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Electron-hydrogen scattering to the 1s, 2s, and 2p states is calculated at S4.42 and 200 eV, and
compared with experimental data. Higher-energy reaction channels, including the continuum, are
taken into account in two different ways: first, in approximate polarization potentials involving ex-
plicit integration over the appropriate kinematic degrees of freedom; second, in a set of seven pseu-
dostates for which the 10-channel pseudoproblern is solved in full. In anticipation of larger and
better pseudostate sets, approximations to the pseudoproblem are investigated. They involve
second-order treatment of coupling to the pseudostates.

I. INTRODUCTION
/

For electron scattering on hydrogen the space of reac-
tion channels may be divided into two by projection
operators P and Q. P space includes channels to be expli-
citly treated by a coupled-channels calculation. Q space
includes at least the target continuum. Cross sections for
lower-energy excitations of states in P space converge
quite quickly as more discrete channels are added. How-
ever, the continuum cannot be ignored. %'e consider two
different ways of treating Q space in a coupled-channels
calculation.

The first way is the coupled-channels optical method
(CCO) developed by McCarthy and Stelbovics. ' Here Q
space is treated by adding a polarization potential V~~' to
the potential coupling the P-space channels i,j. In prac-
tice the equivalent local po1arization potential in momen-
tum space is used. For discrete excitations it is calculated
in second order with antisymmetrization. For continuum
excitations the polarization potential includes the screen-
ing correlation which considerably improves the total ion-
ization cross section (proportional to the forward diagonal
imaginary polarization potential) in comparison with the
second-order potential. Polarization potentials are calcu-
lated explicitly by integrating over all continuum degrees
of freedom.

The CCO model is a complete ab initio model for all as-
pects of the three-body problem. Q-space aspects are
treated in the Born approximation with antisymmetriza-
tion and screening. It is hoped that this will be accurate
enough for calculation of P-space properties, since Q-
space effects are of second order in the fully coupled cal-
culations of I' space.

The second way is to solve explicitly a pseudoproblem
(PP), in which P-space channels are treated exactly but
Q-space is represented by a set of normalized square-
integrable pseudostates which are included in the
coupled-channels calcu1ation. In principle pseudostates
can be chosen in such a way as to give a representation of
the target which converges as more pseudostates are add-

ed. In practical calculations up to the present limited sets
of pseudostates have been chosen so as to reproduce exter-
nal features of the problem. We consider the set of four s
pseudostates and three p pseudostates used by Bransden,
Scott, Shingal, and Roychoudhury (BSSR) in a second-
order optical-potential approximation to the pseudoprob-
lem. Here the s pseudostates are similar to a set chosen
by Callaway and %'ooten to fit low-energy s-wave phase
shifts among other criteria. The p pseudostates reproduce
the dipole polarizability of hydrogen.

The pseudoproblem in principle is a complete ab initio
model for the details of P space and for the total cross
section for Q space. At present we hope that the realistic
set of pseudostates chosen will provide a sufficiently accu-
rate description of second-order effects in P space and
that we will obtain a guide to the use of the pseudostates
to be obtained by new ab inttio methods.

An important way of using pseudostates is to construct
from them polarization potentials for use in a coupled-
channels calculation of P space. For example the BSSR
calculation uses second-order polarization potentials
without exchange terms.

The present work compares calculations of CCO and
PP with experiment for I' space consisting of n =1 and 2
states. It also investigates various approximations to PP
that can be used with larger pseudostate sets for which a
full coupled-channels calculation is difficult.

II. MODELS OF THE ELECTRON-HYDROGEN
THREE-BODY PROBLEM

The Hamiltonian for electron scattering on hydrogen is

H =E&+E2+U&+U2+U3,

where E and U stand for kinetic-energy and potential-
energy operators, respectively. Subscripts I and 2 label
the electron-nucleus subsystems for electrons 1 and 2,
respectively, and 3 labels the electron-electron system.
The small kinetic energy L3 of ihe nucleus is neglected.
Spin-orbit coupling is neglected so that electron spin plays
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where P, is- the space-exchange operator and the super-
scripts (+ ) denote outgoing and ingoing spherical-wave
boundary conditions, respectively. Suppressing the index
S for economy of notation we use the abbreviation

u3
—=u, +(—1)s(H E)P„. — (3)

The reaction channe1s are labe1ed by the one-electron
bound-state functions PJ, where j may be a discrete nota-
tion for the continuum. We choose the label 2 for the
bound electron,

a part only in considerations of antisymmetry. The total
wave function is labeled by the total electron spin S which
can be 0 (singlet) or 1 (triplet). The total wave function is
labeled also by a quantum number n denoting the three-
body state in terms of the quantum numbers of bound
states and momenta of unbound electrons. It is a discrete .

notation for the continuum, where necessary, involving
box normalization and the usual limiting processes.

