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In processes of excitation —deexcitation and of ionization —recombination of ions immersed in
dense plasmas, multistep processes through various intermediate states are important. In the
present paper we deal with the excitation and deexcitation that have doubly excited, or autoionizing,
states as intermediate states. %'e call these the dielectronic-capture ladderlike (DL) processes. Hy-
drogenlike 1s~2s or 1s~2p transitions are considered for the purpose of illustration. The DL exci-
tation rate coefficient is obtained as a function of electron density with an approximation that is
based on the picture of dielectronic capture of the ls ion into the doubly excited states foliowed by
the collisional ladderlike excitation-ionization chain. The DL deexcitation rate coefficient results
from autoionization of the doubly excited level ions that are in local thermal equilibrium with
respect to the 2l-level populations (l is s or p). Both of the rate coefficients are interpreted as an ex-
trapolation of the excitation cross section due to lowering of the threshold energy of the 1s~21 exci-
tation and are found to obey the principle of detailed balance. Thus, the DL processes may be re-
garded as enhancements of the direct excitation and deexcitation. A detailed colhsional-radiative-
model calculation, which includes 60 doubly excited levels and relevant collisional and radiative
transitions, is performed, and the above approximations are found to be consistent with the results.

I. INTRODUCTION A. Excitation

Properties of atoms and ions immersed in a dense plas-
ma have been studied recently in relation to the inertial
confinement fusion research. For example, the effects of
dense surroundings on the atomic transition oscillator
strength' and on the excitation cross section of ions '

have been calculated by using various approximations;
these quantities tend to decrease with an increase in the
plasma density owing to the Debye screening. Density ef-
fects on the excitation and deexcitation rate coefficients
that are due to multistep processes via various intermedi-
ate states draw little attention. Fujimoto and Kato pro-
posed a new excitation process, i.e., the dielectronic-
capture ladderlike (DL) excitation involving autoionizing
states as intermediate states. In the present paper we
present a detailed calculation on the DL excitation and
deexcitation processes. Section II gives an approximate
treatment of the problem; this will give readers insight
into the physical picture of the processes. A detailed nu-

merical calculation follows. Finally, discussion on the va-

lidity range and other relevant parameters is given.

II. DL EXCITATION AND DEEXCITATION:
APPROXIMATION

We consider as an example the DL processes in a hy-
drogenic ion.

We consider the excitation process of l~p, where 1

denotes the ground state 1s. Figure 1 depicts a schematic
energy-level diagram relevant to the processes concerned.
Associated with the excited level p we have a series of
doubly excited levels (heliumlike) pq, where q denotes the
state of the outer electron and p denotes the state of the
core electron. Upon collisions with electrons, the
ground-state ion 1 may undergo dielectronic capture into
state pq. Let its rate coefficient be denoted by rd(pq}.
The doubly excited ion thus produced may autoionize,
pq~l+e [with probability A, (pq)], where e denotes the
electron in a continuum state, or make a radiative transi-
tion, pq~pq'+hv' [q'&q, with probability A„(pq,pq');
here q and q' are understood to denote the principal quan-
tum number of the states concerned], or make a stabiliz-
ing transition pq~lq+hv [A„(pq, lq)]. The last process
is dielectronic recombination. However, when the elec-
tron density n,, is high, collisional processes may become
important on the ion state pq. For example, this ion may
be excited, pq+ e ~p(q + 1)+e (with collisional rate
coefficient C[pq,p(q+1)]}, before it autoionizes or de-

cays radiatively. The latter ion undergoes further excita-
tion p(q+1) —+p(q+2) —+ ~pr (r &&q), and finally it
is "ionized, " pr+e —+p+2e, to leave a hydrogenlike ion

p. This series of processes, called dielectronic-capture
ladderlike excitation is, in effect, the excitation of the hy-

drogenic ion, 1+e~p+e. In evaluating the excitation
rate coefficient of ions in a plasma, this contribution

32 1663 1985 The American Physical Society



TAKASHI FUJIMOTO AND TAKAKO KATO

I:)
t'd (pq) E rd(pq) =f(E')vo( l,p)

dE'
dq

(3)

