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Nonlinear-response-function approach to binary ionic mixtures: Dynamical theory
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The authors generalize the Golden-Kalman one-component-plasma (OCP) nonlinear-response-
function approach to the formulation of a dynamical theory for binary-ionic-mixture plasmas. The
principal result of the new dynamical theory is a self-consistent approximation scheme for the calcu-
lation of linear ionic polarizabilities and collective-mode structure at long wavelengths and arbitrary
coupling strengths. The approximation scheme is constructed from the dynamical nonlinear
fluctuation-dissipation theorem and the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) kinetic
equation prepared in the velocity-average approximation (VAA). Equilibrium three-point correla-
tions, quadratic response functions, and the dynamical superposition approximation are all central
elements of the theory. The theory is exact at zero frequency and exactly reproduces the coefficients
of the high-frequency-moment-sum-rule expansion through order 1/co . Collective-mode calcula-
tions based on the new approximation scheme indicate that the (positive) shift in the plasma fre-
quency is temperature dependent at weak coupling and temperature independent at very strong cou-
pling. These calculations, moreover, reproduce the qualitative features of the Hansen-McDonald-
Vieillefosse molecular-dynamics data for the dispersion of the optical mode in the strong-coupling
regime, while at the same time very nearly reproducing the weak-coupling frequency shift predicted
by Baus's microscopic theory. The authors conclude that the temperature-dependent broadening
and shifting of the plasma made at weak coupling is controlled primarily by ionic interdiffusion
transport. At very strong coupling, the di,spersion of the optical mode is almost entirely controlled

by the static-correlational parts of the third-frequency-moment-sum-rule coefficient. Finally, new
OCP-like formulas are presented for the dispersion and damping of the plasma mode in the special
"symmetric" (ez /m& ——ez /m~) ionic mixtures.

I. INTRODUCTION

Using a nonlinear-response-function approach, we for-
mulate a promising new dynamical theory of binary-
ionic-mixture plasmas at arbitrary coupling. ' The plasma
configuration of the present paper consists of two mobile
classical ion species immersed in a uniform, inert, and
neutralizing background. The extreme conditions of den-
sity and temperature for such a configuration are typical
of degenerate stellar matter where the electrons are highly
degenerate and rigid, and where the positive nuclei are
fully pressure ionized. Examples are the interiors of
carbon-oxygen stars in their helium shell-burning phase '

and certain type-I presupernova cores.
The recent computer experimental and theoretical ef-

forts of Hansen, McDonald, and Vieillefosse (HMV) and
Baus have provided new information about the dynami-
cal properties of the uniform-background —binary-ionic-
mixture model in the weak- and strong-coupling regimes.
Structure function and longitudinal collective-mode data
generated from molecular-dynamics simulations ' of
strongly coupled H+-He + mixtures and concomitant
theoretical calculations suggest (i) that short-range-
static-correlational effects bring about a small positive
temperature independent s-hift in the plasma frequency
and (ii) that this shift and the dispersion of the optical
mode are structured, respectively, by the O((k/co) )-
short-range and O((k/co) )-long-range-static-correlational
parts of the third-frequency-moment-sum-rule coefficient.

The kinetic theory approach pursued by Baus et al. , ' on
the other hand, suggests (iii) a temperature dependent-
shifting and broadening of the plasma mode by
O((k/co) ) ionic interdiffusion transport resulting froin
dynamic collisions. In the present work, we demonstrate
that ionic interdiffusion transport plays the principal role
at weak coupling and that short- and long-range-static-
correlational effects play the principal role at very strong
coupling.

Our approximation scheme is a generalization of the
Golden-Kalman (GK) one-component-plasma (OCP)
scheme. The principal building blocks to its construction
are (i) the first Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) kinetic equations linking nonequilibrium one-
and two-particle distribution functions [labeled F (1) and
G ~ (12); cr, o'=A, B] and (ii) dynamical nonlinear
fiuctuation-dissipation theorems (NLFDT's) linking n-
point ( n =3,4, 5, . . . ) structure functions and nonlinear-
(quadratic, cubic, quartic, . . . ) response functions. The
central hypothesis of the theory, the VAA [velocity-
average approximation: Eq. (25) (Refs. 7, 9, and 10)] sup-
poses that the correlational part of 6 (12) can be re-
placed by a suitably chosen velocity average.

Preliminary calculations indicate th'at the theory will
provide a reliable description of the longitudinal collective
modes over a range of coupling strengths [characterized
by the plasma parameter 1 =Pe /a, a =(3/4m. n)'~,
n = g (X~/V)] spanning the entire fluid regime. At
long wavelengths [k &&co(Pm )'~ ], these calculations
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reproduce the qualitative features of the HMV
molecular-dynamics data for the dispersion of the optical
mode in the strong-coupling (I ~~1) regime, while at the
same time very nearly reproducing the k =0 weak-
coupling (I && 1) collective-mode results of Baus's micro-
scopic theory. As far as we know, this is the first time a
dynamical theory has succeeded in securing the correct
collective-mode properties of binary ionic mixtures in
these two extreme coupling regimes.

In the GK approach, a chain of polarizability equations
can be generated by combining the first BBGKY equa-
tions with the NLFDT's (Secs. III and IV). This com-
bination is made possible by the VAA which converts the
veloc&ty-dependent collision terms [in Eq. (24)] into more
tractable velocity-independent density-density correlation
functions [see Eq. (27)]. The first equation in the chain
links linear and quadratic polarizabilities, the second links
quadratic and cubic polarizabilities, and so on. Depend-
ing upon the degree of accuracy desired, one can truncate
the chain at any level. If, for example, all equations after
the first one are dropped, then closure is effected by ap-
proximating the quadratic polarizability in terms of linear
ones. This we do in the present paper. A systematic clo-
sure procedure called the "dynamical superposition ap-
proximation" (DSA), first developed by Golden and Kal-
man for the OCP, will be formulated (in Sec. V) to han-
dle the binary-ionic-mixture configuration of the present
paper.

The binary-ionic-mixture plasma is obviously a more
complex system than the OCP, indeed to a substantial de-
gree so, making the task of this paper far from trivial.
When the number of ionic species is greater than 1 (say
K), the number of linear polarizabilities is IC, but the
number of dynamical two-point structure functions is

,'K(IC+1). Thu—s, even for %=2, the straightforward
application of linear fluctuation-dissipation theorems
(FDT's) becomes impossible when formulated, as is cus-
tomary, in the language of "external" polarizabilities for
each species. Some time ago, Vashishta, Bhattacaryya,
and Singwi" suggested a way of handling the multicom-
ponent situation. They introduced the concept of "par-
tial" response functions describing the response of the sys-
tem to fictitious external fields which act on each of the
species independently. In their paper, Vashishta et al. "
derived simple relationships for the linear partial response
functions in the framework of the Singwi-Tosi-Land-
Sjolander (STLS) mean-field-theory' approximation. In
subsequent works, Golden and Kalman ' exploited the
concept of partial response functions to set up a general
framework for various approximation schemes for strong-
ly coupled multicomponent plasmas. Finally, the recent
formulation by Golden and Lu of the fundamental
dynamical NLFDT relations for ionic mixtures in the
language of quadratic partial response functions has made
it possible to go ahead and set up the theory of the present
paper.

As emphasized in Ref. 13, the concept of partial
response functions is a powerful formal tool; however, it
should be clearly understood that it is not more than that.
Partial response functions are not directly observable
quantities. They describe the response of the plasma mix-

ture to perturbing fields that act on type-2 ions or type-8
ions only. Such fields never actually occur in normal
plasma mixtures, of course, but the concept of them is
perfectly reasonable. This kind of perturbation requires
that each ion, in addition to its actual electrical charge, be
endowed with a weak fictitious "species charge" which
can interact only (i) with its corresponding perturbing
field, or (ii) with its companion species charges. Even
though such species charges, in general, do not exist, there
is nothing physically inconsistent in adding them to the
system and, once they have completed their task, in letting
them vanish.

The plan of the paper now can be sketched as follows:
In Sec. II we intr'oduce a variety of dynamical response
and correlation functions which are to play a role in the
development of the theory. Broadly speaking, the former
falls into two main categories: (1) "external" response
functions, which connect the plasma response to external
field perturbations, and (2) "total" response functions,
which connect the response to total (external+ plasma)
field perturbations. The development of the approxima-
tion scheme is carried out in three stages in Secs. III—V.
In the first stage (Sec. III), we establish the fundamental
VAA-BBGKY kinetic equation for binary ionic mixtures.
We next linearize and convert its right-hand-side non-
equilibrium two-point density correlation functions into
equilibrium three-point structure functions via routine
statistical mechanical linear-response calculations. The
simple linear external polarizability formula

a (k,co)=a (k,co)[1+I (5 -)] (o,a', cr"=A,B)

then follows; here the coupling correction I [to the
random-phase approximation (RPA)] is expressed entirely
in terms of dynamical three-point structure functions,
S ~ -'s. In the second-stage calculations (Sec. IV), we
eliminate the S -'s in favor of the more accessible
quadratic partial response functions, X ~ -'s, by applica-
tion of the NLFDT. The subsequent conversion of the
X ~ ~ s into quadratic total polarizabilities, a2g a2g, ls
next accomplished by supposing that g ~ - can be reason-
ably well approximated by its RPA structure at arbitrary
coupling; straightforward algebra leads to the fully total
polarizability expression

a (k, co)=a~ (k,co)[1+I (az~, az~)] (cr=A, B) .