The Schrodinger equation for total energy E is

{E'+—' —[Kl +K2+ul +u2+u3+( —1) (H E)P—„]IV'„s'

where V'. ' is the optical potential,

I g IV—:ul +u3 +(ul +u3 )Q Q(ul+u3 )Q(E'+' —K —u)Q

(10)

The last term in (10) is the complex-polarization potential.
Two possible representations for implementing the solu-

tion of the P-space equation (9) are the coordinate repre-
sentation, where (9) becomes a set of coupled integro-
differential equations

y (y,. ~E(+~ K, —V(~'~y, )u,'+'(k, , r, )=0,
jEP

(11)
and the momentum representation, where we have a set of
coupled integral equations

( k, p; ~

T
~ pj, kj ) = ( k, p; ~

u(~'~ pj, kj )

+ g I d'k (k, y, ~

u(t-"
~ y, ,k &

IeP

E(+) E
& (k )2

(EI—K2 u2)pq. ———0 . (4) X (k', p& ~

T
~
pj. ,kj ) . (12)

%'e use an operator notation, where all operators are
understood to act on the three-body wave function 4„'+'.

The Schrodinger equation (2) is written

(5)

The exact polarization potential for P-space channels i,j
is written in momentum space as follows:

(k'~ V~~j~
~
k) = g (k', P {u3

~ Pp )
)

where

E =If)+E2,
X(qI„' '~ u;

~ p, ,k) . (13)

U =U) +U2+U3
(6)

We use projection operators P, Q for the sets P, Q of target
states

Much computational time is saved by using the equivalent
local approximation'

V~)~~'(P)= —, I du(k —k'+k~
~

V'J~'
~
kJ ), (14)

iEP
Q=l —P. P =k —k',

(15)

The Schrodinger equation (5) is written as two projected
equations

P (E'+' K —u)P =PuQ-,

Q(E'+I K —u)Q =QuP —. (Sb)

P(E'+' —K —u, —V(~')P =0, (9)

We formulate the coupled-channels problem for P space
by eliminating Q space using Eq. (Sb),

u =I kjyPk, .

This approximation is used in the CCO method, together
with approximations for q'8 '

specified below.
The pseudoproblem can be solved directly by including

all the pseudostates in P space. Alternatively BSSR use a
P space consisting of ls, 2s, 2po, and 2p+ channels
(where the subscripts denote the projection quantum num-
ber) and include all the pseudostates in an optical poten-
tial. The P-space coupled equations (11) are written expli-
citly in atomic units as

(V' +k; )u +'(k;, rl)= g {V (Jr&)u 'J+( kjr )l+J d r2[W~J(rl, r2)+KJ(rl, rl)Iu~'+'(kj. ,r2),
jap

(16)

where Vj and 8'J. are the usual direct and exchange-
potential matrix elements [Eq. (2)j and KJ is the direct
part of the second-order polarization potential matrix ele-
ment

;~(r(,r2)= g V;„(rl)GO( —,K„;rl,r2) V~~(r2) .
I &Q

The set of pseudostates is denoted by Q and Go is the free
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Green's function. The models used in the present work
are summarized as follows.

A. CCO

A coupled-channels calculation in momentum space is
performed for P space with polarization potentials ob-
tained from the equivalent local approximation to (13).
These potentials are both diagonal and off-diagonal in the
P-space channels. 4&

' is represented by the Born ap-
proximation (with exchange) for discrete excitations in Q
space and by the Born approximation with screening
correlation and exchange for the three-body continuum.
The screening correlation means that +&

' is approximat-
ed by the product of a plane wave for the faster electron
and a Coulomb wave for the slower electron.

The coupled equations are solved exactly for a 10-
channel space consisting of the n =1,2 physical channels
P; and the set P~ of seven pseudostates used by BSSR.
The space of which the P„are elements is called Q. The
following approximations to PP are investigated.

BSSR: A coupled-channels calculation in coordinate
space is performed for P space with polarization poten-
tials obtained from the following approximations to the
coordinate-space transform of (13). 4„' is represented by
the Born approximation without exchange for excitation
of the pseudostate P„, i.e., Q space is treated in second or-
der.

PP2: The couplings QuQ are omitted from the full set
of couplings (P+Q)u(P+Q) in a coupled-channels cal-
culation. It has been shown by McCarthy and Stelbovics
that this is a coupled-channels calculation with Q space
treated in second order. In order to correspond as closely
as possible with BSSR, matrix elements PvQ are comput-

ed without exchange but PvI' are computed with ex-
change. BSSR is a polarization-potential calculation of
the same approximation. Although both methods should
give the same results there are relatively minor disagree-
ments for which the reason cannot be traced.