P qG~i

Pq E E(l, p)

x( xt' xl

FIG. 1. Schematic energy-level diagram relevant to the DL
excitation and deexcitation processes.

should be included besides the direct excitation.
It is well known for singly excited hydrogenlike ions q

that the radiative decay rate decreases with an increase in

q, roughly in proportion to q ",while the depopulation
rate by electron collisions, the main part of which is the
excitation to the adjacent-lying higher level, increases in
proportion to q . Then, for a given n, we can define the
critica1 level qG for which the radiative and collisional
depopulation rates are equal. For the levels lying below
this, the population decays downward by radiative transi-
tions, while for the levels lying above that, the population
is lost by electronic collisions, predominantly by excita-
tion to the higher-lying levels. We call this critical level
Griem's limit or the collision limit.

For doubly excited ions we define a similar collision
limit pqG such that the depopulating electron collision
rate is equal to the sum of the autoionization probability
and the radiative transition probabilities,

A, (pq)+ g A„(pq,pq')+A, (pq, lq) .
q' (&q)

Then, we may assume that electrons dielectronically cap-
tured into the states lying below pqG are lost by autoioni-
zation or by radiative decay, but that electrons captured
into the levels higher than pqG are further excited, and fi-
nally undergo the DL excitation process. On the basis of
the above picture we may estimate the magnitude of the
rate coefficient for the DL process.

Let the DL excitation rate coefficient be denoted by
CD1 (l,p). Then, the rate per unit volume of the DL exci-
tation process in the plasma is expressed as

CD1 ( l,p)n(1)n, = g n(1)rd(pq)n, ,
q (&qG)

where n(p) stands for the population density of the hy-
drogenlike ion in state p. The DL excitation rate coeffi-
cient is given as

rd(pq»
q (&qG)

and this may be approximated for a large qo as

CDL(1 p)= rd(pq)dq .
G

The quantum-defect theory shows that the dielectronic-
capture rate coefficient may be expressed as an extrapola-
tion of the excitation cross section o.(l,p) below the exci-
tation threshold,

where f(E') is the electron energy distribution function at
E', the energy of the captured electron, and v is its veloci-
ty. We change the integration variable from q to the elec-
tron energy. Then, we arrive at

E(1,p)
CDL(l,p)= f f(E')vo(l, p)dE', (4)

where Eo is the energy of the critical level as measured
from the ground state, and E(l,p) is the threshold energy
for the direct excitation l~p (see Fig. 1). In the above we
have used the relation

2(z —1) R

g

where R is one rydberg (13.6 eV) and z is the nuclear
charge.

Equation (1) or (4) corresponds to the approximation
that the electrons dielectronically captured into the doubly
excited states above the collision limit neither autoionize
nor undergo dielectronic recombination. Rather, they are
"ionized" and enhance the excitation 1~p. Thus, as
shown in Fig. 2, the DL excitation may be understood as
the lowering of the threshold energy of the direct excita-
tion, E(l,p), to the energy of the critical level, EG.

The critical level is defined by

C(pq, pq')n, =A, (pq)+ g A„(pq,pq')
q' (&q) q' ( &q)

+A„(pq, lq) .

In the collision term we retain only the dominant collision
rate coefficient C(pq, p(q+1)) as a rough approximation
and approximate it by a formula for a normal hydrogenic
ion'"

8.69X10 (z —1) R

EG E(t, p)
gG 03

FIG. 2. Interpretation of the DL processes as an extrapola-
tion of the excitation cross section below the excitation threshold
down to Griem's limit.

(z —1) R 3 —1
fq q~1 cm s

q, q+1

where E~ ~+1 and f» ~+1 stand for, respectively, the ener-

gy difference and the oscillator strength between the levels
q and q+1. f~~+, is approximated to q/2, and E~~+1
is.written as 2(z —1) R/q . For g,

~
~A„(pq,pq') we

take (z —1) 1.65X10' q s ', and A„(pq, lq) is given
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FIG. 3. Examples of the estimated Griem's limit for the dou-
bly excited heliumlike neon ion. The lowering of the energy
from the original excitation threshold is given as a function of
the electron density.
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from the corresponding hydrogenlike transition A„(p, l).
A, is given as the inverse process to Eq. (3),

4(z —1) E' g(1) rr(l, p)
hq' g (pq) n.a 'o

E IO"-

r~ Is-2p

-2s

.—Is-2s

—10

where g(p) denotes the statistical weight and ao is the
first Bohr radius.