Self-consistency at long wavelengths is then guaranteed in
the third stage (Sec. V) by approximating the quadratic
polarizabilities in terms of linear ones. The self-consistent
pair of coupled ionic polarizability equations resulting
from the combination of (46), (49), and (50) comprises the
approximation scheme of the present paper. In Sec. VI
we calculate the collective-mode structure in the k=0,
I &&1, and k —+O, I ~&1 parameter domains. New VAA
formulas are also established in these extreme coupling re-
gimes for the dispersion of the long-wavelength plasma
mode in "symmetric" ( e„/m z ——e~ /m~ ) ionic mixtures.
ConClusions are drawn in Sec. VII.
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II. CORRELATION FUNCTIONS AND RESPONSE
FUNCTIONS

Two- and three-point correlation functions and a
variety of linear- and quadratic response functions are
quantities which play a central role in our dynamical
theory. In this section, these quantities are defined. Rela-
tionships among the various response functions are then
derived and relevant fluctuation-dissipation relations are
displayed. Useful symmetry rules for some quadratic
response functions are also listed.

Consider a mixture of Nz and N~ classical point ions
of like charge in a uniform neutralizing background of de-
generate rigid electrons; the entire system occupies the
large but bounded volume V. Let m~ and e (o=A, B)
denote the mass and electrical charge of an ion belonging
to the o species; n =N /V is the partial uniform density
of the unperturbed system.

We begin by listing the relevant two- and three-point
time-dependent structure functions; they are defined in
terms of n-point equilibrium correlations as follows:

(n (k, t}n ( —k,O))'"=(N N )'~'S (k, t)+N N 5„,
(n~(k, t)n~( —q, O)n~-(q —k, O))' '=(N N N -)'~3S ~ (q, t;k —q, t)

+N (N N )' 5~S ~-(q, O)+N~ (N~-N )' 5qS - (k, t)

+N~-(N N~ )' 5g qS~~ (k, t)+N~N~N~ 5. g5q (o,cr', cr"=A,B),

the angular brackets denote ensemble averaging of the mi-
croscopic densities

n~(k, t) = g exp[ —ik.x;(t)]

and the zero superscript indicates that the averaging is to
be performed over the equilibrium (unperturbed) system.

Turning next to the response functions —and first
among these the partial response functions —we shall sup-
pose that each particle, in addition to its actual charge e,

I

is endowed with a weak fictitious "species charge" q~.
The species charge can, by definition, interact only (i)
with its corresponding scalar potential perturbation
P (k, t) and (ii) with another particle carrying a similar
charge. From (i), the corresponding potential of the exter-
na/ force acting on the particle is then U (k, t)
=q~P (kt) , A. single such partial driving potential pro-
duces an average density response (to all orders in P ) in
each ionic species; the latter are linked to the former by
linear and nonlinear partial response functions defined
through the constitutive relations

(n (k,co))'"=X (k, co)U (k, co),

(n (k, co))' '= —g P ~ -(q,p;k —q, co —p)U (k —q, co —p)U (q,p) (cr, cr', o"=A,B) .
V —~ 2n.

The significance of the superscripted and subscripted species indices is as follows: repeated indices occurring in a prod-
uct, one as a superscript, the other as a subscript, denote species summation. Note how the density response of type-o
ions

(n (k, t))=(n (k, t))"'+(n (k, t))"'+
enters into the expression

U (k, t)=U (k, t)+g (k)(n (k, t))

for the potential of the total force acting on a type-o ion; here, the Coulomb interaction energy

4&(k)= (e e ~ +5 q q )2

takes account of the additional species charges in accordance with (ii) above.
If, instead of the partial perturbing field P, one contemplates a scalar field P which simultaneously drives both

species, then it is customary to define the linear and quadratic external polarizabilities through the constitutive relations

(n~(k, co))"'=——g f e P(q, p, )e P(k —q, co —p, ),d& ct (q,p;k —q, co —p)

where
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4~e e ~

P~ *(k)=
k

len a'e
~ »(q,

i
k —q i

)= (o,cr', cr"=A,B) .
q k —q k

This eliminates at the same time any further need to make a distinction between species charge and normal charge. In
other words, the stipulation that P~=qY =P~-= . =P is tantamount to identifying q~P~ as being e~P; whence

a (k,co)= —X (k, co)P (k), (10)

a (q,p;k —q, co —p) = —X ~ -(q,p;k —q, co —P)y (q,
~
k —q ~

) (11)

Or, one can contemplate a total scalar field @=/+ g (P~) which simultaneously drives both species, in which case
the constitutive relations

(n (k,co))("=—

(n (k, co))( '=—

a (k, co)
e @ (k,co),

a~(k&co)
( )e C& (k, co)

k

(12)

——g f e N (q p)e @ (k —q co —p) (cr=A, B)1 dp a ('q p'k 'q co p) () ()
V —~ 2' P ~ (q, ~k —q()

define the linear and quadratic total polarizabilities. The important polarizability relations

a (k, co)
a (k, co)=

(13)

[1+a„(k,co)]a (q,p;k —q, co —p) —a (k, co)a„(q,p;k —q, co —p)a (q,p;k —q, co —p) = "
(cr, g =A,B: g&cr) (15)

Eq,p Ek —q, co —p s k, co

then follow from (8), (9), (12), (13), and the fact that 4")=()I&/s; here E= 1+g a~ is the dielectric response function.
The link between the response and correlation functions is provided by the linear and nonlinear fluctuation-dissipation

relations

Im
X (k co) p (n~n ~ ) —S~ (k,co),

N 2

X -(q,p;p, v) X - ( —k, —co;q,p)
pv pcs

X~'~"0 ( p, v; —k, —co )

2

(n n~ n -)' S~~ -(q,p;p, v) (o,cr', o"=A,B; k=p+q; co=p+v) . (17)
4

Finally, the quadratic partial response functions obey
fundamental symmetry rules, some of which will be of use
in the sequel. %'e list them here.

Interchange symmetry:

cipal building blocks to the construction of the approxi-
mation scheme in this paper. The other principal building
block is the VAA kinetic equation which we formulate in
the next section.

(q p p v)=X

Reality condition ctnd spatial reflection inuariance:

(18)
III. VAA RESPONSE-FUNCTION RELATIONS:

STAGE-ONE CALCULATIONS

Xecr cr (q&p& p&'v") =X cro'cr"(q& p'&p&

Triangle symmetry:

(19)

X -(q, 0;p, co) =X ( —k, co;q, 0),
X (q, co;p, 0)=X - (p, 0; —k, co) .

(20a)

(20b)

Equations (20a) and (20b) are a direct consequence of the
nonlinear FDT (17).

The nonlinear FDT relation (17) is one of the two prin-

The stage-one calculations of this section are directed
primarily at establishing the fundamental VAA relation-
ship between the external linear polarizability of type-o.
particles and the time-dependent three-point structure
functions defined in the Sec. II.

Let F (x,v;t) and G (x,v;x', v';t) be one- and two-
particle velocity distribution functions normalized to X
and N (N —5~ ), respectively. The unperturbed state
of the ionic mixture is characterized by the equilibrium
distributions
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3/2

F' '(v)= exp( —Pm u /2),
2m

6' ' (x,v;x', v') =F' '(u)F' '(u')[1+g ~ (
~

x—x'
i )],

where the static pair correlation function

(21)

(22)

(
~

x —x'
~

)=—g g ~ (q)exp[iq (x—x')]ocr

, &2 g (S (q, t =0)—5 )exp[iq. (x—x')] (o,o'=A, B) (23)
(N N~)'

q

is known from hypernetted-chain (HNC) calculations or from Monte Carlo computer experiments. '

The calculation of the average density response of each species to a single driving potential P proceeds from the first
BBGKY kinetic equation

8 8 c)U (x, t)—5 — F (x,v;t)Icr BX BV

f d u' f d x'K~( ~x —x'~ )6~~(x', v', x,v;t) (o,cr=A, B), (24)I Bv

where K ( ]
x —x'

(
) = —V@ (

(
x—x'

(
) is the interaction force between the type o field ion (at x) and a typical o'

source ion (at x') [cf. Eq. (7)].
In order to be able to express the right-hand side of (24) in terms of nonequilibrium two-point functions —binary corre-

lations of microscopic densities, we suppose that 6 ~ is well described by its velocity average in the restricted sense,
where only one of the velocity arguments is averaged out, viz. ,

G (x,v;x', v', t)= —,f (x,v;t) f d u G (x,v;x', v', t)+ ,' f (x', v', t) f—dv 'G (x,v;x', V';t),
(25)

f (x,v;t)=F (x,v;t)/(n (x,t)) (o,cr'=A, B) ..