PP2E: The same as PP2 except that the matrix ele-
ments PvQ are computed in full, including exchange.

PSO: An approximate polarization potential (13) is
used in a momentum-space calculation of P space with
full coupling and exchange. In the polarization potential
4&

' is represented by the Born approximation with ex-
change. The polarization potential is averaged over pro-
jection quantum numbers and spherically averaged
(equivalent local approximation ). This is an approxima-
tion to PP2E.

CC: Coupled-channels calculation for P space only.
PPD: Full coupled-channels calculation for I' and Q

spaces. No exchange matrix elements are included. This
is calculated to assess its validity in comparison with PP,
since such calculations exist in the literature.

The basic models under discussion are CCO and PP. As
an approximation to the Q space of PP we are mainly in-
terested in the coordinate space second-order optical
model without exchange (BSSR) and the exact second-
order calculation without exchange PP2. The results of
these models for 54.42- and 200-eV electron scattering are
summarized in Tables I and II, in which the relevant fig-
ures for angular distributions are indicated.

At 54.42 eV there are experimental differential cross
sections and 2p angular correlation parameters " for
comparison with the P-space features of the calculations.
Apart from the total cross section o.~ for exciting states in
Q-space, only CCO gives estimates of Q-space features
and these are only obtained in the Born approximation
(with exchange) for discrete excitations and the Born ap-
proximation with screening and exchange for the total
ionization cross section o.I.

TABLE I. Features of the 54.42-eV e-H problem (a.u.). The columns headed Expt. and Ref. give ex-
perimental data and the corresponding reference number.

Feature

I' space
do. ), /d0
~ls
do2, /dO
O2s

G clyde /8Q
02p
A, ,A

Expt.

Fig. 1'
3.83+0.38'
Fig. 2
0.25+0.07b

0.166
Fig. 3
2.79+0.24
Fig. 4

Ref.

8, 12
15
9
9

14
9
9
9—11

CCO

3.25

0.251

2.75

pp

2.91

0.167

2.69

Fig. 1

Fig. 2

Fig. 3

Fig. 4

PP2

3.11

0.131

2.54

BSSR

3.18

0.124

2.56

g space
Og

O3s

03'

3.53+0.35
2.29+0.3
0.037+0.005
0.34+0.04

9,15
16
17
17

3.63
3.1

0.060
0.36

2.75 3.50 8.2

'50 eV.
Interpolation in the angular distribution of Williams.
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FIG. 1. e-H elastic scattering at 54.24 eV (theory) and 50 eV

[experiment (Ref. 8)j. Experimental points have been multiplied

by 0;82 to give a shape comparison. Experimental data are due

to Williams (Ref. 8) (filled circles) and van Wingerden et al.

(Ref. 12) (stars).

The calculation of o.~ compares quite well with experi-
ment for CCO at both 54.42 and 200 eV, indicating that
at least this feature of the explicit polarization potential
for Q space is fairly accurate. o.r is somewhat overes-
timated at 54.42 eV, but is quite accurate at 200 eV.

The he choice of Q space in PP to represent Q space does
not give such an accurate estimate of 0~ at either energy.
PP2 does in fact give a close estimate of o~ at 54.42 eV,
but this is only an approximation to PP and the close esti-
mate is fortuitous. BSSR gives a surprisingly bad overes-

FIG. 3. e-H scattering to the 2p state at 54.42 eV. Experi-
mental data are due to Williams (Ref. 9).

ttmate of o.g tn comparison with PP2 (and experiment) at
54.42 eV, but does better at 200 eV.

CCO is the on&on!y model that gives explicit estimates of
total cross sections for individual Q-space excitations. At

C
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FIG. 2. e-H scattering to the 2s state at 54.42 eV.
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FIG.
54.42 eV

G. . p angular correlation parameters k d R f h
eV e-H problem. Experimental data are due to Williams

(Ref. 9) (filled circles), Hood et al. (Ref. 10) (crosses for 0 up to
20'), Weigold et al. (Ref. 11) (crosses for 0 beyond 20').
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Feature Expt. pp

TABLE II. Features of the 200-eV e-H problem (a.u. ). Column headings are the same as for Table I.

Ref. CCO BSSR

P space
do. ), /dO,
~Is
do.p, /d 0
~2s
do.

pp /d 0
02'

Table III
0.67

0.10

1.7

8

15

14

18,19

0.60

0.068

1.40

Table III
0.59

Table IV
0.080

Table V
1.41

0.58

0.075

1.59

Q space
Og

O3s

03'
d'o-'

d Old 02dE)-

'250 eV.

