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A high-current annular electron beam in an accelerator is subject to various instabilities. A gen-
eral fluid-Maxwell theory of the diocotron instability is developed for an infinitely long and azimu-
thally symmetric annular electron beam propagating along an external magnetic field. In contrast
with the treatment used in the conventional diocotron instability, the assumptions of tenuous elec-
tron beam and strong magnetic field have been eliminated. Furthermore, the restriction of infinite
axial wavelength perturbation has been removed and the approximation of ® ~ckf is no longer ap-
plied. Instead, we conduct full electromagnetic perturbation in the macroscopic cold-fluid descrip-
tion of plasma dynamics with the beam parameters of general interest. In the special case of a
sharp-boundary density profile, the diocotron instability which dominates in the low-frequency re-
gion is investigated in a broad range of beam parameters and geometries. The results are signifi-
cantly different from that obtained from the conventional diocotron instability; the kink mode can
be destabilized and the growth rates are much larger for every azimuthal mode.

I. INTRODUCTION

Intense relativistic electron beams have been developed
in recent years as a new source of electromagnetic radia-
tion which can be applied to high-current electron-beam
accelerator, collective accelerator, gyrotron, and free-
electron laser, etc. In most particle accelerators,' a high-
current beam is injected into a low-pressure gas or into an
evacuated tube along a strong external magnetic field.
The guide magnetic field provides the confinement of the
beam which prevents the beam from spreading radially.
Otherwise, the instability can be very destructive to the
beam. Nevertheless, the regions of stability and instability
have been found in some of the experiments and the prob-
lem of stability has been considered in most of the
theoretical investigations.

Experiments have been going on recently to generate
and transport intense relativistic electron beams in gase-
ous or plasma medium. It has been found that the resis-
tive hose instability is one of the most dangerous pertur-
bations to the propagation beam.> However, the stability
analyses and plasma particle simulations indicate that the
increase of the beam current can reduce the hose growth
rate to a large extent. As a result, the beam with high
current (>30 KA) becomes an ultimate choice for the
ejection of a relativistic electron beam to the plasma medi-
um. Historically, high-current beams have been produced
as annular beams guided by a strong magnetic field to
reduce beam perpendicular motion. However, it is very
often and rather common to have large-amplitude-beam
transverse oscillations observed right after the accelerator.
The transverse perturbation can be very destructive to the
beam, especially in the region where a rapid magnetic
field transition occurs. The necessity of eliminating this
initial perturbation is crucial if stable beam propagation
needs to be achieved. In order to have a full understand-
ing of the beam-propagation physics, the careful charac-
terization of the beam parameters before ejection to the
plasma channel is absolutely essential.

The diocotron instability of a hollow electron beam has
been known for a long time since the early crossed-field
microwave magnetron. For an annular electron beam in
the cylindrical geometry, Buneman® has considered the
diocotron instability in the regime of wp, ~w., while
Levy* has examined the instability in the case of low-
beam density and strong magnetic field, i.e., oy, <<,
where w,, and o, stand for the electron plasma and cy-
clotron frequency, respectively. Since then, numerous
theoretical work® has been done and most of them consid-
er only perturbations with sufficiently long wavelength
(k ~0). Experimentally, there is some evidence that the
lower-order diocotron modes have been found in the dam-
aged plate after the target interaction of the annular elec-
tron beam. Recently, the filamentation instability (/ >2)
of an annular electron beam along a uniform magnetic
field has been studied® by using the Vlasov-Maxwell equa-
tions. Here, a more complete electromagnetic treatment
of the fluid-Maxwell theory is conducted without any ap-
proximations which have been made previously. We want
to consider the perturbations, not only in the azimuthal
(1s£0), but also in the axial directions (k,;540). In addi-
tion, the model developed here emphasizes the case for
high-current electron beam, therefore the assumption of
wpp << @, is no longer true. Most importantly, the validi-
ty of the previous w ~ckf3 assumption in the treatment of
the conventional diocotron instability is examined.