We take as examples the excitation process of hydro-
genlike ion 1s—+Zs and Is~2p. For the direct-excitation
cross section 1s—+2s and 2p, we take the cross sections
based on the close-coupling calculations ' the collision
strength is given by z 0=0.9345 —1.125/x + 1.410/
x —0.4620/x for ls-2s, where x denotes the energy in
the threshold units, and z 0= —5.341 + 10.12/x
—1.S07/x + 7.020lnx for ls-2p. Figure 3 gives the crit-
ical level obtained from Eq. (6) for the case of a neon ion:
Fig. 3 gives the energy E (1,2) —EG as a function of n,
The upper end of the lines corresponds to qG

——2.
By using Eq. (4) we calculate the rate coefficients. Fig-

ures 4(a) and 4(b) show the results for temperatures of 10
and 10 K, respectively, for the case of a neon ion. In Fig
4 the rate coefficients for the direct excitation are shown
by the horizontal bars. The total excitation rate coeffi-
cient is given as a sum of these two components. The DL
contribution is substantial for the low-temperature case.

Figures 5 and 6 give a few other examples. The tem-
perature corresponds approximately to the optimum tem-
perature at which the emission lines have their maximum
intensities under the corona equilibrium condition.

B. Deexcitation

We assume the recombining plasma situation' in
which we have zero population in the ground state. The
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FIG. 4. DL excitation and deexcitation rate coefficients for
hydrogenlike neon-ion transitions 1s-2s {thin curves) and 1s-2p
(thick curves}. , approximation [Eq. (4) or Eq. (14)].
numerical calculation for CDL(1s, 21). —- —,numerical calcula-
tion for FDL(2/, 1s), the right-hand-side ordinate is applied.
Dashed arrow shows n, at which the lowering of the ionization
potential reaches to n'=2 level, and the solid arrow shows n, at
which I =1. (a) Temperature is 1.0& 10 K. (b) Temperature is
1.0X 10' K.

heliumlike ion in level pq that is produced by "recombina-
tion" of a hydrogenlike ion p may undergo autoionization.
This process is, in effect, the deexcitation of p+e —+1+e.
In terms of the collisional-radiative model the population
density of the heliumlike ion pq is given by the population
density of the hydrogenlike ion p, under our assumption



1666 TAKASHI FUJIMOTO AND TAKAKO KATO 32

—II
lo

lO

PJ
V)

O
w lO

I I I I I I I I I
I

Is-2p

Is -2s

I i s i i I i i s i I

l5 20 tl 25

log„[ne (cm )j

—II-lo

Fig. 1) and other symbols have their usual meanings. The
rate per unit volume of deexcitation by this process is ex-
pressed as

FDi (p, 1)n(p)n, =g n(pq)A, (pq)

=g ro(pq)Z(pq)n (p)n, A, (pq), (11)

FDL(p, 1)=g "0(pq)Z(pq)A, (pq) .
q

(12)

It has been shown" for singly excited ions that the lev-
els q lying above the collision limit have the population
coefficient ro(q)=1 unless the temperature is very low,
and the lower levels have ro(q) «1. The similar situation
is expected for the doubly excited levels. Thus we set

1 for q 9'o
ro(pq) =

0 for q &qG,

then we have

where FDL(p, l) is the DL deexcitation rate coefficient,
and it is given by

FIG. 5. DL excitation and deexcitation rate coefficients for
hydrogenlike boron-ion transitions. T, =5.25 )& 10 K. Ex-
planation same as for Fig. 4. q ( &qG)

(12')

n(pq) =ra(pq)Z(pq)n(p)n, , (9)
By using Eqs. (8) and (10) and the Maxwellian distribu-
tion for f(E') we obtain