The VAA ansatz (25) is the central hypothesis of this. paper. While (25) is exact in equilibrium and for the case when the
ionic plasma is driven by a static perturbation, ' it is certainly an approximation when a dynamical perturbation is con-
templated. The resulting double-velocity space-integral term

f (x,v;t) f d'v f d'u'G ~ (x', v';x, v;t)

which replaces f d u'G (x', v', x, v;t) in (24) can now be expressed in terms of the nonequilibrium two-point function
(n (x')n (x))(t) since

f d u f d u'6 ~ (x', v', x,v;t)=(n (x')n (x))(t)—5 5(x—x')(n (x))(t) (o,o'=A, B) . (26)

n (x) and n (x ) are equal-time microscopic densities and the notation ( )(t) refers to the time evolution carried by the
Liouville distribution function.

Upon combining (24) to (26) and Fourier transforming, one obtains the VAA kinetic equation,

(co kv)F (k,v—;co)+5 —g q — U (q,p) F (k q, v;co p)— —1 dp
m Vcr q

2K Bv

1 1 ~ ~ dp 8
2 g g qg (q) f (n (q)n~(k —p —q) )(co—p). f (p, v;p) (o,o =A,B) .

(27)

Equation (27) is valid to all orders in P . The introduction of P- into the equilibrium system perturbs F~', (n n )' ',

etc., by amounts ~ = g„&F'"', b, {n n ) = g„,&
(n~ n )'"', etc. These perturbation expansions generate from (27)

a chain of coupled VAA kinetic equations. Only the first of these,

(co k v)F~"(k, v—;co).+5
Pl cr

U-(k, co)k F~ '(u)
c)v

c)F' '(u)
gqg (q)(n (q)n (k —q))'"(co) (cr, cr=A, B)

m~ Bv
(28)
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will be of interest in this paper.
The subsequent conversion of the nonequilibrium two-point function into equilibrium three-point functions is effected

by performing routine statistical mechanical linear-response calculations. ' We obtain

(n (q)n (k —q)&'"(co)= —PU~(k, co)(n-n n )'~ ' f" dp f dv5+(co p ——v)S, (k —q, v;q, p)

+S,(k —q, t =0;q, t =0)

—iPU (k, co)5q(n n )'r'X ~ f dp5+(co p)pS— (k,p-)

i PU—(k,co)5k q(n n ~ )-'~ & f dp 5+(co —p)pS~~, (k,p) (29a)

PU—(k, co)(n n n~ )' ico f dte'"'S, (k q, t;q—,t)+S,(k —q, t =0;q, t =0)

+U-(k, co)[5qX X (k, c)o+5~ qN X (k-, c,o)] (cr, cr=A, B) . (29b)

The conversion of the two-point structure functions into linear X s in the last step follows from the FDT Eq. (16). The
ionic density response

(n (k),co&'"= f d uF"'(k, v;co)=U (k, co)
0'0'

—5 +8 (k,co)+u- (k, co) (30)

in turn, follows from (28), (29b), and (10); here P (k) =4rre -e /k,
(o)k F~ (u)

ccuo(k, co)= f d u
Pl~ co —k v

is the Vlasov polarizability, and

(31)

u (k,co)= g (n n n )'~
q

X f dp f dv5+(co p, v)——

X S-,(k —q, v;q,p)+S, (k —q, t =0;q, t =0) p (k) (cr, o =A,B)

is the I -dependent dynamical coupling correction. Comparison of (30) with the constitutive relation (3) gives

a o(k, co)
X( ~)(k,co)= [—5 -+a (k, co)+u- (k, co)] (cr, o=A, B) .

(32)

(33)

Note that the left-hand-side species indices are enclosed in square brackets to indicate that the required o.=:a. interchange
symmetry of the VAA expression (33) is not manifest. ' This puzzling feature, which was reported some time ago by
Golden and Kalman, has recently been clarified at the static level by the same authors ' they demonstrated (i) that
the VAA ansatz (25) is exact at co=0, ' and (ii) that the matrix elements of P(k, co=0), when explicitly calculated
through 0 (y) in the VAA, are indeed interchange symmetric. ' Equation (33) is also interchange symmetric at high fre-
quencies co »Q —at least through O((Q /co) ). To see this, we note that the coupling correction (32) collapses into the
two-point expression

v~~(k, co~ oo )=—
~
—gX g -(~k —q~) —5 —g g, (q)

co2 s eu

X—=(k q)/(kq) (cr, cr=A, B)

for co»Q =(4m.n e /m )'~, whence

(34)
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Q' '(k) Q' -'(k)
-}(k,co~co):—ReX( -}(k,co~co)=

~ + q + ' ' '

N VAA
(35a)

(2) 2

(Q~Q } k& 1 e,N,
'(k) IvAA

— 1+3 2 5 +—QX g (Ik —qI) —5
(1CT s

where x~=4vrPn e~. We then observe that (35) is exact through O((Q~/co) )
independent third-frequency-moment-sum-rule coefficient

Q'~(k) I,„„,= ——J dcoco X "-(k,co)=P(n n )'T I co S(k,co)

(35b)

V g X g, (q) (cT, cT =A,B), (35c)

since (35c) is identical to the model-

calculated from the linear FDT (16). All of the above considerations notwithstanding, any judgment about the symmetry
of (33) in the intermediate-frequency range remains speculative and, in any case, is academic since one can always replace
(33) with the expression

~(, )=-,'[ -(, )+ — (, )]

a p(k, co)a (k,co)+a p(k, co)a (k, co)
a~p(k, co)5 -+

crc7

a p(k, co)u (k, co)+a-p(k, co)u (k, co)
(CT, CT =A,B),

which guarantees symmetry while leaving unaffected the sum rule conserving feature of the VAA formalism. Summa-
tion over species indices according to (10) then leads to the desired relation'

a p(k, co)a„p(k, co)
a (k, co) =a~(k, co)f 1 —u (k,co)]— " [u (k, co) —u„„(k,co)]

1+ep k~

[agP(k, co)U v(k, co)+a P(k, co)U„(k,co)] (cT,TJ =A,B: g~cT)
1+Ep k, co

(38)

linking the external linear polarizability to the dynamical three-point structure functions. The VAA equations (38) and
(32) are valid for arbitrary k values and over the entire frequency domain. The exactness of (38) at co=0 is especially evi-

dent at this stage since the static projection of (37) is identical to the first equations of the BGY hierarchy

T

1 ~o

2 pl—
CT

S (k, t=O)+ —,'P(n n )'T S,(k, t =0)P (k)+ ,'P(n n —)'TS (k, t =0)P (k}
' 1/2

8~ 1 cr=5 u (k, O) ——
8- 2 pf

c7 0'

' 1/2 e-
u -(k,O), (39a)

8a

u (k, O)= g (n n n ~ )'T S .(k —q, t =0;q, t =0)p (k) (o,cT=A,B),
g

(39b)

linking the static two- and three-point structure functions. As to the exactness of the VAA polarizability at high fre-
quencies co &&Q~, the following expression for its real part

Q~a ' (k, co~ oo )=-
CO

Q~'(k}
I «A

CO

(40a}

kQ"'«) IvAA=«~Q)'+4 3, + g ~ y gx' g~s( Ik —
q I) g.,(e)—

e~X~ V e~m,

Qz= +Q, = +4vrn, e, /Tn, (cT=A,B),
S S

(40b)

which results from Eqs. (38) and (32) [or from Eqs. (35) and (10)], is seen to be identical to the known co~oo sum-rule

expansion through O((Q~/co)").



1676 K. I. GOLDEN, F. GREEN, AND D. NEILSON 32

IV. STAGE-T%'0 CALCULATIONS

The stage-two calculations of this section are directed at transforming Eqs. (38) and (32) into relations which involve
only linear and quadratic total polarizabilities. To accomplish this, we first eliminate the Eq. (32) three-point functions
in favor of the more accessible quadratic partial response functions by application of the nonlinear FDT (17). After
some algebra (see Ref. 7 and Appendix A for the details), one obtains

U (k, co)= g I dp 5 (p)[X,(k —q, co —p;q, p)+X-,(k —q,p;q, co —p)]P (k) (o., o.=A, B) .
PN~ q2

(41)

The conversion of the Eq. (41) partial response functions into total quadratic polarizabilities is best accomplished at this
time by supposing that the triangle-symmetric RPA structure

1ig- (p, v;q, p) =
E(p, v)e(q, p)E(k, co)

/3 n
a-(p, v;q, p)[1+a-„(k,co)]I5 [1+a„(p,v)] —5 (e /e )a (p, v) }

)& I5-,[1+a-(q,p)] —5-,(e-/e- )a-(q, p) I—
2P1-

2
"a (p, v;q, p)(e-/e )a-(k, co)

X t5-„[1+a (p, v)] —5 (e„/e )a~(p, v)}

&& [5-,[1+a (q,p)] 5—(e /e, -)a (q,p)}

(o,o,cr', q=A, B: rico;k=p+q, co=p+v), (42)

which prevails in the weak-coupling limit, reliably describes arbitrary coupling situations. (Note the introduction of the
"reduced" polarizability a-(p, v;q, p) = 2ia-—(p, v;q, p)/[P n P (-p, q-)-]-for notational convenience in the sequel. ) The
reader can readily verify that the model-independent electrodynamic relation (15) is recovered from the Eq. (42) structure
when the latter is summed over species space according to (11);this particular test is crucially important. Substitution of
(42) into (41) gives'

[1+a-„(k,co) ] N-
U (k,co)= — " 5 u (k, co)+[5 —(e /e„)5„] w (,co)