2.0
0.49+0. 1

0.0172
0.21

Fig. 5

14—17
16
17
17

20

1.90
0.46
0.0174
0.244

Fig. 5

1.51 1.45

54.42 eV polarization potentials are included for 1s-ls,
1s-2s, 1s-2p, 2s-2s, and 2p-2p transitions with the inter-
mediate states being the continuum in all cases, 3p and 4p
for s-s, 3p and 3d for 1s-2p, 3s and 3p for 2p-2p. Here
we have experimental values for 0.3, and o-3p which are
only qualitatively estimated by the corresponding polari-
zation potentials.

At 200 eV the explicit polarization potentials give
much closer estimates of total cross sections for discrete
excitations' (within a few percent). However, the calcula-
tion discussed here treats 3s, 3p, 3d, 4s, and 4p excita-
tions by explicit coupling rather than polarization poten-
tials. The polarization potentials are included for the
same transitions as in the 54.42 eV case but involve only
the continuum intermediate states. The accuracy of the
1s-1s continuum potential is shown by the excellent esti-
mate of o.l. The screened Born approximation even gives
a qualitatively correct shape for the angular correlation in
a 250-eV ionization experiment as illustrated by the exam-
ple shown in Fig. 5.

250eV H (e, 2e) H

E~ = 5eV

eA= 3'

FIG. 5. Born approximation (arbitrarily normalized) to the
reaction H(e, 2e )H+ at 250 eV. The differential cross sec-
tion is plotted on a polar diagram for the slower electron (5 eV).
The scattering angle of the faster electron is 3'. Experimental
data are due to Lohmann et al. (Ref. 20).

In general CCO predicts P-space features at 54.42 eV
within experimental error except for values of the angular
correlation parameters A, and R beyond 80' (Fig. 4). PP
predicts differential cross sections (Figs. I—3) almost as
well as CCO, except for the 2s excitation. Note that only
the shape of the elastic angular distribution is predicted.
Absolute cross sections are difficult to measure. Present
experimental values ' must be reduced by about 20%.
PP does predict large-angle values of A, better than CCO,
but the -reverse is true for R, even at small angles. At 200
eV (Tables II—V) CCO and PP give essentially similar re-
sults for P-space features, usually differing by less than
10%.

III. APPROXIMATIONS TO THE PSEUDOPROBLEM

The 54.42-eV calculation has been done for all the
models of Sec. II. The object is to study approximations

' that could conceivably be regarded as sufficient for calcu-
lating a problem involving a larger set of pseudostates for
Q space. Numerical results are given in Tables VI—X.

First, the magnitude of the effect of including Q space
is seen by comparing PP with the simple three-state calcu-
lation CC. The inclusion of more absorption increases the
diffraction scattering at forward angles, in the elastic case
(Table VI), otherwise it generally decreases cross sections
for backward elastic and for inelastic scattering (Tables
VII and VIII). The inclusion of Q space has a minor ef-
fect on the angular correlation parameter A, , but a large ef-
fect on R where CC (and CCO) do not predict the experi-
mental sign change at about 80. PP predicts small values
of R from 60' to 100, and differs markedly from CC in
shape for 0~ 50, although neither resembles the experi-
mental trend qualitatively except for 0 & 50'. In fact
differences in prediction of k and R for large angles are
difficult to consider, since no model works well. The
largest effect of Q space for differential cross sections is
on the 2s excitation (Table VII). We will pay particular
attention to this as an indicator of the closeness of the dif-
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TABLE III. The 1s angular distribution for e-H at 200 eV (a.u.). Numbers in square brackets indi-
cate powers of 10. Figures in parentheses indicate the error in the last figure.

0 (deg)

0
10
20
30
40
60
80

100
120
140
160

Expt.
(Ref. 8)

4.2(4) X10-'
1.7(2) )& 10
7.1{7)~ 10-'
1.9{2)~ 10-'
8.6(9)~ 10-'
4.1(4)X 10-'
2.7(4) X 10-'
1.8(3)~ 10-'

CCO

3.3
1.00
4.0[—1]
1.59[—1]
6.5[—2]
1.66[ —2]
6.2[ —3]
3.2[ —3]
1.91[—3]
1.39[—3]
1.15[—3]

PP

3.1

9.4[ —1]
3.9[—1]
1.53[—1]
6.5[ —2]
1.78[ —2]
6.8[ —3]
3.5[ —3]
2.1[—3]
1.53[—3]
1.28[ —3]

PP2

3.1

9.5[ —1]
3.8[—1]
1.50[ —1]
6.3[—2]
1.71[—2]
6.5[ —3]
3.3[—3]
2.0[ —3]
1.46[ —3]
1.22[ —3]

BSSR

2.9
9.8[ —1]
3.8[ —1]
1.5[ —1]
6.2[ —2]
1.7[—2]
6.5[ —3]
3.3[—3]
2.0[—3]
1.4[ —3]
1.2[ —3]

TABLE IV. The 2s angular distribution for e-H at 200 eV (a.u.). Numbers in square brackets indi-
cate powers of 10.