A macroscopic cold-fluid—Maxwell theory is used to
perform the linear stability analysis of an infinitely long
intense annular electron beam propagating along an exter-
nal magnetic field. A brief description of the equilibrium
configuration and an outline of the assumptions are given
in Sec. II. In the rigid-rotor and cold laminar flow limit,
a dispersion relation is derived in Sec. III for the general
case which results in a general integro-differential equa-
tion for the perturbed field. In the special case of a rec-
tangular density profile, a closed algebraic dispersion rela-
tion for the complexed eigenfrequency is extracted. The
dispersion relation obtained can be used to investigate the
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instability for a broad range of system parameters. The
numerical solutions for the instabilities are presented in
Sec. IV. Finally, the discussion and a few remarks on the
finite-geometry effect of an accelerator are concluded in
Sec. V.

II. EQUILIBRIUM AND ASSUMPTION

As illustrated in Fig. 1, the equilibrium configuration
consists of a cylindrically symmetric annular electron
beam located between radii R; and R, in a perfect con-
ducting cylinder of radius R,. The beam is assumed in-
finite in the axial direction and aligned parallel to a uni-
form applied magnetic field. The magnetic field provides
the confinement of the annular beam and forbids the
spreading in the radial direction. The radial thickness of
the annular beam (R,—R;=2a) is assumed small in
comparison with the mean equilibrium radius Ry. As a
result, the beam rotation is weakly dependent on r in a
slow-motion equilibrium which allows us to approximate
wp(r) in Eq. (12). The beam under consideration is
characterized by the charge ¢, mass m, axial velocity cjf3,
and density profile n, respectively. It is further assumed
that v/y <<1 where v is Budker’s parameter. In the
cold-fluid model, the flow of electrons can be considered
laminar provided that the beam current is much smaller
than the Alfven-Lawson’ space-charge limiting current
I <17000 By. Furthermore, the beam electrons motion
are taken to be paraxial so that the axial velocity is very
large compared to the transverse velo<:1ty and is con-
sidered to be a constant, ie., P’+P5<<P2, where
P=(P,,Py,P,) is the particle momentum. It is noted that
the perpendicular motion of electron beam is treated non-
relativistically. We introduce a cylindrical polar coordi-
nate system (r,0,z) with the z axis coinciding with the
axis of symmetry. Analysis of beam dynamic properties
is based on a macroscopic cold-fluid model. The equation
of electron and momentum conservation for the electron
fluid can be expressed in the relativistic form as

an

a—+V (nV)=0, (1)

[E‘;’t +V-V |[ymV=¢g(E+VXxB/c), 2)

LONGITUDINAL SECTION

where n(x,t) and V(x,t) are the density and mean veloci-
ty of an electron-fluid element. E(x,z) and B(x,t) are the
electric and magnetic fields, respectively. y=(1—p32)~1/2
and 8=V, /c are the standard relativistic quantities, and ¢
is the speed of light in vacuum. The self-induced electric
and magnetic field can be related to the beam density and
current by Maxwell’s equations. By including the
Maxwell equations we have a complete closed system of
equations.

In the steady state [0/0¢=0] the beam is assumed az-
imuthally symmetric [d/00=0] and infinitely long and
uniform in the axial direction [3/0z=0]. The equilibri-
um force balance due to electric and magnetic field in the
radial direction gives the angular velocity wg(r) of an
electron-fluid element in slow rotational equilibrium
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where a)f,b=4rrnq2/7/m and w,=¢gBy/cym are the elec-
tron plasma frequency square and cyclotron frequency,
respectively, and By is the guided magnetic field. The ra-
dial force due to E, and By is equivalent to an effective
radial field E,/y* which combined with B, leads to an
azimuthal drift. The effect of positive ions which form
an immobile partially neutralizing background is not con-
sidered here. It is further assumed that the ion current is
equal to zero in the laboratory frame.