E k, co 0'

a (k, co)
5„u„(k,co)+[5„—(e„/e )5 ] "w„(k,co) (cr,o,ri=A, B: Tl~cr), (43)

where

1 k a-(q, p;k —q, co —p) a-(q, co —p;k —q,p)
u-(k, co) =iPn-P -( ) g J dp 5 (p) + (44)

w (k,co)=iPn P (k) Q f dp 5 (p)
q2

The polarizability formulas

a-„(k—q, co —p)a-(q, p;k —q, co —p)
E(q,p)E(k —q, co —p)

a (k —q,p)a (q, co —p;k —q,p)
+

s(q, co —p)E(k —q,p)
( ger=A, B: q&o) . (45)

Ep(k, co) e&N&a (k,co)=a o(k, co)[1+u (k, co)]+w (k, co) — " "a o(k, co)w„(k,co)—Akco eX
e~N~

a„o(k,co)w (k,co)
e&N&

(46a)

e~N~
w (k co)= a p(k, co)— a~p(k co) w (k co) (cr g=A, B: g&cr)

e&N&

A(k, co)=1+Eo(k,co)+ g [a o(k, co)u (k,co)+w (k,co)]=1+a(k,co)
o=A, B

(46b)

(46c)
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then follow from (38) and (43). This completes the
second-stage derivation. The formal operations which
transform (32) into (43) do not entail any restrictions on
the range of (k,co). Consequently, Eqs. (43) to (46) are
valid for arbitrary wave numbers and over the entire fre-
quency domain.

Equations (44) to (46) constitute the central relations of
our approximation scheme. They determine the linear po-
larizabilities in terms of the quadratic ones. As such, they
are evidently not self-consistent. However, they open up
avenues to further approximation methods that lead to
self-consistency. To accomplish closure in the preset
work, we follow the guidelines set forth by Golden and
Kalman for the OCP: we postulate a decomposition of
a~(p, v;q, p) in terms of linear a' s. The more ambitious
approach of relegating the closure to a higher level, i.e.,
expressing a (p, v;q, p) in terms of cubic polarizabilities
with the aid of the VAA kinetic equation (27) perturbed
to higher order in P, is well beyond the scope of this pa-
per. Indeed, this latter approach has yet to be pursued for

the less complicated OCP configuration. In Sec. V we
will analyze the RPA quadratic polarizability in the pa-
rameter domain (k/v ) «(co/0 ) and will show that it
has a tractable decomposition in terms of linear polariza-
bilities. This relationship will then be postulated to serve
as the basis of the self-consistency scheme for arbitrary I
values.

V. STAGE THREE: DYNAMICAL SUPERPOSITION
APPROXIMATION AT LONG %'AVELENGTHS

The main physical interest lies in the dynamical
behavior of binary-ionic-mixture plasmas at long wave-
lengths ( k ~O), especially the behavior of the long-
wavelength plasma mode. We therefore turn now to the
(third-stage} derivation of the formulas for u (k~O, co)
and w~(k~O, co). We begin by supposing that the quad-
ratic polarizability can be described by the RPA struc-
ture

l pv qv
(O)

a p(q, p;p, v) = f d'U k q +k p
Pm~n~ (co —k v)2 v —p v p, —q v

(k=q+p;co=p+v) .

Following the procedure of Ref. 7, we next develop (47) at long wavelengths
~

k v
~

&&
~

co
(

and introduce the resulting
expression into (44). After some algebra (see Ref. 7 for some of the details}, one obtains

0-'...,u p(k~O, co)= [u o"(k)+u o"(k~O, co)], (48a)

u "p'(k) = g —gX'[g, (
f

k —q /
) —g, (q)],

~'=A, B ~ ~ q

(48b)

k 1 00

u~"(k~O, co)= — g(l —6X'+8X ) f dp& (p)ap(q, p)a p(q, co —p)—OO

k 1 OOg(l —4X'+4X') f dye (p)[a p(q, p)a„p(q, co —p) —a„o(q,p)a p(q, co —p)]
2K~ (y q

—limR „(k,co) (o,q=&,&: rl&cr),
0

(48c)

where

R v (k, co)= z gq(X —2X ) f dp5 (p)[a o(k —q, co —p)a„o(q,p) —azo(k —q, co —p)a o(q, p)
Ku u q

+a.o« —q V )ago(q ~—V) —a,o« —q,p)a.p(q, ~—
C }1

and ap ——g a o. The dynamical superposition formula for u (k~O, co),

(cr, r)=A, B: r)~o) (48d)

u (k~O, co)=
2

[us™(k)+u""(k~O, co)], (49a)

u'™(k)= g —gX'[g (
~

k —q ~
) —g (q)],

Cr a q

(49b)
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u ""(k~O, co)=—3k 1
z g f dp5 (p)a(q, p)a (q, co —p)

5~

7k 1 X f dp &-(p)[~ (q p)~, (q ~—p) —~,(q p)~.(q,~—p)]
30K. Xo q

—limR z(k, co) (o,g =A,&: g&o.),
k o

(49c)

which results from (48) when the zero subscripts are dropped, we now propose to be valid for arbitrary coupling. The
Ref. 7 procedure also can be adapted to the more involved calculation of w o(k —+0, co); details are given in Appendix B.
Here too, we suppose that the RPA structure of (B8) can be taken over to describe arbitrary coupling states, viz. ,

w (k~O, co) = [w""(k)+w ""(k~O, co)], (50a)

2
kw""(k)= — " " —gX'g „( ~

k —q ~
)+—,g „(&=0)

&~n~ V . 5 co

w ~"(k~O, co)= 2 gqX(k —qX) f dp5 (p)[a (q,p)a (k —q, co —p)+a (q, co —p)a (k —q,p)]

2 gX ~

k —q ~ f

dpi'

(p)[a~(k —q, co —p)az(k —q, co —p)a(q, p)
q

OO

(50b)

+a (k —q,p)a„(k—q, p)a(q, co —p)]

+, gX (k —qX) f dp & (p)[~ (q, ~—p)8„(k—q,p)
2k

q
oo

—a (k —q, co —p)az(k —q, co —p)a(q, p)]

2 00

g f dp5 (p)[p2a (q,p)a„(q, co p)+(co p) —a„(q,p)a—(q, co p)—
K X~Ct) q

+p'~. (q p)~, (q s )~(q ~ p)—
+(co—p) a (q, co —p)a„(q, co —p)a(q, p)]

(o.,g=A, B: ri&cr), (50c)

where a= cz .
The equations (49) are a natural generalization of the

Ref. 7 dynamical coupling coefficient uocp(k~O co); as
such, u (k~O, co) provides information only about
O(k ) long-range-correlational effects. Equations (50) go
much further; they provide information about O(k ) ion-
ic interdiffusion and short-range-static-correlational ef-
fects on the collective-mode structure.

The self-consistent pair of coupled ionic polarizability
equations' which results from the combination of (46),
(49), and (50) comprises the approximation scheme of the
present paper. Since the parent VAA Eqs. (44)—(46) are
exact at co =0, the dynamical coupling coefficients
u~(k~O, co) and w (k~O, co) can be inputted with static

pair correlation function data which are assumed to be
determined by Monte Carlo simulations or by an indepen-
dent theoretical approach. At high frequencies co~&D
and J arbitrar, the correct small-k limit of the sum-rule
coefficient 0' (k) [see Eq. (40)] is readily recovered from
(46), (49), and (50); thus, internal consistency between the
third-stage construction of our approximation scheme and
the'(exact) VAA expression (40) is guaranteed. Note that
the u-pair- and triple-cluster structures of the dynamical
superposition formulas (49c) and (50c) have an obvious
resemblance to various well-established approximations
for the static three-particle correlation function in terms
of a superposition of pair correlation function clusters.
Because of the inherent RPA-like character of the dynam-
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ical polarizability clusters, the Eqs. (49c) and (50c) q sum-
mations are cut off at the customary q,„—1/a for
strong-coupling situations. The nature of the cutoff at
weak coupling is discussed at some length in Sec. VI.

Finally, a much simpler approximation scheme can be
derived from Eqs. (46b), (46c), and (49) for the exceptional
symmetric case where (e~ /m~ ) =(eg/mg ), e.g. , D+-He +
mixtures,

u) (k~O, co)=0,

a,(k~O, co)u (k~o, co)= — g, —gX'[g (
~

k —q ~
) —g~~ (q)]

a=A, B co

3k2Q2 1+ —g dp 5 (p)a(q, p)a(q, co —p),
5ppco4 p' —e

whereQ =g 0 andp=g m n

The self-consistent equations for the combined polarizability a

a(k —+0, co) ~,„m =ao(k~O, co)[1+u,„~(k~O, co)], (Sla)
birn

u,~ (k~O, co) =
birn o,o'=A, B

birn

'20 0 ~

coQ

(51b)

—gX [g (
~

k —q ~
) —g (q)] —

2
—g f dp 5 (p)a(q, p)a(q, co —p)

5ppco2 1
q

then follows from (46c). Comparison with their OCP counterparts (obtained by setting eq ——e~ and m~ ——mz with the
concentrations left arbitrary)

a(k~O co)
~ ocr ——ao(k~O, co)[1+uocr(k~O co)] (52a)

uocr(k 0 co)= g& [g{
~

k —q ~
) —g(q)] — g f dpi' —(p)a(q p)a(q —p)Q 1 3k 1

co V
q

5K2 &
q

N = g S, Ic = g lc (52b)

illustrates the extent to which such systems are OCP-like: the 0(k ) ionic interdiffusion and short-range-static-
correlational effects are now entirely absent. This salient feature of symmetric ionic plasmas has been observed in
molecular-dynamics experiments on D+-He + mixtures, ' ' and it is confirmed at k=0 on the basis of an independent
microscopic theory.