0 (deg)

0
10
20
30
40
60
80

100
120
140
160

CCO

1.69
1.93[—1]
2.2[ —2]
3.0[—3]
1.26[ —3]
3.1[—4]
1.28[ —4]
6.0[—5]
3.5[ —5]
2.8[ —5]
2.2[ —5]

PP

1.28
2.7[—1]
2.3[—2]
3.4[ —3]
1.34[ —3]
3.9[—4]
1.34[ —4]
6.6[ —5]
3.7[ —5]
2.6[—5]
2.1[—5]

PP2

1.23
2.6[ —1]
2.1[—2]
2.7[ —3]
1.0S[—3]
3.2[ —4]
1.10[—4]
5.6[ —5]
3.6[—5]
2.4[ —5]
2.0[—5]

BSSR

1.20
2.5[ —1 j
2.3[—2]
2.8[ —3]
1.16[—3]
2.9[—4]
1.35[—4]
5.6[—5]
4.1[—5]
2.7[—5]
2.5[ —5]

TABLE V. The 2p angular distribution for e-H at 200 eV {a.u.). Numbers in square brackets indi-
cate powers of 10.

0 (deg)

0
10
20
30
40
60
80

100
120
140
160

CCO

2.1[+ 2]
1.56
4.3[—2]
2.4[ —3]
8.1[—4]
1.96[—4]
1.02[ —4]
6.3[—5]
4.7[ —5]
3.8[—5]
3.4[ —5]

PP

2.1[ + 2]
1.45
2.9[—2]
2.2[ —3]
7.9[—4]
2.2[ —4]
1.08[—4]
6.4[ —5]
4.6[—5]
3.7[—5]
3.2[ —5]

PP2

2.1[+ 2]
1.42
2.6[—2]
1.36[—3]
5.6[ —4]
1.79[—4]
9.6[ —5]
6.0[—5]
4.6[ —5 j
3.8[—5]
3.4[ —5]

2.5[ + 2]
1.46
2.4[—2]
1.6[ —3]
5.2[ —4]
2.0[—4]
1.08[—4]
6.6[—5]
6.0[—5]
4.7[—5]
5.1[—5]
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TABLE VI. Cross sections (a.u. ) for 54.42 eV e-H elastic scattering. Numbers in square brackets indicate powers of 10. Figures
in parentheses indicate the error in the last figure.

0 (deg)

0
10
20
30
40
60
80

100
120
140

Expt. Xo.82'

4.7(4)
9.8(2)
9.0(8)x 10
4.5(5)x 10-'
1 7(2) X 10
8.1(10)x 10
4.6(6)x lo-'
2.9(2)x 10—'
2.2(2) x 10—'

CCO

8.5
3.9
1.74
9.2[ —I ]
5.2[ —I ]
1.8[ —I ]
7.5[ —2]
4.3[—2]
2.8[ —2]
2.1[—2]

CC

3.6
1.98
1.14
7.2[ —I ]
4.7[—I ]
1.96[—I ]
9.2[ —2]
5. I [ —2]
3.3[ —2]
2.5[ —2]

PP

6.9
3.3
1.49
7.8[—I )
4.4[ —I ]
1.77[ —I ]
8.3[—2]
4.6[—2]
3.0[—2)
2.3[—2]

PP2

7.5
3.7
1.70
8.7[ —I]
4.8[ —I ]
1.70[ —I ]
7.4[ —2]
4. I [ —2]
2.8[ —2]
2.2[ —2]

BSSR

7.4
3.8
1.7
8.9[—I ]
5.0[ —I ]
1.8[ —I ]
7.8[ —2]
4.1[—2]
2.5[—2)
1.8[—2]

PSO

6.7
3.0
1.36
7.5[—I ]
4.4[ —I ]
1.85[ —I ]
8.0[—2]
4.3[—2]
2.8[ —2]
2.1[—2]

PP2E

7.3
3.6
1.63
8.5[ —I ]
4.8[ —I ]
1.88[ —I]
8.8[ —2]
4.8[ —2]
2.9[—2]
1.93[—2)

PPD

6.06
2.7
1.15
5.7[ —I]
3.2[ —I ]
1.36[—2]
6.9[—2]
4.1[—2]
2.8[ —2)
2.3[—3]

js 3.83(40)
6.57(66)

3.25
6.63

2.53
3.14

2.91
5.61

3.11
6.17

3.18
10.92

2.78
6.59

3.12
5.69

2.31
6.38

'50 eV.
Actual value.