Z(p )
gpq( ) h

2g(p ) 2irmk T,

' 3/2

exp(E&~/kT, ), (10)

where Ez~ is the "ionization" potential of level pq (see
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where ro(pq) is the population coefficient and Z(pq) is the
Saha-Boltzmann coefficient FDi.(p 1)= exp[E( l,p) IkT, j

g(1)
g' p

E(1ip)
X I '

f(E')vo( l,p)dE' .
G

It should be noted that the DL excitation rate coefficient
CDi ( l,p) and the DL deexcitation rate coefficient
FDL(p, 1) obey the principle of detailed balance, Eqs. (4)
and (14). The excitation energy, however, is not Eo but
the original threshold energy E( l,p). Thus, the result of
the approximate calculation for FDi (p, l) is identical to
that of CDL(l,p), as given by the solid curve in Figs. 4—6.
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III. NUMERICAL CALCULATION

The system of the doubly excited states 2hn'I'2s+ &L is
considered with 60 levels of 2 & n'&20, and the rate coef-
ficients for the collisional and radiative transitions be-
tween these levels are approximated by those of the heli-
umlike ion states 1sn'l' +'L. ' These processes are the
following.

(1) Excitation deexcitation: 21n-'1'+e~2ln "1"+e. We
primarily rely on the infinite-z hydrogenic approximation
by Sampson and Parks. ' Small modifications which have
been made for the normal heliumlike ions' are kept in the
present calculation.

(2) Radiative transition: 2ln'1'~2ln "1"+hv' For op-.
tically allowed transitions the absorption oscillator
strength is given by

FIG. 6. DL excitation and deexcitation rate coefficients for
hydrogenlike calcium-ion transitions. T, =2.4 & 10 K. Ex-
planation same as for Fig. 4.

f=f„~f~(z 1), — — (15)

where fH stands for the hydrogenic value and bf has been
determined for the case of normal heliumlike ions.



32 ENHANCEMENT OF THE EXCITATION AND DEEXCITATION. . . 1667

(3) Ionization and three bo-dy recombination: 2ln'l'
+ e~21+2e. In this case the "ion" is the excited 2l-state
ion. The empirical formula by Lotz' is adopted.

(4) Radiative recombination: 21+e~2ln'l'+hv" For
the photoionization cross section the hydrogenlike values
are employed.

Since the levels considered above are doubly excited
states, transitions connecting these levels to the ground-
state hydrogenlike level and to the normal heliumhke lev-
els are included.

(5) Dielectronic capture and autoionization: 1s+e
~2ln'l'. For the levels n' & 3 the dielectronic-capture rate
coefficient or the autoionization probability is calculated
from the direct and exchange reactance matrix elements'
for the excitation cross section of the hydrogenic 1s-2l
transition. For 2l2l the autoionization probability is es-
timated from Ref. 19.

(6) Stabilizing radiative transition: 2pn'l'~lsn'l'+hv.
The transition probability for the hydrogenic 2p~ ls tran-
sition is adopted.

(7) Stabilizing collisional transtion: 2 in'l'+e
+1sn—'1'+e The. deexcitation rate coefficient for the hy-

drogenic 2l ~1s transition' ' is adopted.
The system of the coupled collisional-radiative equa-

tions' ' are constructed for 1s, 2ln'l', and 2l, where l is s
or p. The above rate coefficients and transition probabili-
ties are used, and the method of the quasi-steady-state
solution is applied. The effective excitation rate coeffi-
cient is~21 which consists of the processes through in-
termediate doubly excited states are obtained as the DL
excitation rate coefficient CoL( ls, 2l), and the DL deexci-
tation rate coefficient FoL(2l, ls) is obtained similarly. In
order to avoid counting the 2s 2p state twice as a 2s core
state and a 2p core state, an appropriate correction has
been made. Examples of the results are shown in Figs.
4—6.

IV. DISCUSSION

The agreement between the numerical calculation in
Sec. III and the approximation in Sec. II is reasonably
good. The principle of detailed balance is not obeyed by
the numerically obtained CiiL( ls, 2l) and FoL(21, ls); this
is because the approximations (1) and (12') are not strictly
valid.