VI. COLLECTIVE-MODE BEHAVIOR

w o(O,co)=

In this section we analyze the collective-mode structure of binary ionic mixtures in the k=0, I &&1 and k —+0, I »1
parameter domains. ' New VAA formulas are also established in these extreme coupling regimes for the dispersion of the
long-wavelength plasma mode in symmetric [(ez /m~ ) = (e~/mz )] ionic mixtures.

(a) 1 « 1, k=0. First note from Eqs. (49) that u (O, co) =0. The calculation of to (O, co) at weak coupling is facilitat-
ed by rewriting (50a) in a form which makes the distinction not between static and dynamical contributions, but rather
between double- and triple-polarizability cluster contributions. Therefore, let

Q.
'
[I (co)+J (co)], (53a)

where

I (co)= gX
CT q

2
K~ q

K +g Kg

2

f dp 6 (p)[a o(q p)a—go(q co p)+a o(q p)a—0(q co p)]—(53b)

and
2

J (co)= — gX f dp 5 (p)[a (q,p)a„(q,p)a (q, co —p)+a (q, co —p)a„(q, co —p)a (q, p, )]
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We then observe from (SOb) and (50c) that both w""(0) and w ~"(O, co) [and, consequently, I (co)] exhibit large-q diver-
gences when evaluated in the Debye-Hiickel [Eq. (BSb)] and RPA [Eq. (B8c)] limits, respectively. These divergences,
however, exactly cancel each other under addition (with or without the screening) leaving us with the expression (see Ap-
pendix C for the details)

I (~)=
6n

2

2y n

K 3/7 n~ K

2

2

2

f dx yZ (y)(1+x')'
'I/'n

6n
2y n Aq

&
" Z(y)

dy (o,g=A, B: g&o),
3n n ~ A ')~~max y (y ~+ g~)~

(54)

where the plasma dispersion function Z(y) is given
by (C3), y =g/x, x =q/A. , g=p)/cop, and
Q)p= I [4&(nyet +n~eg )]/[my my/(mg +mz )] j '; the
rather involved expressions for the real and imaginary
parts of J (co) are displayed in Appendix C. The plasma
parameter y=~ /(4~n) appearing in (54) more appropri-
ately characterizes weak-coupling situations. In deriving
(54) from (53b), we have assumed that a (q,p) and
a„(q,p) —tu, ) can be replaced by a (q,p)/e(q, O) and

az(q, co —p)/e(q, O). This static approximation has been
used extensively' and has been instrumental in earlier cal-
culations ' of the VAA and exact OCP dynamical cou-
pling function u ocp ( k, p) ).

The integral I (p)) still exhibits divergences in its real
and imaginary parts. The divergence in the latter is the
well-known logarithmic one which is handled by the usual

y «1 cutoff q,„=1/Pe . The familiar piny
' expres-

sion

1m 8(0,p) )
I r (() -=

1/2
2 —[(m~+m~)[(n~e~ jm~)+(n~e~/mz)](nzez+nzez)I

Kg Kg m~
eg

K Ply

I /2

—eg
m~

J

QAg Qg
p in/ (55)

then follows from the subsequent evaluation of Imw (O, co)
in the domain (ycolp)p) «1; again, see Appendix C for
the details. The divergence in the real part appears only
at high frequencies (ycojcop& 1) and would adversely af-
fect the (1/co ) structure of a'(co~oo)

I vAA were it not
for the imposition of the cutoff: indeed the Appendix C
Eqs. (C15)—(C19) rigorously demonstrate that the q
cutoff is required to maintain internal consistency with
the VAA sum-rule coefficient 0' '(k)

I vAA [cf. Eq. (40b)].
At the lower frequencies co «0/y, the divergence in

Rew~(O, p)) =w'p(O, co) disappears so that the VAA
collective-mode frequency shift

~p)'(k =0' 1'«1)
I vAA

=R~(k =Oi y &&1)
I vAA

w ~(O, Q) (56)
a

cr=AB y O

fore support his contention that the (positive) shift in the
plasma frequency is temperature dependent.

(b) I «1, k~O; (ez/m~ ) =(ez/mz). In the previous
section the OCP-like character of symmetric ionic mix-
tures was firmly established by Eqs. (51). The complete
absence of the 0(k ) ionic interdiffusion and short-range-
static-correlational effects indicates that the collective-
mode frequency co(k —+0) has the general structure

~( k-~0)
I (.„)m„)=(,,),)

k=0 1+[—,
' —3 (I )—iB(l )]

(58)

for arbitrary I values. For I «1, the dispersion and
damping coefficient formulas

is cutoff independent as it should be. Numerical calcula-
tions for the H+-He + mixture with X+ ——X2+ lead to
[see Eqs. (C25)]

L

wq+(O, Q) = 4 w'+(O, Q), w'+(O, A) =0.125y,

3 (y) = — u'(k, Q)
't/K

2k ~y o

(59a)

whence

hp)'(k =0; y « 1)
I
vAA-=0. 008yQ =0.053I i 0 . (57)

B(y)= — u "(k,Q)
2k ~y (ugly~ u u +lu )

birn

Our real frequency shift compares favorably with Baus's
predicted b.co'(k =0; y « 1)

I B,„,——0.08I 0 for the
same mixture. At weak coupling, our calculations there-

(59b)

can be readily inferred from (58) and the VAA dispersion
relation [cf. (51a)]
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0=a(k, co(k);y «1)

-=Ep(k, co(k) )+yap(k, Q ) u (k, Q)
a

ay
(60)

The explicit calculation of u (k~O, co) starting from (51b)
follows the procedure of Ref. 7. Again, many of the de-
tails are relegated to Appendix C, and we display here
only som. e key steps in the calculations. They are as fol-
lows:

1 1 1 ~ dp
dye (P)ap(q, P)ap(q, co —P)= g —g —P a "p(q,P)a 'p(q Pl —P)

V — ' ', ABV m — P
1 x4 1 dp

2 2
—P a "p(q,p)a p(q, co —p)

z~ V (1+~ ) lr — p

cr, a'= A, B

I 1 1

m +m ~ V (1»+~2)l, , [1+y»(y)]

where

1/2

1 1

2V
q

1+x' '
1/2

yn P(1))+1' — Q(1))
2

4
(61a)

P(g) =1—1) 1—
2

1)exp erfc
2 2

(61b)

and

2 2 2

Q(1) ) = 1 — exp ~ Elv'2 2 2 2
(61c)

are positive for 0&1) & 1; E&(rl /2) is the exponential integral [given in Appendix C, just below (C22)]. Substituting
(61a) and

into (51b) then gives

usym. (k~0» ~)
l y((1=

birn

whence it follows that

—2y k &o&o' n

(n n ~ )'

2 2 2
2 1/2

n(nze~+n1lez) k Q
'

2 3 ~ 2
y — + P(1l(pl))+1 — Q(ll(pl))

( n g eg +n ll ell ) K

(62)

(63)

2 2
y n(n~e~+nllell) '

2 3A(y)=- + P(ll(Q))
2 (nz ez +nzez ) [

15 20

2 2 1/2
3y n (nyet +nllell )

&(y)= Q(1)(Q)) & 0,
(naca +naca)

(64b)

since 1)(Q)=Q/cop & 1 always. The likeness of our VAA results (63) and (64) to their OCP counterparts '
2 1/2

k Q 2 3 2
llocp(k~0» Pl)

I z((&= y + P(rl(co))+l Q('g(co))
co 15 20 7r

(65)

2 3 1

2 15 20 v2
I /2

3y 2 1
&ocp(y) =

40 Q
7T

(66a)

(66b)
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is remarkable. The lack of an imaginary O(k ylny ')
damping contribution in (63), (64b), (65), and (66b) is to be
noted. This defect —which, incidentally, is more signifi-
cant for small-y than for large-y values ' —is a well
known but not yet well-understood feature of the VAA
approach. Apart from this, it has been recently demon-
strated' that the OCP coupling function (65) reproduces
reasonably well all other important correlational and
long-time effects over the entire frequency domain. Our
formula (64a) is therefore expected to provide a reliable
description of the long-wavelength plasmon dispersion in
symmetric ionic mixtures.