TABLE VII. Cross sections (a.u. ) for 2s excitation of hydrogen at 54.42 eV. Numbers in square brackets indicate powers of ten.
Figures in parentheses indicate the error in the last figure.

0 (deg)

0
10
20
30
40
60
80

100
120
140

Expt.

3.8(13)x 10
9.0(18)X10 ~

3.5(4) X 1O
—'

1.65(128)x 10
1.01(48)x 10-'
6.2(25) X 10-'
3.9(11)x 10
2.8(10)x 10-'
2.2(9)x 10—'

CCO

2.8
4.3[—I ]
1.13[—I ]
3.0[—2]
1.32[ —2]
7.9[—3]
5.1[—3]
3.5[ —3)
2.4[ —3]
1.82[ —3]

3.2
5.8[—I ]
1.22[ —I )
4.4[ —2)
1.87[ —2]
1.01 [ —2]
6.5[ —3]
4.5[ —3]
3.4[ —3]
3.0[—3]

PP

1.07
2.5[ —I ]
1.05[—I ]
3.4[ —2]
1.22[ —2]
5.9[—3]
3.5[ —3]
2.2[ —3]
1.61[—3]
1.40[ —3]

PP2

8.9[—I]
1.88[ —I ]
8.6[ —2]
2.5 [—2]
8.4[ —3]
4.9[—3]
3.0[—3]
1.86[ —3]
1.35[—3]
1.14[—3]

8.3[—I ]
1.6[ —I ]
8.5[—I ]
2.5[ —2]
6.5[ —3]
4.2[ —3]
3 I[—3]
2.1[—3]
1.7[ —3]
1.5[ —3)

PSO

2.0
3.0[—I ]
1.09[—I ]
4.2[ —2]
1.57[ —2]
6.2[ —3]
5.0[—3]
2.9[—3]
1.67[ —3]
1.23[ —3]

PP2E

9.2[ —I ]
1.92[—I ]
8.6[—2)
2.7[ —2]
8.3[—3]
3.3[—3]
2.5[ —3]
2.4[ —3]
2.4[ —3]
2.4[ —3]

PPD

1.10
2.4[ —I ]
1.08[—I ]
3.7[ —2]
1.17[—2]
4.2[ —3]
3.2[ —3]
2.6[ —3]
2.4[—3]
2.4[ —3]

0.166'
0.25

0.25 0.32 0.167 0.131 0.124 0.21 0.135 0.169

'Kauppila et al. '

"Interpolation in data of Williams. 9

TABLE VIII. Cross sections (a.u. ) for 54.42-eV e-H 2p excitation. Numbers in square brackets indicate powers of 10. Figures in
parentheses indicate the error in the last figure.

0 (deg)

0
1

20
30
40
60
80

100
120
140

Expt.

7.5(7)
1.04(11)
1.57(21)x 10-'
4.4(7) X 10-'
1.19(21)x 10
4.1(9)x 10-'
2.2(5) x 10-'
1.59(36)x 10
1.03(28) X 10-'

2.79(24)

CCO

3.8[ + I]
7.6
1.15
1.68[—I ]
3.9[—2]
1.01[—2]
4.8[ —3]
2.5[ —3]
1.41[—3]
9.5[ —4]

2.75

3.9[ + I]
7.8
1.17
1.97[—I ]
4.8[ —2]
1.13[—2]
4.6[ —3]
2.6[ —3]
1.61[—3]
1.25[ —3]

2.83

PP

4.2[ + I]
7.6
9.0[ —I ]
1.22[ —I ]
3.2[ —2]
9.9[—3]
4.7[ —3)
2.5[ —3]
1.45[ —3]
8.6[ —4]

2.69

PP2

4.1[+ I]
7.3
7.9[—I ]
8.3[ —2]
1.65 [—2]
6.0[ —3]
3.2[ —3]
2.0[ —3]
1.43[ —3]
1.06[ —3]

2.54

BSSR

4.1[+ I]
7.4
7.9[—I ]
7.8[ —2]
1.4[ —2]
6.1[—3]
3.5[ —3]
2.0[ —3]
1.36[—3]
8.4[ —4]

2.56

PSO

3.5[ + I]
7.4
1.25
2.1[—I ]
4.6[ —2]
1.15[—2]
6.1[—3]
3.4[ —3]
1.88[ —3]
1.32[ —3]

2.72

PP2E

4.1[ + I]
7.3
8. I[—I ]
9.5[ —2]
2.2[ —2]
8.2[ —3]
4.8[ —3]
2.5[ —3]
1.25[ —3]
1.03[—3]

2.57

PPD

4.2[ + I]
7.9
1.01
1.36[—I ]
2.7[ —2]
7.8[—3]
4.6[ —3)
2.9[—3]
1.90[ —3]
1.31[—3]

2.81
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TABLE IX. 2p angular correlation parameter k for 54.42-eV e-H scattering. Figures in parentheses indicate the error in the last
figure.