III. STABILITY ANALYSIS

We assume, without loss of generality, that all the per-
turbed quantities have the following waveform in the
cylindrical geometry with the sinusoidal time dependence
and spatial variation

D(x,t) =8P (r)exp[i (10 +kz —wt)] , 4)

where the oscillating angular frequency o is assumed to
be complex with Im(w) >0, [ is the azimuthal harmonic
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FIG. 1. Longitudinal and cross section of equilibrium configuration and coordinate system.
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number, and k is the propagation wave number in the axi-
al direction. We use the linearized fluid-Maxwell equa-
tions to investigate the general electromagnetic perturba-
tion for />1 and any arbitrary wave number k. Let us
choose the transverse magnetic (TM) modes such that the
magnetic field lies in the cross-sectional plane since all the
transverse fields for the TM mode can be expressed in
terms of the z component of the electric field. The deter-
mination of the transverse fields therefore can be ex-
pressed only in terms of 8E, according to

2 -1

B,= |5 —k?| iZe;xXV.E,, (5)
c c
-1
602 2
E,=|—5—k V.(0E,/9dz) , (6)
c

where V, is the transverse two-dimensional gradient
operator. From the perturbed Maxwell equation, it is
straightforward to express after some algebraic manipula-
tions that the relationship between the perturbed field 8E,

and the source terms &n and 8J, is

2 0)2 .
Vet = |8E, =4wik |q bn —
c

®

}?SJ, ] . )]
8J, is the perturbed current in the axial direction such
that

8J,=q(dn V,+n8V,) (8)

where 6n and 6V, can be obtained by solving a set of
first-order perturbation equations from Egs. (1) and (2).
With the help of Egs. (5) and (6), 8n and 8J, can be ex-
pressed in terms of 8E,. Therefore, Eq. (7), for 8E,, to-
gether with boundary conditions on the field component
represented by the scalar function 8E,, specifies a two-
point boundary eigenvalue problem, which can be solved
numerically. For the special case of a square density pro-
file for the hollow beam, the above-mentioned procedure
with some straightforward but tedious algebraic manipu-
lations rewrites Eq. (7) in the final form as

|
14 d ? ) o
-2 S, )— | — S )— L E
lr or lr(l 1)E)r] rz(l ) [k c? OE;(r)
' 2
l o S1 3n w? Opb lowy
Lt ez on I 7 p E. , 9
p " arSEz(r) [ (:2] 7% FETEI) SE,(r) 9)

where the following abbreviations have been used

_ f’é:_ (ck —wP)?

S = , 10

! 02 (ck)?—w? 1o
Q=w—Ilwy(r)—ckf, (11)
QO=w~la)b(R0)—ckB . (12)

Equation (9) is a second-order differential equation for
S8E,. Therefore, two boundary conditions, namely, §E,(0)
and 8E,(R.), are needed to specify a two-point boundary
eigenvalue problem. The contribution to the first term of
the right-hand side of Eq. (9) becomes two delta functions
at the sharp boundaries of the beam. The second term, on
the other hand, is evaluated at R, approximately for a
thin annular beam. For a given wave number k, only a
certain oscillating frequency o will be consistent with the
differential equation subject to satisfy the boundary condi-
tion.

It is noted that the self-induced magnetic field By has
been neglected and the condition of slow beam rotation
(wp <<w,) has been used in deriving Eq. (9). We are
ready to solve Eq. (9) for the special case of a square-
density-profile hollow beam. Because of the approxima-
tion we made in Eq. (12), Eq. (9) becomes the familiar
Bessel’s equation. The piecewise solutions for the homo-
geneous equation of Eq. (9) can be expressed in terms of
modified Bessel functions. The eigenfunctions. which

satisfy Eq. (9) in the three regions can be written down as

AIL(n'r), O0<r <R,
8E,(r)= {CI,(nr)+Dk;(nr), Ri<r <R, (13)
EIL(n'r)+Fki(n'r), R, <r <R,

(14)

where A4, C, D, E, and F are arbitrary constants, and
@pp 1 lowy
c2

(n'2=k?—w?/c?,
2
n 2 __ __.ﬁ.l_z_ 1—
(1+Sy) Qo k?—? ’

where n’ and n are complex variables. The solutions (13)
are required to be continuous and bounded throughout an
interval R; <7 <R, and to satisfy certain boundary con-
ditions at »=0 and R.. In addition, the effect of the delta
function can be considered by multiplying both sides of r
and integrating over the infinitesimal interval from
r(1—e¢) to r(1+€) with e—0 in the vicinity of r =R,
and R,, respectively. Applying the jump conditions
which yields