(c) I »1, k~0. The dynamical aa and aaa cluster
terms, while they play an important role in the weak- and
intermediate-coupling regimes, contribute only negligibly
to the structure of the optical mode at very strong cou-
pling (I »1). To see this, we recall from the analysis of

I

Sec. V that the GK OCP approximation scheme Eqs. (52)
(Ref. 7) can be exactly recovered from the present theory
simply by setting mz ——m~ and e& ——ez with the concen-
trations left arbitrary. %'e then examine the Carini-
Kalman-Golden I =110.4 OCP dispersion curve' [which
originated from the GK dynamical theory and, conse-
quently, from Eqs. (52)] and observe that this high-I
curve can be quite accurately reproduced solely from the
static pair correlation function part of (52b). Thus, in
binary ionic mixtures, Reu "(k~O,co) should riot signifi-
cantly affect the dispersion of the optical mode for I » 1.
The same holds true for Rew~""(k—+O, co). Indeed, our
compressibility-sum-rule-based estimates indicate that
both Reu ~" and Rew ""drop off like 1/I as I ~ ao. It
therefore follows that the correlational correction to the
dielectric response function:

Re[E(k—)0 co)
I r))i —eo(k~O m)]=

egmy

ez mz e~m~+
e~m&

Q, g Qg —g&'g~a( Ik —q I )
CO4

1/2

eg mg

0 0
„~e m ~4 V

3/2 3/2
eg mg e& m& mz+- +

5 ez mz mg mg

A~A~x g~a(r =o)
Kg Kg

1/2

(67)

can be constructed solely from (49b) and (50b). Since (1/V) g g~~(q)=g~~(r =0)= —1 for I &0, ' ' ' the k=0
collective-mode frequency

Q, 4Qg Qg eg mg eg my
2 2

Reco(k =0)
I r))~ —— 1~ 1~ + —2

2 earn~ ew ma

1/2 ' 1/2

(68)

follows from (67). For the H+-He + mixture with N+ Nz+, Eq. (68) pr——ovides Redo(k =0)=1.01980 in exact agree-
ment with the result of the Hansen-McDonald-Vieillefosse (HMV) memory-function analysis. + ' Our result (68) certain-
ly supports HMV s contention that, at strong coupling (I »1), the positive shift in 0 is I independent. For
0&kv «

I
co I, the last right-hand-side group ( ~ 1/co ) in (67) contributes only negligibly to the dispersion. This leaves

us with a dispersion relation which is almost entirely controlled by the correlational parts of the third-frequency-
moment-sum-rule coefficient Q~ '(k). Inputting with static pair correlation function data from Ref. 14 would therefore
result in a dispersion curve for the optical mode which should coincide with HMV s Fig. 6 sum-rule-moment-based
theory curve, @ ' and which therefore reproduces the qualitative features of their molecular-dynamics data ' ' for I »1.
Indeed our high-I formula for the collective-mode frequency

Reco(k —)0)
I r ))) - - [1~( —', —0.3088k a )'~ ]'~

2
(69)

obtained by inputting (67) with the more accessible Refs. 14 and 21 correlation energy-density formulas, rigorously
demonstrates near-coincidence of the two curves for ka & 1.

Finally, we derive from (67) the collective-mode frequency
1/2

1/2

Reco(k~O)
I r)))- . 1~ 1—0 16 ne

2 45 nyet +n~eg
PE, (I ) ka2 (70)

characterizing the dispersion of the long-wavelength optical mode in symmetric ionic mixtures; here,

E.=E~~+i~a+Eaa
2 2

3 flyd r P~z(r)g„„(r)~n„nz d r P~~(r)g~~(r)+ d r Pz~(r)g~~(r)
2 2
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is the total correlation energy density of the system.
A comprehensive numerical program for analyzing the

collective-mode structure at intermediate-coupling states
and concomitant calculations of I,„., marking the cross-
over from plasmonlike to optical phononlike dispersion
are deferred to a later work.

VII. CONCLUSIONS

The twofold purpose of the present work has been (i) to
formulate a self-consistent approximation scheme for the
calculation of the dynamical ionic polarizabilities in
strongly coupled binary ionic mixtures, and (ii) to infer
from (i) the more important aspects of the k ~0 collective
mode behavior in the weak- and strong-coupling regimes.

The principal building blocks to the construction of the
approximation scheme are the linearized VAA-BBGKY
kinetic equation (28) and the nonlinear fluctuation-
dissipation theorem (17). Equilibrium three-point correla-
tions, quadratic response functions, and the dynamical su-
perposition approximation are all central elements in the
development of the theory.

The development was carried out in three stages. The
stage-one and -two calculations led to the important new
formulations (44) to (46) of the linear ionic polarizabilities
in terms of quadratic ones; these equations are valid at ar-
bitrary values of k, co, and I . In the co=0 limit, Eqs.
(44)—(46) are exact [see Eqs. (39)]. For arbitrary values of
k and I at high frequency (co»Q ), we demonstrated
[cf. Eqs. (40)] that a (k, co)

~ viz reproduces
the frequency-moment-sum-rule expansion for
Rea~(k, co—+ ao ) ~,»„ through O((Q /co) ), i.e., our
dynamical theory exactly satisfies the third-frequency-
moment-sum rule.

In the stage-three calculations, we made Eqs. (44)—(46)
self-consistent in the long-wavelength limit
[k «co(Pm~)' ] by postulating the decomposition of
dynamical quadratic polarizabilities in terms of linear
ones in analogy with the relation which prevails in this
limit for I «1. The result is a pair of coupled equations
[obtained from (46), (49), and (50)] for the linear ionic po-
larizabilities a~(k, co) and az(k, co). Equations (49) are a
natural generalization of the Ref. 7 OCP dynamical cou-
pling coefficient uocp(k —+O, co); as such, u (k—+O, co)
provides information only about the O((k/co) ) long-

range-correlational effects. Equations (50) go much fur-
ther: they provide information about O((k/co) ) ionic in-
terdiffusion and short-range-static-correlational effects.

We demonstrated the complete absence of these latter
effects in the special symmetric (e~/ m„=e e/ mz) ionic
mixtures, e.g., D+-He + mixtures. Their much simpler
self-consistent approximation scheme, Eqs. (51), bears a
remarkable likeness to its OCP counterpart.

We analyzed the collective-mode structure of binary
ionic mixtures in the k=0, I «1 and k —+0, I ~&1 pa-
rameter domains. Our calculations indicate that the (posi-
tive) shift in the plasma frequency is I dependent at weak
coupling [Eq. (57)] and I independent at very strong cou-
pling [Eq. (68)]. Our calculations, moreover, reproduce
the qualitative features of the HMV molecular-dynamics
data for the dispersion of the optical mode in the strong-
coupling regime, while at the same time very nearly
reproducing the k =0 weak-coupling frequency shift
predicted by Baus's microscopic theory. Evidently, the
temperature-dependent broadening and shifting of the
plasma mode at I « 1 is controlled primarily by ionic in-
terdiffusion transport. For I »1, the dispersion of the
optical mode is almost entirely controlled by the static-
correlational contributions to the third-frequency-
moment-sum-rule coefficient [see Eq. (67) and the discus-
sion following it].

As to the symmetric plasma mixtures, our new disper-
sion a'nd damping formulas (58), (64), and (70) again indi-
cate the extent to which such mixtures are OCP-like.

The success of the GK nonlinear-response function ap-
proach to the binary-ionic-mixture configuration of the
present paper, to the OCP, and to the surface plasma~
attests to the versatility and power of the approach.
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APPENDIX A

In this appendix, we show how the three-point structure function expression for the dynamical coupling correction

U (k co)= g (n n n -) dp, dv5+(co —p —v}S ~ (k —q v;q p)
1 k q &y3 Lcd

ao 2 2'7T 000' q

+S (k —q, t=0;q, t=0} PP (k)

=U '
~ (k, )+coi ~U(k, co), (A 1)

U
' (k, co) —=Reu (k, co)

1 k q &y3
~ dp ~ dv jl+v

(n~n~ n -) P S~ -(k q, v;q, p)PP~ (k)—O'. CT G'

CT q
2% -~ 2& 6)—p —V

(Ala}
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u ~~(k, co)=emu (k, co)= g '2 (n n n~-)' ' f" S ~ (k —q, co —p;q, p)PP~ ("k) (o,o'=A, B) (A lb)

is converted into the compact and elegant quadratic response function expression

u ~ (k, co)= f diJ ~ (P)[& -(k —q, ~—p;q, p)+X ~ (k —q, p;q, co —p)]p (k) (cr, a'=A. B) . (A2)
q2

The centrally important VAA formula (A2) contains most, if not all, of the information about dynamical and static-
correlational effects in rnulticomponent plasmas. The following calculations leading to it are a generalization of the ear-
lier Golden-Kalman OCP calculation.

We begin by eliminating the three-point functions in favor of the quadratic X s by application of the NLFDT Eq. (17).
Here we note that S ~ -(q,p;p, v) is expected to be nonsingular so that the @=0, v=0, and co =0 singularities in (17) are
spurious. Consequently, the NLFDT remains unchanged if one stipulates that each frequency denominator in (17) is a
principal-value (P) denominator. With this understanding, the substitution of (17) into (A 1) readily yields

4
u (k, co)= g g W (s),

q

where

(A3)

(A3a)

and

I

(3)= —P (k)P Pdp . dv X ~ ~~ ( k p v k q v)
—00 77 v(co —p —v)

I

7T p
I

d~ X ~ k —qpq, —p
QO p

~" (3)=P (k)P dp X (y"(y~'( —k, —co;k —q, co —p )

OO co —p
I~.".(4)=p f"

OO 77 p

(A3b)

(A3c)

(A3d)

(A3e)

(A3f)

(A3g)

(A3h)

(s)=W' (s)+iW" (s) .