One interesting feature is seen for higher temperatures.
In Fig. 6, for example, the DL deexcitation rate coeffi-
cient has a finite value for small electron densities. This
is understood from the fact that, for the case of normal
hydrogenlike levels, the balance between the radiative
recombination and the radiative decay (this balance is
called the capture-cascade scheme ') leads to the popula-
tion density approximately equal to the LTE (local ther-
modynamic equilibrium) value or ro(q)=l even if q
were smaller than q~. In our present case the autoioniza-
tion and the stabilizing transitions are added to the radia-
tive decay, but the essential feature remains unchanged.
Thus the approximation of Eq. (13), rv(pq)=0 for q &qG,
is not correct for the high temperatures: ro(2ln'l') has a
value of the order of unity instead of 0 for the low-density
regions. Thus in Eq. (12') lower-lying levels than po
should be taken into account. This leads to the finite con-

tribution from the DL deexcitation.
In our calculation the doubly excited levels as high as

n'=20 are calculated, and the levels 21(n'(25 are as-
sumed to be in LTE, i.e., ri(2ln'l') =0 and ro(2ln'l') = 1.
Under the condition of high electron densities, ".the lower-
ing of the ionization potential" occurs. It might be
claimed that under such conditions the calculation includ-
ing such high-lying levels as n'=20 would lead to an er-
ror. However, this is not the case. The reason is as fol-
lows: It is well known in the quantum-defect theory that
many atomic parameters for discrete levels continue
smoothly across the ionization limit to the continuum
states. For instance, the Gaunt factor for the oscillator
strength of series lines continues smoothly to the Gaunt
factor of the photoionization cross section. Furthermore,
this continuation property as well as the absolute magni-
tude of the oscillator strength do not change much with
an increase in the density, say, until the Debye length be-
comes 10 times the radius of the ls-electron orbit. On
the other hand, with an increase in the electron density
the high-lying levels enter either into LTE for a recombin-
ing plasma or into the ladderlike excitation-ionization
chain for an ionizing plasma 's in both cases these levels
are strongly coupled with the continuum states. The
lower end of these "quasicontinuum" states is given by
Cxriem's criterion, Eq. (6) in the present case, and the
"lowering" occurs at much higher levels. Thus, even if
the latter phenomena takes place, unless the electron den-
sity is so high that the low-lying levels such as n'=2 are
strongly affected, both treatments, in which the high-lying
levels are considered as discrete or continuum, make little
difference. In Figs. 4—6 the density at which the "lower-
ing" reaches n'=2 levels is indicated with a dashed ar-
row.

A few calculations ' have been reported on the density
dependence of the excitation cross section. In the approx-
imations employed it decreases with an increase in the
density owing to the Debye screening. Thus this decrease
tends to cancel the increase in the excitation and deexcita-
tion rate coefficients as given above.

Jacobs and Davis present an extensive calculation of
ion populations and ionization-recombination rates, in-
cluding many levels and processes which may become im-
portant when the plasma density is high. However, they
neglect ionization from and recombination to the doubly
excited levels: these are the important processes as dis-
cussed in the present paper. Another example of the man-
ifestation of these processes is that the resonance contri-
bution to the excitation cross section is diminished in a
dense plasma: the resonance excitation process, e.g.,
1s+e~3lnl' —+2l"+e, in a low-density plasma is taken
over in the dense plasma by the DL excitation process,
ls +e~3lnl'+(e) ~31(n + 1)l"+ (e)~ ~31+e.

Another multistep excitation process which might be
important but is neglected in the present investigation is
recombination from 1s to the high-lying heliumlike ion
followed by ionization to the hydrogenlike excited levels.
The corresponding rate is found to give an insignificant
contribution to the effective excitation rate: a rough esti-
mate shows that its contribution does not exceed 1% of
the DL excitation rate coefficient under the condition of
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Fig. 4(a).
The present treatment breaks down when the coupling

parameter I becomes of the order of unity. Under the
condition that the ions concerned are immersed in a hy-
drogen plasma as an impurity the parameter is given by

1/3

r= (z —2)e 4n.&e

kT, 3
(16)

In Figs. 4—6 the electron density at which I =1 holds is
given with the solid arrow.
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