R +€

r(1+8) 8B, | =I5, 28K, (r) (15)
1 ar z - IQ z ’

R —€ r=R

where R =R, and R, for the two sharp boundaries,
respectively. Therefore, we have obtained five linear
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equations for five unknowns A4, C, D, E, and F. The
dispersion relation is obtained by writing down the condi-
tion for the linear homogeneous equations. After some
algebraic manipulations, the final result can be expressed
as

n'Ry(14+-S)I (n'R;)—I;(n'R)A,
n'Ry(1+8)k} (n'R;)—ky(n'R;)A;

—n'Ry(1+8)I} (n'Ry)+I)(n'Ry) A,

T AR, (148 )k} (n'Ry)+ky(n'Ry) A,

where I; and k; are the modified Bessel function and
Ij (x)=dI(x)/dx, ki (x)=dk,(x)/dx. The following ab-
breviations have been used:
AIZISI(RI)C()C/Q+’1’RII; (n’Rl )/Il(n'Rl) N
(17)
A2=IS1(R2)CL)C/Q
4 Ii(n'R.)k; (n'Ry)—1I] (n'Ry)ki(n'R,)
I](n'Rc )kl(n’Rz)—I,(n’Rz)k,(n’Rc)
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IV. NUMERICAL RESULTS

The general treatment of the electromagnetic perturba-
tion in cylindrical geometry for the diocotron instability
has been conducted in Sec. III using the fluid-Maxwell
theory. The dispersion relation of Eq. (16) is solved nu-
merically to determine the growth rate and oscillating fre-
quency of the instability as a function of wave number k
for a variety of beam parameters.

A. Nonrelativistic case

For a nonrelativistic electron beam (e.g., y=1.1), the
growth rate and Doppler-shifted real frequency, both have
been normalized to the beam plasma frequency, are plot-
ted versus normalized axial wave number in Figs. 2(a) and
2(b), respectively. We are interested primarily in the
lower azimuthal mode, namely, /=1 and a few higher
modes. The beam parameters used in Fig. 2 are summa-
rized as follows: y=1.1, @, R(/c=0.05, w,/w.=0.5,
a/Ry=0.05, and R;/R.=0.8. Note that the Doppler-
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FIG. 2. (a) Diocotron growth rate vs wave number for different azimuthal number. Beam parameters are vy=1.1, a/Ry=0.05,
wpRo/c=0.05, wp /0. =0.5, and Ro/R,=0.8. (b) Real Doppler-shift real frequency of the diocotron instability corresponds to (a).
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shifted real frequency (w —ckf3) remains very small which
characterizes the low-frequency diocotron perturbations.
It is further noticed that the instability does not occur in
the limit of k—0. In contrast with the conventional
diocotron instability, the /=1 kink mode can be destabi-
lized for the high-current beam case. The instabilities and
associated real Doppler-shifted frequencies as shown in
Fig. 2 are almost an even function of wave number k, ex-
cept near k=0. The reason becomes apparent if we ex-
amine Eq. (9) carefully. As far as the wave number
dependence is concerned, the nonsymmetric terms with
respect to k have been listed in Egs. (10)—(12). Neverthe-
less, because of 8—0 for the nonrelativistic beam, one can
see easily that Egs. (10)—(12) become symmetric with
respect to k especially for larger wave number k. Howev-
er, as wave number decreases (k—0), the nonsymmetry
property of the instability begins to show in Fig. 2 because
Eq. (10) becomes nonsymmetry with respect to k again.
As comparing to the previous theory, if the approxima-
tion of w=ckf3 is applied to Eq. (9), then Eq. (9) becomes
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Eq. (2.6.20) of Davison® of the conventional diocotron in-
stability in the electrostatic approximation. Equation (9)
can also be further reduced to Eq. (8) of Ref. 9, in the
long-wavelength perturbation (k—0) for a tenuous beam
in a strong guiding field (wp, <<®.). The growth rates
decrease very much when ¥ increases and the unstable re-
gions shift towards smaller value of k.