The evaluation of the Y ~ integrals then proceeds as follows:

qt~0'q ~)+P f P f X' ~ (k —q v q p) p' (k)

dpqi0~q~~)+P X '
~ (k —q, co —p;q, p) p (k),

N —p
(A4a)

(HT)

Wocr (2) = P—'f g ~'0, „(k—q co —p q p)P (k)
'7T OO P

(A4b)
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dp
y

~ dv Xo"&~' »p+»k q~

7T v(co —p —v)

(PB)
(k) X

'
( —k, co;k —q, O)

(HT)=0,

1 ~ dv ~ dp+P P X ~"~~'( —k,p +v; k —q, —v)—00 CO —P —V

(A4c)

(HT)
= —X ~~~ ( —k, co;q, O)P (k) =X ~~ -(k —q, co;q, O)P (k),
(HT)W" (3) = —P (k)X "» ( —k, —co;k —q, O)=P (k)X "- ( —k, co;k —q, O)

=X "
~ (k —q, O;q, co)P (k), (A4e)

{HT)
W~~(4) = —X "~ -( —k, —co;q, O)P (k)=X" ~ ( —k, co;q, O)P (k)=X~ ~-(k —q, co;q, O)P~ (k) . (A4f)

The significance of the "(PB)"and "(HT)" notations above the equal signs is as follows: the (PB) symbol indicates appli-
cation of the Poincare-Bertrand theorem " to reverse the order of integration; the HT symbol indicates a single or double
Hilbert transform operation. The last step in (A4d) —(A4f) follows from the "triangle"-symmetry relations

( —k, co;k —q, O) =X ~ (k—q, O;q, co),

X ~ - (q, O; —k, co) =X ~ ~ (k —q, co;q, O)

which are themselves a direct consequence of the NLFDT relation (17). Substitution of (A4) into (A3) gives

(A6)

1 kq 1 ~ dp « q~ p'q p—)—X ~ q2 m. — p

+P— X" -(k —q,p;q, co —p)+X' ~ ~ (k —q, O;q, co)
p

+ X '
~ (k —q, co;q, O) P (k), (A7a)

1 kq 1 ~ dp,(k, co) = — g z
P— X

' ~-(k —q, co —p;q, p)
q2 ~ — p

+P— X' ~ ~ (k —q,p;q, co —p) —X " -(k —q, O;q, co)
7T oo p

—X " -(k —q, co;q, O) P (k) . (A7b)

Equation (A2) then results from the addition of (A7a) and (A7b).

APPENDIX 8

In this appendix we derive the long-wavelength (k~O) formula for the RPA dynamical coupling function m~0(k, co).
Following the procedure of Ref. 7, the

~

k.v
~

&&
~

co
~

development of (47) to order k results in the expression
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'2

o~(q S p v)
I (k.

i i i

=— [A'"(q S )+A'"(p»)]+2
3

[A' '(q, Sc)+A' '(p, v)]

4

+3 [A "'(q Sc)+A "'(p v)] (8 la)

A- (q S ) = —i, a.o(q S ),. «p)q'
K~

(2) ~ Sc (k p)(k. q)
Ac (q~Sc)= ' g aco(q~Sc) ~

Q~ K

2 2

A q,Sc= i —
6 1 —X+ 2 X aoq, Sc i—

Q q )cq

(8 lb)

where ic =4mPn~e .
We next write w o(k, co) in the form

'2 3

(i) A~
w~p(k, co) = w~p +2

CO CO

4

WuO+3
CO

(3)
Wap ~ (82)

2
(Z) sKg

W~p =
k

L

r

k q ao az(k —q, co —
)M )[A It (q,Sc)+A '"(k—q, co —Sc )]

q2 —00 so(qs )so(k —q ~—s )

a„(k—q, Sc)[A'"(q,cp —Sc)+A '"(k—q,Sc)]

Eo(q ~—
S )so(k —qS )

(1=1,2, 3; cr, g=A, B: g&o) . (83)

For w~', we have from (Blb) and (83),
2

w o =
2 g q dSc& —(Sc)[a o(q Sc)ccvo(k —q cp —Sc)ta o(q cp —Sc)aqo(k —q Sc)]

()) )ca 1 (k.q)[k (k —q)]
K~

+ g ~ dSc 5 (Sc)[a p(k —q, cp —Sc)a„o(k—q, co —Sc)k2&
q O' Ka

—a o(k —q, ~—s )a„o(k—q, ~—sc)ao(qs )

+a o« —q,s )a,o« —q s ) —a o(k —q s )a,o(k —q s )ao(q ~—s )]

In virtue of the plus-function character of a~(co), Eq. (84) then splits into
(&) (&) (I)

W~p ——W~O +W~p
stat dyn

where

, gg'
i
k —q i f d(M 5 (Sc)a p(k —q,Sc)a„p(k—q,Sc)

00
stat ~ ~ q

(o,g=A, B: g&cr) . (84)

(BSa)

2 gX
~

k —q i
a ()(k —q, O)a„()(k—q, O)

q

gX a„()(k—q, Q)
a q

2 1/2lc„eqNq 1 )c~)cqi(n~nq)

e.m. &, ik —qi'+~'

"—gy2g q (ik —qi) (85b)
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and

2 ~ dp5 —(p)la~a(q p)aqo(k —q co —p)+a~(q co —p)aqo(k —q p)]
l (k.q)[k. (k —q)]

dyn a k ~a

gX z f dp 5 (p)[a 0(k —q co —p)a„p(k —q co —p)ao(q, p)
a q Ka

+a p(k —q, p)aqo(k —q,p)ao(q, co —p)] (a, ri =A,B: g~cr) . (85c)

One can similarly show that to order k,

k 1 00

wg) ——w' ' =
~ gX l — f dp, 5 (p)[a (q, co —p)a„o(k—q,p)

dyn a a a q
k

—a 0(k —q, co —p)azo(k —q, co —p, )ao(q, p)] (86)

and

(3) (3) (3)
Wap =Wap +Wap

stat dyn

(87a)

where

k2eX
stat

g2eNa a a q

(87b)

k g(q/Ic )'(X' —X )

X f" dp5 (p)[a 0(q p)a„o(q, co —p)+a&0(q, p)a~0(q, co —p)

+a~0(q, p)a&0(q, p)ao(q, co —p)+a 0(q, co —p)aqo(q~co —p)ao(qip)]

k 1 00

2 XX' f „dp5 (t )[p'a 0(-q p)a, o(q ~ p)+(~ p—)'a,o(q p—)a.o(q ~—p)X Q q

+p'a 0(q p)a, o(q p)ao(q ~—p)

+(co—p) a 0(q, co —p)a„o(q, co —p)ao(q, p)] (o,g=A, B: g&a) . (87c)

Equations (82) and (85)—(87) then combine into the desired lang-wavelength formulas

w p(k —+0, co)= [w "0'(k)+w fo"(k~0, co)], (88a)

w~"(k)= — " " —gX'g „( i
k —q ~

)+-
L

'2
k, gg „,(q)
&a q

(88b)
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w'.."(k-o,~)=, gq&(k —q&) f" dp5 (p)[a o(q p)aqo(k —q~ —p)+a o(q~ —p)a„o(k q p)]

p gX ~

k —q ~ f dp5 —(p)[a~o(k —q co —p)ago(k —q co —p)ao(q p)
oo

+a o(k —q,p)a„o(k —q, p)ao(q, co —p)]

++2(k —qX) f dp5 (p)[a o(q, co —p)a„o(k —q,p)

—a o(k —q co —p)aqo(k —q c0 —p)ao(q p)]

2
A

+ —
z

w~~q" (O, co)
5 co

k 1 00—3 &X f dp5 —(p)[p a o(q,p)a„o(q co —p)+(co —p) a„o(q p)a o(q c0 —p)
K~ %~CO q

+p a o(q p)a, o(q p)ao(q ~—p)

+(co —p) a o(q, co —p)avo(q, co —p, )ao(q, p)]

(o,ri= A,B: g&cr) . (BSc)

APPENDIX C

In this appendix, we evaluate the dynamical coupling function w (k, co) at k=0 and in the weak-coupling limit y «1.
Equation (53a)—(53c) are the appropriate starting point, and we begin with the calculation of I . Let

I

H „(q,co)= f dp5 (p)a (q,p)a„(q, c0 —p)=2i f dp5 (p)a "(q,p)aq(q, co p)—
P cx ~ g~p A~ Q, co —p

p
(Cl)

The second step in (Cl) exploits the fact that a (q,p)=a (q,~p)+ia "(q,p) =a (q,p)+2ia "(q,p) is a plus function
and therefore a*(q,p) as well as az(q, c0 —p) are minus functions of p. The third step follows from the fact that
a "(q,O) =O. We next suppose that a o(q, p) and azo(q, co —p) can be replaced by a o(q, p)/eo(q, O) and

azo(q, co —p)/eo(q, O), respectively, whence

H q (q,co)-=H q (q, co),cTYJo t —
(

2
)
2 0'go (C2a)

dp
H~q (q, co)=—P a "o(q,p)azo(q, co p), x =q/Ic (—cr, ri= A,B: g&cr) .

p
(C2b)

This static screening approximation has been used rather extensively' and has been instrumental in earlier calcula-
tions ' of the VAA and exact OCP dynamical coupling function uocp(k, co). The RPA expression for a (q, v) in terms
of the plasma dispersion function

