London, A 281, 130 (1964).
G. Ahlers, P. C. Hohenberg, and M. Lucke, Phys. Rev. Lett.
53, 48 (1984) and unpublished.
H. Kuhlmann (unpublished).