B. Relativistic case

For the high-current electron beam, as the value of
Rowyy, /c increases, Eq. (9) involving the nonsymmetric
term with respect to k becomes more important. One can
expect the nonsymmetric results for the diocotron insta-

- bility. For the purpose of comparison, we use the same

beam geometry as in Fig. 2 but change the beam parame-
ter to the following values: =3, wppRo/c=0.9, and
wpp /©,=0.5. The results of calculations for the instabili-
ty are shown in Fig. 3. As we expected, the symmetry
property of the wave with respect to wave number has
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FIG. 3. (a) Diocotron growth rate vs wave number for different azimuthal number. Beam parameters are ¥ =3, a /Ry=0.05,
®ppR/c=0.5, wp /o, =0.5, and Ro/R.=0.8. (b) Real Doppler-shift real frequency of the diocotron instability corresponds to (a).
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disappeared. Obviously, Egs. (10)—(12) which express the
nonsymmetrical dependence with respect to k becomes
more nonsymmetric as 3—1 for the relativistic beam
case. Unlike the previous results™! of the conventional
diocotron instability, the kink mode becomes unstable
with relatively large growth rate. As [ increases (/> 2),
there are two branches of instability which can be excited.
The one with smaller growth rate which exists in both &
directions is identified as the conventional diocotron in-
stability. The other branch of the modified diocotron in-
stability has much larger growth rate and can be excited
near small-k region only. The reason of being might be
due to the full electromagnetic treatment of the perturba-
tion for the high-current beam. Besides, the approxima-
tion w ~ck B used in the conventional diocotron instability
is no longer applied here. Finally, as we can see in Fig. 3,
the new diocotron instabilities for different azimuthal
modes occur almost at the same wave number (i.e.,
ck /wp, ~0.25). As we can observe in Eq. (10), there is a
singularity for ck ~w. That is why the instability can be
excited in the positive wave number only.

V. CONCLUSIONS

The equilibrium and stability properties of a relativistic
non-neutral electron beam have been examined within the
framework of the linearized fluid-Maxwell equations.
The analysis is carried out for electromagnetic perturba-
tion about an infinitely long annular beam aligned parallel
to a uniform magnetic field. One of the most popular
cold-fluid instabilities characteristic of a rotating non-
neutral hollow beam is the diocotron instability which has
been studied previously only in the low-density regime
(wpe <<@.). However, it is important to emphasize that
the present analysis is not restricted to the low-density re-
gime. The resultant instability for a high-current relativ-
istic annular electron beam is somewhat different from
the conventional diocotron instability. The most
dangerous kink mode (/=1) can be destabilized and the
growth rates for / >2 modes are several times larger than
the conventional diocotron modes.

The stability analysis of a high-power high-current elec-

tron beam inside an accelerator undoubtedly becomes an
important subject under investigation, because the insta-
bility of the electron beam can cause various kinds of dif-
ficulty which will influence the operation for the produc-
tion and acceleration of an annular beam. The general
purpose of this paper is to demonstrate that the high-
current annular electron beam can be unstable at parame-
ters of practical interest. Furthermore, from the beam
propagation point of view, it is always valuable to under-
stand the initial parameters of the propagating beam. If a
beam comes out from an accelerator and suffers initially a
large transverse oscillation, then this off-center beam
propagating into the magnetic field gradient at a transi-
tion section to the plasma would either cause beam expan-
sion or trigger a stronger kink instability. In this case, to
produce a high-quality high-current relativistic electron
beam becomes a more important issue that the beam prop-
agation, especially knowing that the growth rate for the
diocotron mode increases as the current increases.

Finally, if we examine Fig. 3(b) carefully, we can esti-
mate the group velocity which approaches the beam velo-
city for the maximum growth rate of the diocotron mode,
i.e., 0w /0k =Vy~fc. In other words, the instability fol-
lows closely with the beam head where the maximum
growth occurs for the perturbation. It is vital to the beam
head and therefore crucial to the operation of the high-
current accelerator. However, the beam we considered
here has been assumed to be infinitely long. In the real
application, when the diocotron mode with axial wave-
length larger than the drifting tube of the accelerator, the
theory derived here may not be necessarily still valid and
the important effect of finite geometry on the diocotron
instability has to be taken into account. Further studies
similar to the treatment in Ref. 11 should be considered
for this type of problem.
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