0 (deg)

0
10
20
30
40
60
80

100
120
140

Expt.

0.34(5)
0.23(3)
0.55(4)
0.82(6)
0.92(6)

0.35{3)
0.53(4)
0.90(4}

CCO

1

0.27
0.187
0.35
0.72
0.89
0.77
0.80
0.87
0.94

CC

1

0.28
0.192
0.34
0.68
0.92
0.80
0.80
0.87
0.96

PP

1

0.33
0.26
0.50
0.89
0.91
0.74
0.60
0.60
0.82

PP2

1

0.31
0.189
0.30
0.73
0.87
0.60
0.40
0.41
0.59

BSSR

1

0.32
0.20
0.29
0.67
0.78
0.72
0.76
0.86
0.95

PSO

1

0.25
0.159
0.27
0.59
0.84
0.64
0.77
0.88
0.94

PP2E

1

0.31
0.21
0.40
0.83
0.87
0.70
0.60
0.47
0.34

PPD

1

0.34
0.25
0.41
0.81
0.91
0.67
0.57
0.64
0.84

ferent models. Note that neither CC nor PP obtain the
detailed agreement with experiment that is obtained with
CCO. The same is true for the 2p excitation (Table VIII),
but this is dominated by the Born term (at least at for-
ward angles) and is therefore less sensitive to models for
Q space.

Two basic methods have been suggested for reducing
the amount of computational labor involved in a
coupled-channels calculation with a pseudostate represen-
tation of Q space. One is to ignore exchange in a
coupled-channels calculation. This is tested by compar-
ing PPD with PP. For the elastic channel PPD cross sec-
tions are considerably smaller in the middle angular
range. For 2s and 2p there are serious differences near
60' and at large angles. Differences for A, and R are
small, indicating (perhaps surprisingly) that these coeffi-
cients are insensitive to the omission of exchange.

Other proposed methods for reducing computation all
rely on treating Q space in second order. PP2E makes
only this approximation. In general it overestimates elas-
tic cross sections, but is closer to PP than PPD (which un-
derestimates them). It is a much worse approximation for
2s than PPD, where it underestimates cross sections con-
siderably, and it is roughly comparable for 2p. For A. and
8, PP2E is a worse approximation than PPD.

PP2 makes one more approximation than PP2E. It
omits exchange from couplings to Q space but retains it
within I' space. For elastic scattering it is not very dif-
ferent from PP2E. It is comparable to PP2E for small
angles in the 2s channel but seems to make compensating
errors in the 60'—80' range. For 2p it provides worse un-

derestimates of PP than does PP2E up to 100. For k at
small angles it enhances the errors of PP2E (but fortui-
tously is much closer to the experimental minimum at
large angles). For R up to 60' it is comparable with
PP2E. The worst (and probably unacceptable) feature of
PP2 is its serious underestimate of middle-range inelastic
cross sections.

The other methods BSSR and PSO are polarization po-
tential approximations to PP2 and PP2E, respectively.
BSSR is a coordinate-space method which does not make
the equivalent local approximation used in PSO. BSSR
omits exchange from PQ couplings whereas PSO includes
it. PSO computes polarization potentials in momentum
space.

BSSR should be considered as an approximation to
PP2. Comparisons are made in Figs. 1—4 as well as in
the tables. The two calculations are quite similar for dif-
ferential cross sections and for small-angle values of A. and
R, but are entirely different for A, and R at large angles.
The difference is surprisingly large for cr~.

For elastic scattering PSO is a reasonable approxima-
tion to PP2E, but for the inelastic features it is nearer to
CC than to PP2E, indicating that the momentum-space
calculation of polarization potentials for Q space is an un-
derestimate. This is somewhat surprising, since the
method works well for real n =3 states in comparison
with a six-state CCO model.

At 200 eV we have calculated PP2 and BSSR for com-
parison with PP (Tables II—V). For elastic cross sections
all models give similar results. BSSR is a reasonably good
approximation to PP2 for 2s cross sections, but both un-

TABLE X. 2p angular correlation parameter R for 54.42-eV e-H scattering. Figures in parentheses indicate the error in the last
figure.

0 (deg)

0
10
20
30
40
60
80

100
120
140

Expt.