1 f~ d exp( —z /2)
z —v —io

(o is a positive infinitesimal quantity) is

K~a o(q, v)= [1+v Z(v )],
q

where v =v(Pm )'~ /q =(m /m„)'~ v„. Introducing (C4) into (C2b), one obtains
2 2

K~K~H „(q co) = [~+ I'i(q co)+ I'n(q co)]
~q4

(C3)

(C4)

(C5a)



32 NONLINEAR-RESPONSE-FUNCTION APPROACH TO BINARY IONIC MIXTURES: 1689

I

Yt(q, co) =
1/2

m~
co& dp&Z

m&

1/2

~ 1/2

co„f dPqexp[ (—m /mq)gq/2] f dt
2 m& t —p —B —iofl fl

1/2

(CSb)

m
Yn(q, co) = p„Z (cov+ p„)

' 1/2

f dpvpvexp[ (m —/mv)Pv/2] f dt
2 mz t —P —co io-

7l Yl

wherepz ——p(Pm&)'i /q, czoco(——Pm&)'i /q, and Z=Z'+iZ" Th. e successive transformations

t —p, &
———1+ s, dt =—1+ ds,1 mg 1

2 m~ 2 m~

(C5c)

(C6)

m
1+

m~

1/2
m~ m~

2p&+ s =z, 2 1+
m

'
m&

' 1/2

(C7)

when applied to (C5b), then give
' 1/2

m~
Yt(q, co)=—co

4 " m 'I

mv ~ expI —[1+(mv/m )] s /8j
ds

ma —,[1+(mz/m )]s co& io— —

X f dpzexpI —[1+(m /m„)]P&/2 —[1+(m„/m )]sp,„/2j

with

1/2
expI —[1+(m„/m )]s /8j
~
2

~

~ ~

~ ~
~

~

~

I ~ ~
~~ /ds " dz e-' i'=~yZ(y)

T[1+(mv/m )]s co„——io
(o,rt=A, B: g~cr), (C8)

CO& co~ ~ 1

[1+(mv/m )]' [1+(m /mv)]' coo x
' 1/2

477( n g eg +ng eg )

mgmgl(my +my )

Simi1arly,

Yn(q, co) = —m [1+yZ (y)] (o,g =A, B: g~cr) .
m~+m~

H~v (q, co) is now given by

(C9)

2 2

H v (q, co)=
cT7)0 7 4 m~+m~

[1+yZ(y)] ( , cir=rA, B: g&cr), (C10)

whence &om (C2a) and (53b),

I (co)—=

'2
1 z 1

2
2yn

3mn

X2
»yZ(y)(1+x )

f dx yZ(y)(1+x )

2 2T

'2/n '+g
5

~ Z p
3mn~ rc &i~max y(y +g )

z zz (C11)
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J~(co) -=

where g=co/coo. Note that in the course of going from (53b) to (Cl1), the large-q divergences in both w~'(0) and
w o (O, co) have exactly canceled each other out. Equation (Cll) nevertheless still exhibits divergences in its real and
imaginary parts. The divergence in the latter is the well-known logarithmic one which is handled by the usual y «1,
q,„=1/Pe' cutoff.

The more involved calculation of J~(co) starting from its static screening approximation expression
'2

K 1 x' 1 dpP „~~o(q p)~go(q p)ceo(q co —p)

+oculo(q p)~„"o(q p)ceo(q co p)—+cc~(q, co p)c—c„o(q co —p)ao'(q p)]

(o,ri= A.,B: g~cr) (C12)

proceeds along similar lines. Directing our attention primarily at the real part, some rather lengthy algebra leads to

J' (co)-=-
3mn~ Q~

3 2 3

2
K~K~ Pl~

m +I&

3/2 2 5 7 3
K~K~ K~ Q~

V 2K' V 2K'
yZ'(y)

g/X (y 2+ 2)2

2 2
K~K~ Pl ~ 1 1

dpi'(cog pg)pqZ—
mz 3X~ „„(1+x)

1/2

1/2

(~, p,)—
1/2

X Z" p, Z(p, )+Z' P, Z"(p, )

4
K~ fPZ ~

m&
4

1/2
1 1 1X,, — dP, (~, P, )p„Z—'(~„p„)—

3N „,„(1+x )

1/2

pz Z'p(„)+Z' p, Z"(p, )

2 2

—Re g — dp (co +p )(co„+p„)Z(co +p, )Z(co„+p„)Z"(p )
0' g 1 oo

T

—Re — g — dP„(co +p )(coq+P „)Z(co +P )Z(co„+P „)Z"(pq)
K~ 1 1

(o,g=A, B: g&cr) . (C13)

At very high frequencies (g/x~, „&1), Eq. (C1.3) and the real part of (Cl 1) can be further evaluated by exploiting the
asymptotic formula

1 1Z'(y~ m ) = ———
y y

One readily obtains

I' (co~co)= 2y n

37T Pl ~ ~ K

2

mRx

(C14)

(C15)

J~(co~oo)=O(x,„/g ) at most (c7,g=A, B: g&cr) . (C16)

The result (C16) follows from the fact that the co-independent amount (yn/3n )(K„/K) contributed by the first right-
hand-side group in (C13) is exactly compensated by the —(yn/3n. )(K~/K)2 amount contributed by the last four triple
Z-cluster groups. Taking x „—1/y, we then have

w~(0, co~ oo )=
T 2
Q

V +o
2

(o,g =A,B: q&o ) (C17)

whence from (46a),
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& (O ~~~)
I vAA= —

2 +
y«1

e rn~ 4ngne e„2y x,„—— (o,2}=A,B: rico) .
cpm a K 3s 2

(C18)

Consequently, our internally consistent result (C18) is tantamount to the exact third-frequency-moment-sum-rule coeffi-
cient

0' '(k=O)
i r((l ——(Q 0) —(0 0„) 1—earn~ 41TPne~e~ 2y x,„—— (o,q= A, B: l}&o.) .

e m 3&
(C19)

As to the imaginary parts of I (co~ oo ) and J (co—+ oo ), they have the expected odd-frequency parity and tend to zero
quite rapidly, e.g.,

IaII g &1
Xmax

' 1/2
2

2
n Qa K~ ma+ m~

3na coo K

1/2
Xmax

exp
'9 2X max

(cr, rI=A, B: 2}&o) . (C20)

The (g/x, „)«1 frequency domain is of interest especially from the point of view of collective-mode behavior. In
this domain, replacement of the lower integration limit in (Cl 1) with zero readily gives

2

I' (~)=~
6 na K

1+v'2m' 1 —e" ~ erfc v2

1/2

+ —"
2

l}le" r2erfc
v2

—v2l}' &O,

2

I "(co)=- y n ~ KaK~ m ~
V 21T n~ Q~ 3A rn~+vl~

where
r

~
d exp( —tl} /2)

2 tn

' 1/2

2 ln —0.884
'9

2
Ka m

23K ma+ m~
g /2E 9

2
(cr, rI=A, B: l}&o) (C22)

is the exponential integral. The O(yln(x, „/ri)}=O(yin(y /l})}' term in (C22) dominates all other terms in that
equation. We have, moreover, numerically demonstrated that the imaginary part of J~(co},

K Kn co g cr

24v~ n

m~
m +m&

3/2
g/2 E0 2

K K 2a g2/2 ~ Q
0

g 2

2

7 3 2K~ Qa
3e Eo

Q~

Q2

2

2 2
2y n ma KgKa

3K na m~ K

X oo

(1+x )' ~ dp„(~, p, }p,z"—
1/2

1/2

' 1/2

X P„z'(p„)+Z'

2y n ma
37T na m~

' 1/2 4
IC~

y
eo X 00

(1+x )
dg „(el, P, )P,Z "(ro& P&—)—
X Z"

m&

1/2

p, Z'(p, )+Z'
' 1/2

p„z"(p„)

2 2
2y n KyKa

3m n K4

X 00

dp, (co +p, )(co„+p„)z"(P )
(1+x )
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4" f dx —f dp„(co +p, )(co„+p„)Z"(p,„)
3m n~ ~~ 0 (1+x~)~ vr

X[z'(~ +p )Z"(~„+p„)+Z"(~ +P )Z'(ro„+P „)]

[a =co(pm~)' /v 2a, b =co(pm&)'~ /v2m]

(o,rl=.A,B: g&o ) (C23)

is at most of order y. It then follows that
2 1/2

w "0(O,ro) = I "(co)=-
CO 7T

2
n K~K~

~a 3K

1/2

y ln(y '/g) (cr, g =A,B: g~cr) (C24)

for (g/x, „)&&1.
As to w' (O, co), we have numerically evaluated (C21) and (C13) at co=A for the H+-He + mixture with N+ ——Nz+.

These formulas, when inputted with the parameters

(l~+/~) =0.2, (vq+/~) =0.8, (Q+/0) =(Qq+/0) =0.5,
give

I'+ (0)=0.393y, J'+ (0)= —0. 144y,

wz+ (O, Q) = —,w+ (0,0)= '
y .0. 125

4

The results (C25b) are needed for the calculation of the collective-mode frequency in Sec. VI A.

(C25a)

(C25b)
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