0.28(3)
0.21(2)
0.18(2)
0.122(18)
0.082(3)

—0.113(33)
—0.065(30)
—0.056(40)

CCO

0
0.30
0.22
0.23
0.21
0.103
0.146
0.173
0.160
0.118

CC

0
0.30
0.22
0.23
0.22
0.110
0.100
0.158
0.190
0.118

PP

0
0.33
0.27
0.25
0.166
0.011

—0.014
0.027
0.161
0.184

PP2

0
0.33
0.26
0.25
0.195
0.056

—0.000
0.081
0.194
0.26

BSSR

0
0.33
0.27
0.26
0.22
0.19
0.20
0.20
0.18
0.12

PSO-

0
0.29
0.22
0.24
0.28
0.21
0.23
0.24
0.183
0.116

PP2E

0
0.32
0.26
0.25
0.20
0.070
0.038
0.050
0.081
0.22

PPD

0
0.33
0.29
0.27
0.17

—0.025
—0.002

0.092
0.178
0.191
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derestimate PP in the middle angular range. This is true
also at 54.42 eV. For the 2p excitation PP2 underesti-
mates PP, as it also does at 54.42 eV, but BSSR overesti-
mates PP2 at most angles. Angular correlation parame-
ters are not shown at 200 eV, since there is no reliable ex-
perimental information.

IV. CONCLUSIONS

The coupled-channels optical model agrees well with
most experimental data for the 1s,2s, 2p P space at 54.42
and 200 eV, although at 54.42 eV it differs from experi-
mental values by more than one standard deviation for
some Q-space features. At 200 eV the model represents
total cross sections for Q-space excitations very well. The
notable exception for I' space is the GCO description of
the 2p angular correlation parameters A, and R for 0~ 60,
where it may be several standard deviations outside the
experimental error limits. Nevertheless it describes k and
R better in general than the other models. This model
represents Q space by polarization potentials involving ex-
plicit integration of products of approximate amplitudes
over the appropriate kinematic degrees of freedom.

The pseudoproblem in which Q space is represented by
a set (Q space) of seven pseudostates, gives a description
of P-space features at both energies that is very similar to
CCO. The only noticeable differences are the 2s differen-
tial cross section at 54.42 eV, where it underestimates the
experiment significantly and the angular distribution of k
at 54.42 eV, where it is closer to the experimental data
than CCO. The pseudostates are chosen to fit the dipole
polarizability and some low-energy P-space features.
They underestimate o.~ by over 20% at both energies,
where experimental standard deviations are about 10%%uo.

There is no doubt that a larger set of pseudostates can
be found that will give a better solution to the e-H prob-
lem than the present seven-pseudostate set. It will be dif-
ficult to solve all the coupled equations explicitly for such
a set. We have therefore investigated some approximate
solutions for the present set in anticipation of applying
them to an improved set in the future.

The approximation (PPD) of solving the coupled equa-
tions explicitly with total neglect of exchange is, perhaps
surprisingly, good at 54.42 eV and would be better at 200
eV where exchange terms are smaller.

The approximation that is most attractive in terms of

saving computational labor is the use of second'-order po-
larization potentials representing Q space in the P-space
coupled-channels calculation. We have investigated a
coordinate-space calculation (BSSR) and an equivalent lo-
cal momentum-space calculation (PSO) in comparison
with coupled-channel calculations (PP2 and PP2E) in
which only the second-order approximation is made. PP2
and PP2E omit and include PQ exchange amplitudes,
respectively. In general second-order approximations give
fairly serious underestimates of 2s and 2p cross sections at
both energies, when compared with PP. BSSR is a good
approximation to PP2 for differential cross sections, but
breaks down badly for the total reaction cross sections and
the angular correlation parameters at 54.42 eV. The
momentum-space calculation PSO is not a sufficiently ac-
curate approximation to PP2E to be considered without
some refinement as a good alternative to BSSR.

Finally we consider what we have learned about possi-
ble improvements to these calculations. CCO could be
improved by going beyond the screened second-order ap-
proximation to 0'„' ' in Eq. (l) for the polarization poten-
tial. Distorted-wave calculations of amplitudes are not
difficult, but are extremely time consuming and impracti-
cal in the integrand of the multidimensional kinematic in-
tegral. CCO is a good approximation, but difficult to im-
prove.

PP can be improved by finding a set of pseudostates
that gives an improved representation of the Q-space
features of the hydrogen atom. The difficulty here is to
solve the large set of coupled equations involved.
Second-order methods do not give a very good approxi-
mation to the present pseudoproblem and therefore would
not be expected to do better for an improved pseudoprob-
lem.

The use of an L expansion to represent the three-body
wave functions %'@

' in a polarization potential must go
beyond the second order. This means that we need an L
expansion in three-body space, not merely in the two-body
space of the target.
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